[llvm][Timer] Use global TimerGroups for both new pass manager and old pass manager timers (#130375)

Additionally, remove the behavior for both pass manager's timer manager
classes (`PassTimingInfo` for the old pass manager and
`TimePassesHandler` for the new pass manager) where these classes would
print the values of their timers upon destruction.

Currently, each pass manager manages their own `TimerGroup`s. This is
problematic because of duplicate `TimerGroup`s (both pass managers have
a `TimerGroup` for pass times with identical names and descriptions).
The result is that in Clang, `-ftime-report` has two "Pass execution
timing report" sections (one for the new pass manager which manages
optimization passes, and one for the old pass manager which manages the
backend). The result of this change is that Clang's `-ftime-report` now
prints both optimization and backend pass timing info in a unified "Pass
execution timing report" section.

Moving the ownership of the `TimerGroups` to globals also makes it
easier to implement JSON-formatted `-ftime-report`. This was not
possible with the old structure because the two pass managers were
created and destroyed in far parts of the codebase and outputting JSON
requires the printing logic to be at the same place because of
formatting.

Previous discourse discussion:
https://discourse.llvm.org/t/difficulties-with-implementing-json-formatted-ftime-report/84353
6 files changed
tree: b0ad1885aca40d3926b3194d173f6ecc993fb19c
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.