blob: 27f9cede19220316072021d56b5294fcad907cea [file] [log] [blame]
//===-------- LegalizeFloatTypes.cpp - Legalization of float types --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements float type expansion and softening for LegalizeTypes.
// Softening is the act of turning a computation in an illegal floating point
// type into a computation in an integer type of the same size; also known as
// "soft float". For example, turning f32 arithmetic into operations using i32.
// The resulting integer value is the same as what you would get by performing
// the floating point operation and bitcasting the result to the integer type.
// Expansion is the act of changing a computation in an illegal type to be a
// computation in two identical registers of a smaller type. For example,
// implementing ppcf128 arithmetic in two f64 registers.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
/// GetFPLibCall - Return the right libcall for the given floating point type.
/// FIXME: This is a local version of RTLIB::getFPLibCall that should be
/// refactored away (see RTLIB::getPOWI for an example).
static RTLIB::Libcall GetFPLibCall(EVT VT,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128) {
return
VT == MVT::f32 ? Call_F32 :
VT == MVT::f64 ? Call_F64 :
VT == MVT::f80 ? Call_F80 :
VT == MVT::f128 ? Call_F128 :
VT == MVT::ppcf128 ? Call_PPCF128 :
RTLIB::UNKNOWN_LIBCALL;
}
//===----------------------------------------------------------------------===//
// Convert Float Results to Integer
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Soften float result " << ResNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SoftenFloatResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to soften the result of this operator!");
case ISD::ARITH_FENCE: R = SoftenFloatRes_ARITH_FENCE(N); break;
case ISD::MERGE_VALUES:R = SoftenFloatRes_MERGE_VALUES(N, ResNo); break;
case ISD::BITCAST: R = SoftenFloatRes_BITCAST(N); break;
case ISD::BUILD_PAIR: R = SoftenFloatRes_BUILD_PAIR(N); break;
case ISD::ConstantFP: R = SoftenFloatRes_ConstantFP(N); break;
case ISD::EXTRACT_VECTOR_ELT:
R = SoftenFloatRes_EXTRACT_VECTOR_ELT(N, ResNo); break;
case ISD::FABS: R = SoftenFloatRes_FABS(N); break;
case ISD::STRICT_FMINNUM:
case ISD::FMINNUM: R = SoftenFloatRes_FMINNUM(N); break;
case ISD::STRICT_FMAXNUM:
case ISD::FMAXNUM: R = SoftenFloatRes_FMAXNUM(N); break;
case ISD::STRICT_FADD:
case ISD::FADD: R = SoftenFloatRes_FADD(N); break;
case ISD::FCBRT: R = SoftenFloatRes_FCBRT(N); break;
case ISD::STRICT_FCEIL:
case ISD::FCEIL: R = SoftenFloatRes_FCEIL(N); break;
case ISD::FCOPYSIGN: R = SoftenFloatRes_FCOPYSIGN(N); break;
case ISD::STRICT_FCOS:
case ISD::FCOS: R = SoftenFloatRes_FCOS(N); break;
case ISD::STRICT_FDIV:
case ISD::FDIV: R = SoftenFloatRes_FDIV(N); break;
case ISD::STRICT_FEXP:
case ISD::FEXP: R = SoftenFloatRes_FEXP(N); break;
case ISD::STRICT_FEXP2:
case ISD::FEXP2: R = SoftenFloatRes_FEXP2(N); break;
case ISD::STRICT_FFLOOR:
case ISD::FFLOOR: R = SoftenFloatRes_FFLOOR(N); break;
case ISD::STRICT_FLOG:
case ISD::FLOG: R = SoftenFloatRes_FLOG(N); break;
case ISD::STRICT_FLOG2:
case ISD::FLOG2: R = SoftenFloatRes_FLOG2(N); break;
case ISD::STRICT_FLOG10:
case ISD::FLOG10: R = SoftenFloatRes_FLOG10(N); break;
case ISD::STRICT_FMA:
case ISD::FMA: R = SoftenFloatRes_FMA(N); break;
case ISD::STRICT_FMUL:
case ISD::FMUL: R = SoftenFloatRes_FMUL(N); break;
case ISD::STRICT_FNEARBYINT:
case ISD::FNEARBYINT: R = SoftenFloatRes_FNEARBYINT(N); break;
case ISD::FNEG: R = SoftenFloatRes_FNEG(N); break;
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND: R = SoftenFloatRes_FP_EXTEND(N); break;
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: R = SoftenFloatRes_FP_ROUND(N); break;
case ISD::FP16_TO_FP: R = SoftenFloatRes_FP16_TO_FP(N); break;
case ISD::STRICT_FPOW:
case ISD::FPOW: R = SoftenFloatRes_FPOW(N); break;
case ISD::STRICT_FPOWI:
case ISD::FPOWI: R = SoftenFloatRes_FPOWI(N); break;
case ISD::STRICT_FREM:
case ISD::FREM: R = SoftenFloatRes_FREM(N); break;
case ISD::STRICT_FRINT:
case ISD::FRINT: R = SoftenFloatRes_FRINT(N); break;
case ISD::STRICT_FROUND:
case ISD::FROUND: R = SoftenFloatRes_FROUND(N); break;
case ISD::STRICT_FROUNDEVEN:
case ISD::FROUNDEVEN: R = SoftenFloatRes_FROUNDEVEN(N); break;
case ISD::STRICT_FSIN:
case ISD::FSIN: R = SoftenFloatRes_FSIN(N); break;
case ISD::STRICT_FSQRT:
case ISD::FSQRT: R = SoftenFloatRes_FSQRT(N); break;
case ISD::STRICT_FSUB:
case ISD::FSUB: R = SoftenFloatRes_FSUB(N); break;
case ISD::STRICT_FTRUNC:
case ISD::FTRUNC: R = SoftenFloatRes_FTRUNC(N); break;
case ISD::LOAD: R = SoftenFloatRes_LOAD(N); break;
case ISD::ATOMIC_SWAP: R = BitcastToInt_ATOMIC_SWAP(N); break;
case ISD::SELECT: R = SoftenFloatRes_SELECT(N); break;
case ISD::SELECT_CC: R = SoftenFloatRes_SELECT_CC(N); break;
case ISD::FREEZE: R = SoftenFloatRes_FREEZE(N); break;
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = SoftenFloatRes_XINT_TO_FP(N); break;
case ISD::UNDEF: R = SoftenFloatRes_UNDEF(N); break;
case ISD::VAARG: R = SoftenFloatRes_VAARG(N); break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_FMIN:
case ISD::VECREDUCE_FMAX:
R = SoftenFloatRes_VECREDUCE(N);
break;
case ISD::VECREDUCE_SEQ_FADD:
case ISD::VECREDUCE_SEQ_FMUL:
R = SoftenFloatRes_VECREDUCE_SEQ(N);
break;
}
// If R is null, the sub-method took care of registering the result.
if (R.getNode()) {
assert(R.getNode() != N);
SetSoftenedFloat(SDValue(N, ResNo), R);
}
}
SDValue DAGTypeLegalizer::SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC) {
bool IsStrict = N->isStrictFPOpcode();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned Offset = IsStrict ? 1 : 0;
assert(N->getNumOperands() == (1 + Offset) &&
"Unexpected number of operands!");
SDValue Op = GetSoftenedFloat(N->getOperand(0 + Offset));
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpVT = N->getOperand(0 + Offset).getValueType();
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Op,
CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC) {
bool IsStrict = N->isStrictFPOpcode();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned Offset = IsStrict ? 1 : 0;
assert(N->getNumOperands() == (2 + Offset) &&
"Unexpected number of operands!");
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0 + Offset)),
GetSoftenedFloat(N->getOperand(1 + Offset)) };
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpsVT[2] = { N->getOperand(0 + Offset).getValueType(),
N->getOperand(1 + Offset).getValueType() };
CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Ops,
CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_BITCAST(SDNode *N) {
return BitConvertToInteger(N->getOperand(0));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FREEZE(SDNode *N) {
EVT Ty = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(ISD::FREEZE, SDLoc(N), Ty,
GetSoftenedFloat(N->getOperand(0)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_ARITH_FENCE(SDNode *N) {
EVT Ty = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue NewFence = DAG.getNode(ISD::ARITH_FENCE, SDLoc(N), Ty,
GetSoftenedFloat(N->getOperand(0)));
return NewFence;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return BitConvertToInteger(Op);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_BUILD_PAIR(SDNode *N) {
// Convert the inputs to integers, and build a new pair out of them.
return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N),
TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)),
BitConvertToInteger(N->getOperand(0)),
BitConvertToInteger(N->getOperand(1)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_ConstantFP(SDNode *N) {
ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
// In ppcf128, the high 64 bits are always first in memory regardless
// of Endianness. LLVM's APFloat representation is not Endian sensitive,
// and so always converts into a 128-bit APInt in a non-Endian-sensitive
// way. However, APInt's are serialized in an Endian-sensitive fashion,
// so on big-Endian targets, the two doubles are output in the wrong
// order. Fix this by manually flipping the order of the high 64 bits
// and the low 64 bits here.
if (DAG.getDataLayout().isBigEndian() &&
CN->getValueType(0).getSimpleVT() == llvm::MVT::ppcf128) {
uint64_t words[2] = { CN->getValueAPF().bitcastToAPInt().getRawData()[1],
CN->getValueAPF().bitcastToAPInt().getRawData()[0] };
APInt Val(128, words);
return DAG.getConstant(Val, SDLoc(CN),
TLI.getTypeToTransformTo(*DAG.getContext(),
CN->getValueType(0)));
} else {
return DAG.getConstant(CN->getValueAPF().bitcastToAPInt(), SDLoc(CN),
TLI.getTypeToTransformTo(*DAG.getContext(),
CN->getValueType(0)));
}
}
SDValue DAGTypeLegalizer::SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo) {
SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
NewOp.getValueType().getVectorElementType(),
NewOp, N->getOperand(1));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned Size = NVT.getSizeInBits();
// Mask = ~(1 << (Size-1))
APInt API = APInt::getAllOnes(Size);
API.clearBit(Size - 1);
SDValue Mask = DAG.getConstant(API, SDLoc(N), NVT);
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return DAG.getNode(ISD::AND, SDLoc(N), NVT, Op, Mask);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMINNUM(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::FMIN_F32,
RTLIB::FMIN_F64,
RTLIB::FMIN_F80,
RTLIB::FMIN_F128,
RTLIB::FMIN_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMAXNUM(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::FMAX_F32,
RTLIB::FMAX_F64,
RTLIB::FMAX_F80,
RTLIB::FMAX_F128,
RTLIB::FMAX_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::ADD_F32,
RTLIB::ADD_F64,
RTLIB::ADD_F80,
RTLIB::ADD_F128,
RTLIB::ADD_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCBRT(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::CBRT_F32,
RTLIB::CBRT_F64,
RTLIB::CBRT_F80,
RTLIB::CBRT_F128,
RTLIB::CBRT_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::CEIL_F32,
RTLIB::CEIL_F64,
RTLIB::CEIL_F80,
RTLIB::CEIL_F128,
RTLIB::CEIL_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) {
SDValue LHS = GetSoftenedFloat(N->getOperand(0));
SDValue RHS = BitConvertToInteger(N->getOperand(1));
SDLoc dl(N);
EVT LVT = LHS.getValueType();
EVT RVT = RHS.getValueType();
unsigned LSize = LVT.getSizeInBits();
unsigned RSize = RVT.getSizeInBits();
// First get the sign bit of second operand.
SDValue SignBit = DAG.getNode(
ISD::SHL, dl, RVT, DAG.getConstant(1, dl, RVT),
DAG.getConstant(RSize - 1, dl,
TLI.getShiftAmountTy(RVT, DAG.getDataLayout())));
SignBit = DAG.getNode(ISD::AND, dl, RVT, RHS, SignBit);
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits();
if (SizeDiff > 0) {
SignBit =
DAG.getNode(ISD::SRL, dl, RVT, SignBit,
DAG.getConstant(SizeDiff, dl,
TLI.getShiftAmountTy(SignBit.getValueType(),
DAG.getDataLayout())));
SignBit = DAG.getNode(ISD::TRUNCATE, dl, LVT, SignBit);
} else if (SizeDiff < 0) {
SignBit = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, SignBit);
SignBit =
DAG.getNode(ISD::SHL, dl, LVT, SignBit,
DAG.getConstant(-SizeDiff, dl,
TLI.getShiftAmountTy(SignBit.getValueType(),
DAG.getDataLayout())));
}
// Clear the sign bit of the first operand.
SDValue Mask = DAG.getNode(
ISD::SHL, dl, LVT, DAG.getConstant(1, dl, LVT),
DAG.getConstant(LSize - 1, dl,
TLI.getShiftAmountTy(LVT, DAG.getDataLayout())));
Mask = DAG.getNode(ISD::SUB, dl, LVT, Mask, DAG.getConstant(1, dl, LVT));
LHS = DAG.getNode(ISD::AND, dl, LVT, LHS, Mask);
// Or the value with the sign bit.
return DAG.getNode(ISD::OR, dl, LVT, LHS, SignBit);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::COS_F32,
RTLIB::COS_F64,
RTLIB::COS_F80,
RTLIB::COS_F128,
RTLIB::COS_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::DIV_F32,
RTLIB::DIV_F64,
RTLIB::DIV_F80,
RTLIB::DIV_F128,
RTLIB::DIV_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::EXP_F32,
RTLIB::EXP_F64,
RTLIB::EXP_F80,
RTLIB::EXP_F128,
RTLIB::EXP_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::EXP2_F32,
RTLIB::EXP2_F64,
RTLIB::EXP2_F80,
RTLIB::EXP2_F128,
RTLIB::EXP2_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::FLOOR_F32,
RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80,
RTLIB::FLOOR_F128,
RTLIB::FLOOR_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::LOG_F32,
RTLIB::LOG_F64,
RTLIB::LOG_F80,
RTLIB::LOG_F128,
RTLIB::LOG_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::LOG2_F32,
RTLIB::LOG2_F64,
RTLIB::LOG2_F80,
RTLIB::LOG2_F128,
RTLIB::LOG2_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::LOG10_F32,
RTLIB::LOG10_F64,
RTLIB::LOG10_F80,
RTLIB::LOG10_F128,
RTLIB::LOG10_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMA(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned Offset = IsStrict ? 1 : 0;
SDValue Ops[3] = { GetSoftenedFloat(N->getOperand(0 + Offset)),
GetSoftenedFloat(N->getOperand(1 + Offset)),
GetSoftenedFloat(N->getOperand(2 + Offset)) };
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpsVT[3] = { N->getOperand(0 + Offset).getValueType(),
N->getOperand(1 + Offset).getValueType(),
N->getOperand(2 + Offset).getValueType() };
CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG,
GetFPLibCall(N->getValueType(0),
RTLIB::FMA_F32,
RTLIB::FMA_F64,
RTLIB::FMA_F80,
RTLIB::FMA_F128,
RTLIB::FMA_PPCF128),
NVT, Ops, CallOptions, SDLoc(N), Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_F128,
RTLIB::MUL_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::NEARBYINT_F32,
RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_F128,
RTLIB::NEARBYINT_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
// Expand Y = FNEG(X) -> Y = X ^ sign mask
APInt SignMask = APInt::getSignMask(NVT.getSizeInBits());
return DAG.getNode(ISD::XOR, dl, NVT, GetSoftenedFloat(N->getOperand(0)),
DAG.getConstant(SignMask, dl, NVT));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = N->getOperand(IsStrict ? 1 : 0);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat) {
Op = GetPromotedFloat(Op);
// If the promotion did the FP_EXTEND to the destination type for us,
// there's nothing left to do here.
if (Op.getValueType() == N->getValueType(0))
return BitConvertToInteger(Op);
}
// There's only a libcall for f16 -> f32, so proceed in two stages. Also, it's
// entirely possible for both f16 and f32 to be legal, so use the fully
// hard-float FP_EXTEND rather than FP16_TO_FP.
if (Op.getValueType() == MVT::f16 && N->getValueType(0) != MVT::f32) {
if (IsStrict) {
Op = DAG.getNode(ISD::STRICT_FP_EXTEND, SDLoc(N),
{ MVT::f32, MVT::Other }, { Chain, Op });
Chain = Op.getValue(1);
} else {
Op = DAG.getNode(ISD::FP_EXTEND, SDLoc(N), MVT::f32, Op);
}
}
RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpVT = N->getOperand(IsStrict ? 1 : 0).getValueType();
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Op,
CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
// FIXME: Should we just use 'normal' FP_EXTEND / FP_TRUNC instead of special
// nodes?
SDValue DAGTypeLegalizer::SoftenFloatRes_FP16_TO_FP(SDNode *N) {
EVT MidVT = TLI.getTypeToTransformTo(*DAG.getContext(), MVT::f32);
SDValue Op = N->getOperand(0);
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpsVT[1] = { N->getOperand(0).getValueType() };
CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true);
SDValue Res32 = TLI.makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MidVT, Op,
CallOptions, SDLoc(N)).first;
if (N->getValueType(0) == MVT::f32)
return Res32;
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
RTLIB::Libcall LC = RTLIB::getFPEXT(MVT::f32, N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
return TLI.makeLibCall(DAG, LC, NVT, Res32, CallOptions, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = N->getOperand(IsStrict ? 1 : 0);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!");
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpVT = N->getOperand(IsStrict ? 1 : 0).getValueType();
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Op,
CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::POW_F32,
RTLIB::POW_F64,
RTLIB::POW_F80,
RTLIB::POW_F128,
RTLIB::POW_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
assert((N->getOperand(1 + Offset).getValueType() == MVT::i16 ||
N->getOperand(1 + Offset).getValueType() == MVT::i32) &&
"Unsupported power type!");
RTLIB::Libcall LC = RTLIB::getPOWI(N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi.");
if (!TLI.getLibcallName(LC)) {
// Some targets don't have a powi libcall; use pow instead.
// FIXME: Implement this if some target needs it.
DAG.getContext()->emitError("Don't know how to soften fpowi to fpow");
return DAG.getUNDEF(N->getValueType(0));
}
if (DAG.getLibInfo().getIntSize() !=
N->getOperand(1 + Offset).getValueType().getSizeInBits()) {
// If the exponent does not match with sizeof(int) a libcall to RTLIB::POWI
// would use the wrong type for the argument.
DAG.getContext()->emitError("POWI exponent does not match sizeof(int)");
return DAG.getUNDEF(N->getValueType(0));
}
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0 + Offset)),
N->getOperand(1 + Offset) };
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpsVT[2] = { N->getOperand(0 + Offset).getValueType(),
N->getOperand(1 + Offset).getValueType() };
CallOptions.setTypeListBeforeSoften(OpsVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Ops,
CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::REM_F32,
RTLIB::REM_F64,
RTLIB::REM_F80,
RTLIB::REM_F128,
RTLIB::REM_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::RINT_F32,
RTLIB::RINT_F64,
RTLIB::RINT_F80,
RTLIB::RINT_F128,
RTLIB::RINT_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FROUND(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::ROUND_F32,
RTLIB::ROUND_F64,
RTLIB::ROUND_F80,
RTLIB::ROUND_F128,
RTLIB::ROUND_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FROUNDEVEN(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::ROUNDEVEN_F32,
RTLIB::ROUNDEVEN_F64,
RTLIB::ROUNDEVEN_F80,
RTLIB::ROUNDEVEN_F128,
RTLIB::ROUNDEVEN_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::SIN_F32,
RTLIB::SIN_F64,
RTLIB::SIN_F80,
RTLIB::SIN_F128,
RTLIB::SIN_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::SQRT_F32,
RTLIB::SQRT_F64,
RTLIB::SQRT_F80,
RTLIB::SQRT_F128,
RTLIB::SQRT_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) {
return SoftenFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_F128,
RTLIB::SUB_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) {
return SoftenFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::TRUNC_F32,
RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80,
RTLIB::TRUNC_F128,
RTLIB::TRUNC_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDLoc dl(N);
auto MMOFlags =
L->getMemOperand()->getFlags() &
~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
SDValue NewL;
if (L->getExtensionType() == ISD::NON_EXTLOAD) {
NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), NVT, dl,
L->getChain(), L->getBasePtr(), L->getOffset(),
L->getPointerInfo(), NVT, L->getOriginalAlign(),
MMOFlags, L->getAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
return NewL;
}
// Do a non-extending load followed by FP_EXTEND.
NewL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD, L->getMemoryVT(),
dl, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getPointerInfo(), L->getMemoryVT(),
L->getOriginalAlign(), MMOFlags, L->getAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
auto ExtendNode = DAG.getNode(ISD::FP_EXTEND, dl, VT, NewL);
return BitConvertToInteger(ExtendNode);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT(SDNode *N) {
SDValue LHS = GetSoftenedFloat(N->getOperand(1));
SDValue RHS = GetSoftenedFloat(N->getOperand(2));
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), N->getOperand(0), LHS, RHS);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetSoftenedFloat(N->getOperand(2));
SDValue RHS = GetSoftenedFloat(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_VAARG(SDNode *N) {
SDValue Chain = N->getOperand(0); // Get the chain.
SDValue Ptr = N->getOperand(1); // Get the pointer.
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDLoc dl(N);
SDValue NewVAARG;
NewVAARG = DAG.getVAArg(NVT, dl, Chain, Ptr, N->getOperand(2),
N->getConstantOperandVal(3));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
if (N != NewVAARG.getValue(1).getNode())
ReplaceValueWith(SDValue(N, 1), NewVAARG.getValue(1));
return NewVAARG;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
bool Signed = N->getOpcode() == ISD::SINT_TO_FP ||
N->getOpcode() == ISD::STRICT_SINT_TO_FP;
EVT SVT = N->getOperand(IsStrict ? 1 : 0).getValueType();
EVT RVT = N->getValueType(0);
EVT NVT = EVT();
SDLoc dl(N);
// If the input is not legal, eg: i1 -> fp, then it needs to be promoted to
// a larger type, eg: i8 -> fp. Even if it is legal, no libcall may exactly
// match. Look for an appropriate libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++t) {
NVT = (MVT::SimpleValueType)t;
// The source needs to big enough to hold the operand.
if (NVT.bitsGE(SVT))
LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT):RTLIB::getUINTTOFP (NVT, RVT);
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!");
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
// Sign/zero extend the argument if the libcall takes a larger type.
SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
NVT, N->getOperand(IsStrict ? 1 : 0));
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(Signed);
CallOptions.setTypeListBeforeSoften(SVT, RVT, true);
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, TLI.getTypeToTransformTo(*DAG.getContext(), RVT),
Op, CallOptions, dl, Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatRes_VECREDUCE(SDNode *N) {
// Expand and soften recursively.
ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduce(N, DAG));
return SDValue();
}
SDValue DAGTypeLegalizer::SoftenFloatRes_VECREDUCE_SEQ(SDNode *N) {
ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduceSeq(N, DAG));
return SDValue();
}
//===----------------------------------------------------------------------===//
// Convert Float Operand to Integer
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Soften float operand " << OpNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SoftenFloatOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to soften this operator's operand!");
case ISD::BITCAST: Res = SoftenFloatOp_BITCAST(N); break;
case ISD::BR_CC: Res = SoftenFloatOp_BR_CC(N); break;
case ISD::STRICT_FP_TO_FP16:
case ISD::FP_TO_FP16: // Same as FP_ROUND for softening purposes
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: Res = SoftenFloatOp_FP_ROUND(N); break;
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Res = SoftenFloatOp_FP_TO_XINT(N); break;
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
Res = SoftenFloatOp_FP_TO_XINT_SAT(N); break;
case ISD::STRICT_LROUND:
case ISD::LROUND: Res = SoftenFloatOp_LROUND(N); break;
case ISD::STRICT_LLROUND:
case ISD::LLROUND: Res = SoftenFloatOp_LLROUND(N); break;
case ISD::STRICT_LRINT:
case ISD::LRINT: Res = SoftenFloatOp_LRINT(N); break;
case ISD::STRICT_LLRINT:
case ISD::LLRINT: Res = SoftenFloatOp_LLRINT(N); break;
case ISD::SELECT_CC: Res = SoftenFloatOp_SELECT_CC(N); break;
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
case ISD::SETCC: Res = SoftenFloatOp_SETCC(N); break;
case ISD::STORE: Res = SoftenFloatOp_STORE(N, OpNo); break;
case ISD::FCOPYSIGN: Res = SoftenFloatOp_FCOPYSIGN(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this to re-analyze.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand softening");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_BITCAST(SDNode *N) {
SDValue Op0 = GetSoftenedFloat(N->getOperand(0));
return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0);
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_ROUND(SDNode *N) {
// We actually deal with the partially-softened FP_TO_FP16 node too, which
// returns an i16 so doesn't meet the constraints necessary for FP_ROUND.
assert(N->getOpcode() == ISD::FP_ROUND || N->getOpcode() == ISD::FP_TO_FP16 ||
N->getOpcode() == ISD::STRICT_FP_TO_FP16 ||
N->getOpcode() == ISD::STRICT_FP_ROUND);
bool IsStrict = N->isStrictFPOpcode();
SDValue Op = N->getOperand(IsStrict ? 1 : 0);
EVT SVT = Op.getValueType();
EVT RVT = N->getValueType(0);
EVT FloatRVT = (N->getOpcode() == ISD::FP_TO_FP16 ||
N->getOpcode() == ISD::STRICT_FP_TO_FP16)
? MVT::f16
: RVT;
RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, FloatRVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND libcall");
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
Op = GetSoftenedFloat(Op);
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setTypeListBeforeSoften(SVT, RVT, true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RVT, Op,
CallOptions, SDLoc(N),
Chain);
if (IsStrict) {
ReplaceValueWith(SDValue(N, 1), Tmp.second);
ReplaceValueWith(SDValue(N, 0), Tmp.first);
return SDValue();
}
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
EVT VT = NewLHS.getValueType();
NewLHS = GetSoftenedFloat(NewLHS);
NewRHS = GetSoftenedFloat(NewRHS);
TLI.softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, SDLoc(N),
N->getOperand(2), N->getOperand(3));
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!NewRHS.getNode()) {
NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
DAG.getCondCode(CCCode), NewLHS, NewRHS,
N->getOperand(4)),
0);
}
// Even if the result type is legal, no libcall may exactly match. (e.g. We
// don't have FP-i8 conversions) This helper method looks for an appropriate
// promoted libcall.
static RTLIB::Libcall findFPToIntLibcall(EVT SrcVT, EVT RetVT, EVT &Promoted,
bool Signed) {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
++IntVT) {
Promoted = (MVT::SimpleValueType)IntVT;
// The type needs to big enough to hold the result.
if (Promoted.bitsGE(RetVT))
LC = Signed ? RTLIB::getFPTOSINT(SrcVT, Promoted)
: RTLIB::getFPTOUINT(SrcVT, Promoted);
}
return LC;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
bool Signed = N->getOpcode() == ISD::FP_TO_SINT ||
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
SDValue Op = N->getOperand(IsStrict ? 1 : 0);
EVT SVT = Op.getValueType();
EVT RVT = N->getValueType(0);
EVT NVT = EVT();
SDLoc dl(N);
// If the result is not legal, eg: fp -> i1, then it needs to be promoted to
// a larger type, eg: fp -> i32. Even if it is legal, no libcall may exactly
// match, eg. we don't have fp -> i8 conversions.
// Look for an appropriate libcall.
RTLIB::Libcall LC = findFPToIntLibcall(SVT, RVT, NVT, Signed);
assert(LC != RTLIB::UNKNOWN_LIBCALL && NVT.isSimple() &&
"Unsupported FP_TO_XINT!");
Op = GetSoftenedFloat(Op);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setTypeListBeforeSoften(SVT, RVT, true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Op,
CallOptions, dl, Chain);
// Truncate the result if the libcall returns a larger type.
SDValue Res = DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first);
if (!IsStrict)
return Res;
ReplaceValueWith(SDValue(N, 1), Tmp.second);
ReplaceValueWith(SDValue(N, 0), Res);
return SDValue();
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N) {
SDValue Res = TLI.expandFP_TO_INT_SAT(N, DAG);
return Res;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_SELECT_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
EVT VT = NewLHS.getValueType();
NewLHS = GetSoftenedFloat(NewLHS);
NewRHS = GetSoftenedFloat(NewRHS);
TLI.softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, SDLoc(N),
N->getOperand(0), N->getOperand(1));
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!NewRHS.getNode()) {
NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
N->getOperand(2), N->getOperand(3),
DAG.getCondCode(CCCode)),
0);
}
SDValue DAGTypeLegalizer::SoftenFloatOp_SETCC(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
SDValue Op1 = N->getOperand(IsStrict ? 2 : 1);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
ISD::CondCode CCCode =
cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
EVT VT = Op0.getValueType();
SDValue NewLHS = GetSoftenedFloat(Op0);
SDValue NewRHS = GetSoftenedFloat(Op1);
TLI.softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, SDLoc(N), Op0, Op1,
Chain, N->getOpcode() == ISD::STRICT_FSETCCS);
// Update N to have the operands specified.
if (NewRHS.getNode()) {
if (IsStrict)
NewLHS = DAG.getNode(ISD::SETCC, SDLoc(N), N->getValueType(0), NewLHS,
NewRHS, DAG.getCondCode(CCCode));
else
return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
DAG.getCondCode(CCCode)), 0);
}
// Otherwise, softenSetCCOperands returned a scalar, use it.
assert((NewRHS.getNode() || NewLHS.getValueType() == N->getValueType(0)) &&
"Unexpected setcc expansion!");
if (IsStrict) {
ReplaceValueWith(SDValue(N, 0), NewLHS);
ReplaceValueWith(SDValue(N, 1), Chain);
return SDValue();
}
return NewLHS;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) {
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only soften the stored value!");
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Val = ST->getValue();
SDLoc dl(N);
if (ST->isTruncatingStore())
// Do an FP_ROUND followed by a non-truncating store.
Val = BitConvertToInteger(DAG.getNode(ISD::FP_ROUND, dl, ST->getMemoryVT(),
Val, DAG.getIntPtrConstant(0, dl)));
else
Val = GetSoftenedFloat(Val);
return DAG.getStore(ST->getChain(), dl, Val, ST->getBasePtr(),
ST->getMemOperand());
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FCOPYSIGN(SDNode *N) {
SDValue LHS = N->getOperand(0);
SDValue RHS = BitConvertToInteger(N->getOperand(1));
SDLoc dl(N);
EVT LVT = LHS.getValueType();
EVT ILVT = EVT::getIntegerVT(*DAG.getContext(), LVT.getSizeInBits());
EVT RVT = RHS.getValueType();
unsigned LSize = LVT.getSizeInBits();
unsigned RSize = RVT.getSizeInBits();
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = RSize - LSize;
if (SizeDiff > 0) {
RHS =
DAG.getNode(ISD::SRL, dl, RVT, RHS,
DAG.getConstant(SizeDiff, dl,
TLI.getShiftAmountTy(RHS.getValueType(),
DAG.getDataLayout())));
RHS = DAG.getNode(ISD::TRUNCATE, dl, ILVT, RHS);
} else if (SizeDiff < 0) {
RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, RHS);
RHS =
DAG.getNode(ISD::SHL, dl, ILVT, RHS,
DAG.getConstant(-SizeDiff, dl,
TLI.getShiftAmountTy(RHS.getValueType(),
DAG.getDataLayout())));
}
RHS = DAG.getBitcast(LVT, RHS);
return DAG.getNode(ISD::FCOPYSIGN, dl, LVT, LHS, RHS);
}
SDValue DAGTypeLegalizer::SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
bool IsStrict = N->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
SDValue Op = GetSoftenedFloat(N->getOperand(0 + Offset));
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
EVT OpVT = N->getOperand(0 + Offset).getValueType();
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, NVT, Op,
CallOptions, SDLoc(N),
Chain);
if (IsStrict) {
ReplaceValueWith(SDValue(N, 1), Tmp.second);
ReplaceValueWith(SDValue(N, 0), Tmp.first);
return SDValue();
}
return Tmp.first;
}
SDValue DAGTypeLegalizer::SoftenFloatOp_LROUND(SDNode *N) {
EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType();
return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT,
RTLIB::LROUND_F32,
RTLIB::LROUND_F64,
RTLIB::LROUND_F80,
RTLIB::LROUND_F128,
RTLIB::LROUND_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_LLROUND(SDNode *N) {
EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType();
return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT,
RTLIB::LLROUND_F32,
RTLIB::LLROUND_F64,
RTLIB::LLROUND_F80,
RTLIB::LLROUND_F128,
RTLIB::LLROUND_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_LRINT(SDNode *N) {
EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType();
return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT,
RTLIB::LRINT_F32,
RTLIB::LRINT_F64,
RTLIB::LRINT_F80,
RTLIB::LRINT_F128,
RTLIB::LRINT_PPCF128));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_LLRINT(SDNode *N) {
EVT OpVT = N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType();
return SoftenFloatOp_Unary(N, GetFPLibCall(OpVT,
RTLIB::LLRINT_F32,
RTLIB::LLRINT_F64,
RTLIB::LLRINT_F80,
RTLIB::LLRINT_F128,
RTLIB::LLRINT_PPCF128));
}
//===----------------------------------------------------------------------===//
// Float Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandFloatResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Expand float result: "; N->dump(&DAG); dbgs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ExpandFloatResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to expand the result of this operator!");
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::MERGE_VALUES: ExpandRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
case ISD::ConstantFP: ExpandFloatRes_ConstantFP(N, Lo, Hi); break;
case ISD::FABS: ExpandFloatRes_FABS(N, Lo, Hi); break;
case ISD::STRICT_FMINNUM:
case ISD::FMINNUM: ExpandFloatRes_FMINNUM(N, Lo, Hi); break;
case ISD::STRICT_FMAXNUM:
case ISD::FMAXNUM: ExpandFloatRes_FMAXNUM(N, Lo, Hi); break;
case ISD::STRICT_FADD:
case ISD::FADD: ExpandFloatRes_FADD(N, Lo, Hi); break;
case ISD::FCBRT: ExpandFloatRes_FCBRT(N, Lo, Hi); break;
case ISD::STRICT_FCEIL:
case ISD::FCEIL: ExpandFloatRes_FCEIL(N, Lo, Hi); break;
case ISD::FCOPYSIGN: ExpandFloatRes_FCOPYSIGN(N, Lo, Hi); break;
case ISD::STRICT_FCOS:
case ISD::FCOS: ExpandFloatRes_FCOS(N, Lo, Hi); break;
case ISD::STRICT_FDIV:
case ISD::FDIV: ExpandFloatRes_FDIV(N, Lo, Hi); break;
case ISD::STRICT_FEXP:
case ISD::FEXP: ExpandFloatRes_FEXP(N, Lo, Hi); break;
case ISD::STRICT_FEXP2:
case ISD::FEXP2: ExpandFloatRes_FEXP2(N, Lo, Hi); break;
case ISD::STRICT_FFLOOR:
case ISD::FFLOOR: ExpandFloatRes_FFLOOR(N, Lo, Hi); break;
case ISD::STRICT_FLOG:
case ISD::FLOG: ExpandFloatRes_FLOG(N, Lo, Hi); break;
case ISD::STRICT_FLOG2:
case ISD::FLOG2: ExpandFloatRes_FLOG2(N, Lo, Hi); break;
case ISD::STRICT_FLOG10:
case ISD::FLOG10: ExpandFloatRes_FLOG10(N, Lo, Hi); break;
case ISD::STRICT_FMA:
case ISD::FMA: ExpandFloatRes_FMA(N, Lo, Hi); break;
case ISD::STRICT_FMUL:
case ISD::FMUL: ExpandFloatRes_FMUL(N, Lo, Hi); break;
case ISD::STRICT_FNEARBYINT:
case ISD::FNEARBYINT: ExpandFloatRes_FNEARBYINT(N, Lo, Hi); break;
case ISD::FNEG: ExpandFloatRes_FNEG(N, Lo, Hi); break;
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND: ExpandFloatRes_FP_EXTEND(N, Lo, Hi); break;
case ISD::STRICT_FPOW:
case ISD::FPOW: ExpandFloatRes_FPOW(N, Lo, Hi); break;
case ISD::STRICT_FPOWI:
case ISD::FPOWI: ExpandFloatRes_FPOWI(N, Lo, Hi); break;
case ISD::FREEZE: ExpandFloatRes_FREEZE(N, Lo, Hi); break;
case ISD::STRICT_FRINT:
case ISD::FRINT: ExpandFloatRes_FRINT(N, Lo, Hi); break;
case ISD::STRICT_FROUND:
case ISD::FROUND: ExpandFloatRes_FROUND(N, Lo, Hi); break;
case ISD::STRICT_FROUNDEVEN:
case ISD::FROUNDEVEN: ExpandFloatRes_FROUNDEVEN(N, Lo, Hi); break;
case ISD::STRICT_FSIN:
case ISD::FSIN: ExpandFloatRes_FSIN(N, Lo, Hi); break;
case ISD::STRICT_FSQRT:
case ISD::FSQRT: ExpandFloatRes_FSQRT(N, Lo, Hi); break;
case ISD::STRICT_FSUB:
case ISD::FSUB: ExpandFloatRes_FSUB(N, Lo, Hi); break;
case ISD::STRICT_FTRUNC:
case ISD::FTRUNC: ExpandFloatRes_FTRUNC(N, Lo, Hi); break;
case ISD::LOAD: ExpandFloatRes_LOAD(N, Lo, Hi); break;
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: ExpandFloatRes_XINT_TO_FP(N, Lo, Hi); break;
case ISD::STRICT_FREM:
case ISD::FREM: ExpandFloatRes_FREM(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetExpandedFloat(SDValue(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
assert(NVT.getSizeInBits() == 64 &&
"Do not know how to expand this float constant!");
APInt C = cast<ConstantFPSDNode>(N)->getValueAPF().bitcastToAPInt();
SDLoc dl(N);
Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
APInt(64, C.getRawData()[1])),
dl, NVT);
Hi = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
APInt(64, C.getRawData()[0])),
dl, NVT);
}
void DAGTypeLegalizer::ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
SDValue &Lo, SDValue &Hi) {
bool IsStrict = N->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
SDValue Op = N->getOperand(0 + Offset);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, N->getValueType(0),
Op, CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
GetPairElements(Tmp.first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
SDValue &Lo, SDValue &Hi) {
bool IsStrict = N->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
SDValue Ops[] = { N->getOperand(0 + Offset), N->getOperand(1 + Offset) };
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, N->getValueType(0),
Ops, CallOptions, SDLoc(N),
Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
GetPairElements(Tmp.first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FABS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(N->getValueType(0) == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDLoc dl(N);
SDValue Tmp;
GetExpandedFloat(N->getOperand(0), Lo, Tmp);
Hi = DAG.getNode(ISD::FABS, dl, Tmp.getValueType(), Tmp);
// Lo = Hi==fabs(Hi) ? Lo : -Lo;
Lo = DAG.getSelectCC(dl, Tmp, Hi, Lo,
DAG.getNode(ISD::FNEG, dl, Lo.getValueType(), Lo),
ISD::SETEQ);
}
void DAGTypeLegalizer::ExpandFloatRes_FMINNUM(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::FMIN_F32, RTLIB::FMIN_F64,
RTLIB::FMIN_F80, RTLIB::FMIN_F128,
RTLIB::FMIN_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FMAXNUM(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::FMAX_F32, RTLIB::FMAX_F64,
RTLIB::FMAX_F80, RTLIB::FMAX_F128,
RTLIB::FMAX_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FADD(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::ADD_F32, RTLIB::ADD_F64,
RTLIB::ADD_F80, RTLIB::ADD_F128,
RTLIB::ADD_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FCBRT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0), RTLIB::CBRT_F32,
RTLIB::CBRT_F64, RTLIB::CBRT_F80,
RTLIB::CBRT_F128,
RTLIB::CBRT_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FCEIL(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::CEIL_F32, RTLIB::CEIL_F64,
RTLIB::CEIL_F80, RTLIB::CEIL_F128,
RTLIB::CEIL_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FCOPYSIGN(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::COPYSIGN_F32,
RTLIB::COPYSIGN_F64,
RTLIB::COPYSIGN_F80,
RTLIB::COPYSIGN_F128,
RTLIB::COPYSIGN_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FCOS(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::COS_F32, RTLIB::COS_F64,
RTLIB::COS_F80, RTLIB::COS_F128,
RTLIB::COS_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FDIV(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::DIV_F32,
RTLIB::DIV_F64,
RTLIB::DIV_F80,
RTLIB::DIV_F128,
RTLIB::DIV_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FEXP(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::EXP_F32, RTLIB::EXP_F64,
RTLIB::EXP_F80, RTLIB::EXP_F128,
RTLIB::EXP_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FEXP2(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::EXP2_F32, RTLIB::EXP2_F64,
RTLIB::EXP2_F80, RTLIB::EXP2_F128,
RTLIB::EXP2_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FFLOOR(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
RTLIB::FLOOR_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FLOG(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::LOG_F32, RTLIB::LOG_F64,
RTLIB::LOG_F80, RTLIB::LOG_F128,
RTLIB::LOG_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FLOG2(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::LOG2_F32, RTLIB::LOG2_F64,
RTLIB::LOG2_F80, RTLIB::LOG2_F128,
RTLIB::LOG2_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FLOG10(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::LOG10_F32, RTLIB::LOG10_F64,
RTLIB::LOG10_F80, RTLIB::LOG10_F128,
RTLIB::LOG10_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FMA(SDNode *N, SDValue &Lo,
SDValue &Hi) {
bool IsStrict = N->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
SDValue Ops[3] = { N->getOperand(0 + Offset), N->getOperand(1 + Offset),
N->getOperand(2 + Offset) };
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, GetFPLibCall(N->getValueType(0),
RTLIB::FMA_F32,
RTLIB::FMA_F64,
RTLIB::FMA_F80,
RTLIB::FMA_F128,
RTLIB::FMA_PPCF128),
N->getValueType(0), Ops, CallOptions,
SDLoc(N), Chain);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Tmp.second);
GetPairElements(Tmp.first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FMUL(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_F128,
RTLIB::MUL_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FNEARBYINT(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::NEARBYINT_F32,
RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_F128,
RTLIB::NEARBYINT_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FNEG(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
GetExpandedFloat(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FNEG, dl, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::FNEG, dl, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FP_EXTEND(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
bool IsStrict = N->isStrictFPOpcode();
SDValue Chain;
if (IsStrict) {
// If the expanded type is the same as the input type, just bypass the node.
if (NVT == N->getOperand(1).getValueType()) {
Hi = N->getOperand(1);
Chain = N->getOperand(0);
} else {
// Other we need to extend.
Hi = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, { NVT, MVT::Other },
{ N->getOperand(0), N->getOperand(1) });
Chain = Hi.getValue(1);
}
} else {
Hi = DAG.getNode(ISD::FP_EXTEND, dl, NVT, N->getOperand(0));
}
Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
APInt(NVT.getSizeInBits(), 0)), dl, NVT);
if (IsStrict)
ReplaceValueWith(SDValue(N, 1), Chain);
}
void DAGTypeLegalizer::ExpandFloatRes_FPOW(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::POW_F32, RTLIB::POW_F64,
RTLIB::POW_F80, RTLIB::POW_F128,
RTLIB::POW_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FPOWI(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Binary(N, RTLIB::getPOWI(N->getValueType(0)), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FREEZE(SDNode *N,
SDValue &Lo, SDValue &Hi) {
assert(N->getValueType(0) == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDLoc dl(N);
GetExpandedFloat(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FREEZE, dl, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::FREEZE, dl, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FREM(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::REM_F32, RTLIB::REM_F64,
RTLIB::REM_F80, RTLIB::REM_F128,
RTLIB::REM_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FRINT(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::RINT_F32, RTLIB::RINT_F64,
RTLIB::RINT_F80, RTLIB::RINT_F128,
RTLIB::RINT_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FROUND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::ROUND_F32,
RTLIB::ROUND_F64,
RTLIB::ROUND_F80,
RTLIB::ROUND_F128,
RTLIB::ROUND_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FROUNDEVEN(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::ROUNDEVEN_F32,
RTLIB::ROUNDEVEN_F64,
RTLIB::ROUNDEVEN_F80,
RTLIB::ROUNDEVEN_F128,
RTLIB::ROUNDEVEN_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FSIN(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::SIN_F32, RTLIB::SIN_F64,
RTLIB::SIN_F80, RTLIB::SIN_F128,
RTLIB::SIN_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FSQRT(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_F128,
RTLIB::SQRT_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FSUB(SDNode *N, SDValue &Lo,
SDValue &Hi) {
ExpandFloatRes_Binary(N, GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_F128,
RTLIB::SUB_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FTRUNC(SDNode *N,
SDValue &Lo, SDValue &Hi) {
ExpandFloatRes_Unary(N, GetFPLibCall(N->getValueType(0),
RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
RTLIB::TRUNC_PPCF128), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo,
SDValue &Hi) {
if (ISD::isNormalLoad(N)) {
ExpandRes_NormalLoad(N, Lo, Hi);
return;
}
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0));
assert(NVT.isByteSized() && "Expanded type not byte sized!");
assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?");
Hi = DAG.getExtLoad(LD->getExtensionType(), dl, NVT, Chain, Ptr,
LD->getMemoryVT(), LD->getMemOperand());
// Remember the chain.
Chain = Hi.getValue(1);
// The low part is zero.
Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
APInt(NVT.getSizeInBits(), 0)), dl, NVT);
// Modified the chain - switch anything that used the old chain to use the
// new one.
ReplaceValueWith(SDValue(LD, 1), Chain);
}
void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(N->getValueType(0) == MVT::ppcf128 && "Unsupported XINT_TO_FP!");
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
bool Strict = N->isStrictFPOpcode();
SDValue Src = N->getOperand(Strict ? 1 : 0);
EVT SrcVT = Src.getValueType();
bool isSigned = N->getOpcode() == ISD::SINT_TO_FP ||
N->getOpcode() == ISD::STRICT_SINT_TO_FP;
SDLoc dl(N);
SDValue Chain = Strict ? N->getOperand(0) : DAG.getEntryNode();
// TODO: Any other flags to propagate?
SDNodeFlags Flags;
Flags.setNoFPExcept(N->getFlags().hasNoFPExcept());
// First do an SINT_TO_FP, whether the original was signed or unsigned.
// When promoting partial word types to i32 we must honor the signedness,
// though.
if (SrcVT.bitsLE(MVT::i32)) {
// The integer can be represented exactly in an f64.
Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
APInt(NVT.getSizeInBits(), 0)), dl, NVT);
if (Strict) {
Hi = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(NVT, MVT::Other),
{Chain, Src}, Flags);
Chain = Hi.getValue(1);
} else
Hi = DAG.getNode(N->getOpcode(), dl, NVT, Src);
} else {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (SrcVT.bitsLE(MVT::i64)) {
Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
MVT::i64, Src);
LC = RTLIB::SINTTOFP_I64_PPCF128;
} else if (SrcVT.bitsLE(MVT::i128)) {
Src = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i128, Src);
LC = RTLIB::SINTTOFP_I128_PPCF128;
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!");
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, VT, Src, CallOptions, dl, Chain);
if (Strict)
Chain = Tmp.second;
GetPairElements(Tmp.first, Lo, Hi);
}
// No need to complement for unsigned 32-bit integers
if (isSigned || SrcVT.bitsLE(MVT::i32)) {
if (Strict)
ReplaceValueWith(SDValue(N, 1), Chain);
return;
}
// Unsigned - fix up the SINT_TO_FP value just calculated.
// FIXME: For unsigned i128 to ppc_fp128 conversion, we need to carefully
// keep semantics correctness if the integer is not exactly representable
// here. See ExpandLegalINT_TO_FP.
Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi);
SrcVT = Src.getValueType();
// x>=0 ? (ppcf128)(iN)x : (ppcf128)(iN)x + 2^N; N=32,64,128.
static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 };
static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 };
static const uint64_t TwoE128[] = { 0x47f0000000000000LL, 0 };
ArrayRef<uint64_t> Parts;
switch (SrcVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("Unsupported UINT_TO_FP!");
case MVT::i32:
Parts = TwoE32;
break;
case MVT::i64:
Parts = TwoE64;
break;
case MVT::i128:
Parts = TwoE128;
break;
}
// TODO: Are there other fast-math-flags to propagate to this FADD?
SDValue NewLo = DAG.getConstantFP(
APFloat(APFloat::PPCDoubleDouble(), APInt(128, Parts)), dl, MVT::ppcf128);
if (Strict) {
Lo = DAG.getNode(ISD::STRICT_FADD, dl, DAG.getVTList(VT, MVT::Other),
{Chain, Hi, NewLo}, Flags);
Chain = Lo.getValue(1);
ReplaceValueWith(SDValue(N, 1), Chain);
} else
Lo = DAG.getNode(ISD::FADD, dl, VT, Hi, NewLo);
Lo = DAG.getSelectCC(dl, Src, DAG.getConstant(0, dl, SrcVT),
Lo, Hi, ISD::SETLT);
GetPairElements(Lo, Lo, Hi);
}
//===----------------------------------------------------------------------===//
// Float Operand Expansion
//===----------------------------------------------------------------------===//
/// ExpandFloatOperand - This method is called when the specified operand of the
/// specified node is found to need expansion. At this point, all of the result
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Expand float operand: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
return false;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ExpandFloatOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to expand this operator's operand!");
case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break;
case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
case ISD::BR_CC: Res = ExpandFloatOp_BR_CC(N); break;
case ISD::FCOPYSIGN: Res = ExpandFloatOp_FCOPYSIGN(N); break;
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: Res = ExpandFloatOp_FP_ROUND(N); break;
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Res = ExpandFloatOp_FP_TO_XINT(N); break;
case ISD::LROUND: Res = ExpandFloatOp_LROUND(N); break;
case ISD::LLROUND: Res = ExpandFloatOp_LLROUND(N); break;
case ISD::LRINT: Res = ExpandFloatOp_LRINT(N); break;
case ISD::LLRINT: Res = ExpandFloatOp_LLRINT(N); break;
case ISD::SELECT_CC: Res = ExpandFloatOp_SELECT_CC(N); break;
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
case ISD::SETCC: Res = ExpandFloatOp_SETCC(N); break;
case ISD::STORE: Res = ExpandFloatOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// FloatExpandSetCCOperands - Expand the operands of a comparison. This code
/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::FloatExpandSetCCOperands(SDValue &NewLHS,
SDValue &NewRHS,
ISD::CondCode &CCCode,
const SDLoc &dl, SDValue &Chain,
bool IsSignaling) {
SDValue LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedFloat(NewLHS, LHSLo, LHSHi);
GetExpandedFloat(NewRHS, RHSLo, RHSHi);
assert(NewLHS.getValueType() == MVT::ppcf128 && "Unsupported setcc type!");
// FIXME: This generated code sucks. We want to generate
// FCMPU crN, hi1, hi2
// BNE crN, L:
// FCMPU crN, lo1, lo2
// The following can be improved, but not that much.
SDValue Tmp1, Tmp2, Tmp3, OutputChain;
Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi,
RHSHi, ISD::SETOEQ, Chain, IsSignaling);
OutputChain = Tmp1->getNumValues() > 1 ? Tmp1.getValue(1) : SDValue();
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), LHSLo,
RHSLo, CCCode, OutputChain, IsSignaling);
OutputChain = Tmp2->getNumValues() > 1 ? Tmp2.getValue(1) : SDValue();
Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 =
DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi,
ISD::SETUNE, OutputChain, IsSignaling);
OutputChain = Tmp1->getNumValues() > 1 ? Tmp1.getValue(1) : SDValue();
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi,
RHSHi, CCCode, OutputChain, IsSignaling);
OutputChain = Tmp2->getNumValues() > 1 ? Tmp2.getValue(1) : SDValue();
Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2);
NewLHS = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3);
NewRHS = SDValue(); // LHS is the result, not a compare.
Chain = OutputChain;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_BR_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDValue Chain;
FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N), Chain);
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!NewRHS.getNode()) {
NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
DAG.getCondCode(CCCode), NewLHS, NewRHS,
N->getOperand(4)), 0);
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FCOPYSIGN(SDNode *N) {
assert(N->getOperand(1).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDValue Lo, Hi;
GetExpandedFloat(N->getOperand(1), Lo, Hi);
// The ppcf128 value is providing only the sign; take it from the
// higher-order double (which must have the larger magnitude).
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N),
N->getValueType(0), N->getOperand(0), Hi);
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
assert(N->getOperand(IsStrict ? 1 : 0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDValue Lo, Hi;
GetExpandedFloat(N->getOperand(IsStrict ? 1 : 0), Lo, Hi);
if (!IsStrict)
// Round it the rest of the way (e.g. to f32) if needed.
return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
N->getValueType(0), Hi, N->getOperand(1));
// Eliminate the node if the input float type is the same as the output float
// type.
if (Hi.getValueType() == N->getValueType(0)) {
// Connect the output chain to the input chain, unlinking the node.
ReplaceValueWith(SDValue(N, 1), N->getOperand(0));
ReplaceValueWith(SDValue(N, 0), Hi);
return SDValue();
}
SDValue Expansion = DAG.getNode(ISD::STRICT_FP_ROUND, SDLoc(N),
{N->getValueType(0), MVT::Other},
{N->getOperand(0), Hi, N->getOperand(2)});
ReplaceValueWith(SDValue(N, 1), Expansion.getValue(1));
ReplaceValueWith(SDValue(N, 0), Expansion);
return SDValue();
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_XINT(SDNode *N) {
EVT RVT = N->getValueType(0);
SDLoc dl(N);
bool IsStrict = N->isStrictFPOpcode();
bool Signed = N->getOpcode() == ISD::FP_TO_SINT ||
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
SDValue Op = N->getOperand(IsStrict ? 1 : 0);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
EVT NVT;
RTLIB::Libcall LC = findFPToIntLibcall(Op.getValueType(), RVT, NVT, Signed);
assert(LC != RTLIB::UNKNOWN_LIBCALL && NVT.isSimple() &&
"Unsupported FP_TO_XINT!");
TargetLowering::MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp =
TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain);
if (!IsStrict)
return Tmp.first;
ReplaceValueWith(SDValue(N, 1), Tmp.second);
ReplaceValueWith(SDValue(N, 0), Tmp.first);
return SDValue();
}
SDValue DAGTypeLegalizer::ExpandFloatOp_SELECT_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
SDValue Chain;
FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N), Chain);
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!NewRHS.getNode()) {
NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
N->getOperand(2), N->getOperand(3),
DAG.getCondCode(CCCode)), 0);
}
SDValue DAGTypeLegalizer::ExpandFloatOp_SETCC(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
SDValue NewLHS = N->getOperand(IsStrict ? 1 : 0);
SDValue NewRHS = N->getOperand(IsStrict ? 2 : 1);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
ISD::CondCode CCCode =
cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N), Chain,
N->getOpcode() == ISD::STRICT_FSETCCS);
// FloatExpandSetCCOperands always returned a scalar.
assert(!NewRHS.getNode() && "Expect to return scalar");
assert(NewLHS.getValueType() == N->getValueType(0) &&
"Unexpected setcc expansion!");
if (Chain) {
ReplaceValueWith(SDValue(N, 0), NewLHS);
ReplaceValueWith(SDValue(N, 1), Chain);
return SDValue();
}
return NewLHS;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) {
if (ISD::isNormalStore(N))
return ExpandOp_NormalStore(N, OpNo);
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only expand the stored value so far");
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(),
ST->getValue().getValueType());
assert(NVT.isByteSized() && "Expanded type not byte sized!");
assert(ST->getMemoryVT().bitsLE(NVT) && "Float type not round?");
(void)NVT;
SDValue Lo, Hi;
GetExpandedOp(ST->getValue(), Lo, Hi);
return DAG.getTruncStore(Chain, SDLoc(N), Hi, Ptr,
ST->getMemoryVT(), ST->getMemOperand());
}
SDValue DAGTypeLegalizer::ExpandFloatOp_LROUND(SDNode *N) {
EVT RVT = N->getValueType(0);
EVT RetVT = N->getOperand(0).getValueType();
TargetLowering::MakeLibCallOptions CallOptions;
return TLI.makeLibCall(DAG, GetFPLibCall(RetVT,
RTLIB::LROUND_F32,
RTLIB::LROUND_F64,
RTLIB::LROUND_F80,
RTLIB::LROUND_F128,
RTLIB::LROUND_PPCF128),
RVT, N->getOperand(0), CallOptions, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_LLROUND(SDNode *N) {
EVT RVT = N->getValueType(0);
EVT RetVT = N->getOperand(0).getValueType();
TargetLowering::MakeLibCallOptions CallOptions;
return TLI.makeLibCall(DAG, GetFPLibCall(RetVT,
RTLIB::LLROUND_F32,
RTLIB::LLROUND_F64,
RTLIB::LLROUND_F80,
RTLIB::LLROUND_F128,
RTLIB::LLROUND_PPCF128),
RVT, N->getOperand(0), CallOptions, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_LRINT(SDNode *N) {
EVT RVT = N->getValueType(0);
EVT RetVT = N->getOperand(0).getValueType();
TargetLowering::MakeLibCallOptions CallOptions;
return TLI.makeLibCall(DAG, GetFPLibCall(RetVT,
RTLIB::LRINT_F32,
RTLIB::LRINT_F64,
RTLIB::LRINT_F80,
RTLIB::LRINT_F128,
RTLIB::LRINT_PPCF128),
RVT, N->getOperand(0), CallOptions, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::ExpandFloatOp_LLRINT(SDNode *N) {
EVT RVT = N->getValueType(0);
EVT RetVT = N->getOperand(0).getValueType();
TargetLowering::MakeLibCallOptions CallOptions;
return TLI.makeLibCall(DAG, GetFPLibCall(RetVT,
RTLIB::LLRINT_F32,
RTLIB::LLRINT_F64,
RTLIB::LLRINT_F80,
RTLIB::LLRINT_F128,
RTLIB::LLRINT_PPCF128),
RVT, N->getOperand(0), CallOptions, SDLoc(N)).first;
}
//===----------------------------------------------------------------------===//
// Float Operand Promotion
//===----------------------------------------------------------------------===//
//
static ISD::NodeType GetPromotionOpcode(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f16) {
return ISD::FP16_TO_FP;
} else if (RetVT == MVT::f16) {
return ISD::FP_TO_FP16;
}
report_fatal_error("Attempt at an invalid promotion-related conversion");
}
bool DAGTypeLegalizer::PromoteFloatOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Promote float operand " << OpNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue R = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) {
LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n");
return false;
}
// Nodes that use a promotion-requiring floating point operand, but doesn't
// produce a promotion-requiring floating point result, need to be legalized
// to use the promoted float operand. Nodes that produce at least one
// promotion-requiring floating point result have their operands legalized as
// a part of PromoteFloatResult.
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteFloatOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator's operand!");
case ISD::BITCAST: R = PromoteFloatOp_BITCAST(N, OpNo); break;
case ISD::FCOPYSIGN: R = PromoteFloatOp_FCOPYSIGN(N, OpNo); break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: R = PromoteFloatOp_FP_TO_XINT(N, OpNo); break;
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
R = PromoteFloatOp_FP_TO_XINT_SAT(N, OpNo); break;
case ISD::FP_EXTEND: R = PromoteFloatOp_FP_EXTEND(N, OpNo); break;
case ISD::SELECT_CC: R = PromoteFloatOp_SELECT_CC(N, OpNo); break;
case ISD::SETCC: R = PromoteFloatOp_SETCC(N, OpNo); break;
case ISD::STORE: R = PromoteFloatOp_STORE(N, OpNo); break;
}
if (R.getNode())
ReplaceValueWith(SDValue(N, 0), R);
return false;
}
SDValue DAGTypeLegalizer::PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo) {
SDValue Op = N->getOperand(0);
EVT OpVT = Op->getValueType(0);
SDValue Promoted = GetPromotedFloat(N->getOperand(0));
EVT PromotedVT = Promoted->getValueType(0);
// Convert the promoted float value to the desired IVT.
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
SDValue Convert = DAG.getNode(GetPromotionOpcode(PromotedVT, OpVT), SDLoc(N),
IVT, Promoted);
// The final result type might not be an scalar so we need a bitcast. The
// bitcast will be further legalized if needed.
return DAG.getBitcast(N->getValueType(0), Convert);
}
// Promote Operand 1 of FCOPYSIGN. Operand 0 ought to be handled by
// PromoteFloatRes_FCOPYSIGN.
SDValue DAGTypeLegalizer::PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo) {
assert (OpNo == 1 && "Only Operand 1 must need promotion here");
SDValue Op1 = GetPromotedFloat(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
N->getOperand(0), Op1);
}
// Convert the promoted float value to the desired integer type
SDValue DAGTypeLegalizer::PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo) {
SDValue Op = GetPromotedFloat(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N,
unsigned OpNo) {
SDValue Op = GetPromotedFloat(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), Op,
N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo) {
SDValue Op = GetPromotedFloat(N->getOperand(0));
EVT VT = N->getValueType(0);
// Desired VT is same as promoted type. Use promoted float directly.
if (VT == Op->getValueType(0))
return Op;
// Else, extend the promoted float value to the desired VT.
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Op);
}
// Promote the float operands used for comparison. The true- and false-
// operands have the same type as the result and are promoted, if needed, by
// PromoteFloatRes_SELECT_CC
SDValue DAGTypeLegalizer::PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo) {
SDValue LHS = GetPromotedFloat(N->getOperand(0));
SDValue RHS = GetPromotedFloat(N->getOperand(1));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0),
LHS, RHS, N->getOperand(2), N->getOperand(3),
N->getOperand(4));
}
// Construct a SETCC that compares the promoted values and sets the conditional
// code.
SDValue DAGTypeLegalizer::PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo) {
EVT VT = N->getValueType(0);
SDValue Op0 = GetPromotedFloat(N->getOperand(0));
SDValue Op1 = GetPromotedFloat(N->getOperand(1));
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
return DAG.getSetCC(SDLoc(N), VT, Op0, Op1, CCCode);
}
// Lower the promoted Float down to the integer value of same size and construct
// a STORE of the integer value.
SDValue DAGTypeLegalizer::PromoteFloatOp_STORE(SDNode *N, unsigned OpNo) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Val = ST->getValue();
SDLoc DL(N);
SDValue Promoted = GetPromotedFloat(Val);
EVT VT = ST->getOperand(1).getValueType();
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
SDValue NewVal;
NewVal = DAG.getNode(GetPromotionOpcode(Promoted.getValueType(), VT), DL,
IVT, Promoted);
return DAG.getStore(ST->getChain(), DL, NewVal, ST->getBasePtr(),
ST->getMemOperand());
}
//===----------------------------------------------------------------------===//
// Float Result Promotion
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::PromoteFloatResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Promote float result " << ResNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue R = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true)) {
LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n");
return;
}
switch (N->getOpcode()) {
// These opcodes cannot appear if promotion of FP16 is done in the backend
// instead of Clang
case ISD::FP16_TO_FP:
case ISD::FP_TO_FP16:
default:
#ifndef NDEBUG
dbgs() << "PromoteFloatResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator's result!");
case ISD::BITCAST: R = PromoteFloatRes_BITCAST(N); break;
case ISD::ConstantFP: R = PromoteFloatRes_ConstantFP(N); break;
case ISD::EXTRACT_VECTOR_ELT:
R = PromoteFloatRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::FCOPYSIGN: R = PromoteFloatRes_FCOPYSIGN(N); break;
// Unary FP Operations
case ISD::FABS:
case ISD::FCBRT:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FROUNDEVEN:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::FCANONICALIZE: R = PromoteFloatRes_UnaryOp(N); break;
// Binary FP Operations
case ISD::FADD:
case ISD::FDIV:
case ISD::FMAXIMUM:
case ISD::FMINIMUM:
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB: R = PromoteFloatRes_BinOp(N); break;
case ISD::FMA: // FMA is same as FMAD
case ISD::FMAD: R = PromoteFloatRes_FMAD(N); break;
case ISD::FPOWI: R = PromoteFloatRes_FPOWI(N); break;
case ISD::FP_ROUND: R = PromoteFloatRes_FP_ROUND(N); break;
case ISD::LOAD: R = PromoteFloatRes_LOAD(N); break;
case ISD::SELECT: R = PromoteFloatRes_SELECT(N); break;
case ISD::SELECT_CC: R = PromoteFloatRes_SELECT_CC(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = PromoteFloatRes_XINT_TO_FP(N); break;
case ISD::UNDEF: R = PromoteFloatRes_UNDEF(N); break;
case ISD::ATOMIC_SWAP: R = BitcastToInt_ATOMIC_SWAP(N); break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_FMIN:
case ISD::VECREDUCE_FMAX:
R = PromoteFloatRes_VECREDUCE(N);
break;
case ISD::VECREDUCE_SEQ_FADD:
case ISD::VECREDUCE_SEQ_FMUL:
R = PromoteFloatRes_VECREDUCE_SEQ(N);
break;
}
if (R.getNode())
SetPromotedFloat(SDValue(N, ResNo), R);
}
// Bitcast from i16 to f16: convert the i16 to a f32 value instead.
// At this point, it is not possible to determine if the bitcast value is
// eventually stored to memory or promoted to f32 or promoted to a floating
// point at a higher precision. Some of these cases are handled by FP_EXTEND,
// STORE promotion handlers.
SDValue DAGTypeLegalizer::PromoteFloatRes_BITCAST(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
// Input type isn't guaranteed to be a scalar int so bitcast if not. The
// bitcast will be legalized further if necessary.
EVT IVT = EVT::getIntegerVT(*DAG.getContext(),
N->getOperand(0).getValueType().getSizeInBits());
SDValue Cast = DAG.getBitcast(IVT, N->getOperand(0));
return DAG.getNode(GetPromotionOpcode(VT, NVT), SDLoc(N), NVT, Cast);
}
SDValue DAGTypeLegalizer::PromoteFloatRes_ConstantFP(SDNode *N) {
ConstantFPSDNode *CFPNode = cast<ConstantFPSDNode>(N);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// Get the (bit-cast) APInt of the APFloat and build an integer constant
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
SDValue C = DAG.getConstant(CFPNode->getValueAPF().bitcastToAPInt(), DL,
IVT);
// Convert the Constant to the desired FP type
// FIXME We might be able to do the conversion during compilation and get rid
// of it from the object code
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
return DAG.getNode(GetPromotionOpcode(VT, NVT), DL, NVT, C);
}
// If the Index operand is a constant, try to redirect the extract operation to
// the correct legalized vector. If not, bit-convert the input vector to
// equivalent integer vector. Extract the element as an (bit-cast) integer
// value and convert it to the promoted type.
SDValue DAGTypeLegalizer::PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N) {
SDLoc DL(N);
// If the index is constant, try to extract the value from the legalized
// vector type.
if (isa<ConstantSDNode>(N->getOperand(1))) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VecVT = Vec->getValueType(0);
EVT EltVT = VecVT.getVectorElementType();
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
switch (getTypeAction(VecVT)) {
default: break;
case TargetLowering::TypeScalarizeVector: {
SDValue Res = GetScalarizedVector(N->getOperand(0));
ReplaceValueWith(SDValue(N, 0), Res);
return SDValue();
}
case TargetLowering::TypeWidenVector: {
Vec = GetWidenedVector(Vec);
SDValue Res = DAG.getNode(N->getOpcode(), DL, EltVT, Vec, Idx);
ReplaceValueWith(SDValue(N, 0), Res);
return SDValue();
}
case TargetLowering::TypeSplitVector: {
SDValue Lo, Hi;
GetSplitVector(Vec, Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
SDValue Res;
if (IdxVal < LoElts)
Res = DAG.getNode(N->getOpcode(), DL, EltVT, Lo, Idx);
else
Res = DAG.getNode(N->getOpcode(), DL, EltVT, Hi,
DAG.getConstant(IdxVal - LoElts, DL,
Idx.getValueType()));
ReplaceValueWith(SDValue(N, 0), Res);
return SDValue();
}
}
}
// Bit-convert the input vector to the equivalent integer vector
SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0));
EVT IVT = NewOp.getValueType().getVectorElementType();
// Extract the element as an (bit-cast) integer value
SDValue NewVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IVT,
NewOp, N->getOperand(1));
// Convert the element to the desired FP type
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
return DAG.getNode(GetPromotionOpcode(VT, NVT), SDLoc(N), NVT, NewVal);
}
// FCOPYSIGN(X, Y) returns the value of X with the sign of Y. If the result
// needs promotion, so does the argument X. Note that Y, if needed, will be
// handled during operand promotion.
SDValue DAGTypeLegalizer::PromoteFloatRes_FCOPYSIGN(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Op0 = GetPromotedFloat(N->getOperand(0));
SDValue Op1 = N->getOperand(1);
return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1);
}
// Unary operation where the result and the operand have PromoteFloat type
// action. Construct a new SDNode with the promoted float value of the old
// operand.
SDValue DAGTypeLegalizer::PromoteFloatRes_UnaryOp(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Op = GetPromotedFloat(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op);
}
// Binary operations where the result and both operands have PromoteFloat type
// action. Construct a new SDNode with the promoted float values of the old
// operands.
SDValue DAGTypeLegalizer::PromoteFloatRes_BinOp(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Op0 = GetPromotedFloat(N->getOperand(0));
SDValue Op1 = GetPromotedFloat(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1, N->getFlags());
}
SDValue DAGTypeLegalizer::PromoteFloatRes_FMAD(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Op0 = GetPromotedFloat(N->getOperand(0));
SDValue Op1 = GetPromotedFloat(N->getOperand(1));
SDValue Op2 = GetPromotedFloat(N->getOperand(2));
return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1, Op2);
}
// Promote the Float (first) operand and retain the Integer (second) operand
SDValue DAGTypeLegalizer::PromoteFloatRes_FPOWI(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Op0 = GetPromotedFloat(N->getOperand(0));
SDValue Op1 = N->getOperand(1);
return DAG.getNode(N->getOpcode(), SDLoc(N), NVT, Op0, Op1);
}
// Explicit operation to reduce precision. Reduce the value to half precision
// and promote it back to the legal type.
SDValue DAGTypeLegalizer::PromoteFloatRes_FP_ROUND(SDNode *N) {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = Op->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
// Round promoted float to desired precision
SDValue Round = DAG.getNode(GetPromotionOpcode(OpVT, VT), DL, IVT, Op);
// Promote it back to the legal output type
return DAG.getNode(GetPromotionOpcode(VT, NVT), DL, NVT, Round);
}
SDValue DAGTypeLegalizer::PromoteFloatRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
EVT VT = N->getValueType(0);
// Load the value as an integer value with the same number of bits.
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
SDValue newL = DAG.getLoad(
L->getAddressingMode(), L->getExtensionType(), IVT, SDLoc(N),
L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), IVT,
L->getOriginalAlign(), L->getMemOperand()->getFlags(), L->getAAInfo());
// Legalize the chain result by replacing uses of the old value chain with the
// new one
ReplaceValueWith(SDValue(N, 1), newL.getValue(1));
// Convert the integer value to the desired FP type
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
return DAG.getNode(GetPromotionOpcode(VT, NVT), SDLoc(N), NVT, newL);
}
// Construct a new SELECT node with the promoted true- and false- values.
SDValue DAGTypeLegalizer::PromoteFloatRes_SELECT(SDNode *N) {
SDValue TrueVal = GetPromotedFloat(N->getOperand(1));
SDValue FalseVal = GetPromotedFloat(N->getOperand(2));
return DAG.getNode(ISD::SELECT, SDLoc(N), TrueVal->getValueType(0),
N->getOperand(0), TrueVal, FalseVal);
}
// Construct a new SELECT_CC node with the promoted true- and false- values.
// The operands used for comparison are promoted by PromoteFloatOp_SELECT_CC.
SDValue DAGTypeLegalizer::PromoteFloatRes_SELECT_CC(SDNode *N) {
SDValue TrueVal = GetPromotedFloat(N->getOperand(2));
SDValue FalseVal = GetPromotedFloat(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
TrueVal.getNode()->getValueType(0), N->getOperand(0),
N->getOperand(1), TrueVal, FalseVal, N->getOperand(4));
}
// Construct a SDNode that transforms the SINT or UINT operand to the promoted
// float type.
SDValue DAGTypeLegalizer::PromoteFloatRes_XINT_TO_FP(SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue NV = DAG.getNode(N->getOpcode(), DL, NVT, N->getOperand(0));
// Round the value to the desired precision (that of the source type).
return DAG.getNode(
ISD::FP_EXTEND, DL, NVT,
DAG.getNode(ISD::FP_ROUND, DL, VT, NV, DAG.getIntPtrConstant(0, DL)));
}
SDValue DAGTypeLegalizer::PromoteFloatRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)));
}
SDValue DAGTypeLegalizer::PromoteFloatRes_VECREDUCE(SDNode *N) {
// Expand and promote recursively.
// TODO: This is non-optimal, but dealing with the concurrently happening
// vector-legalization is non-trivial. We could do something similar to
// PromoteFloatRes_EXTRACT_VECTOR_ELT here.
ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduce(N, DAG));
return SDValue();
}
SDValue DAGTypeLegalizer::PromoteFloatRes_VECREDUCE_SEQ(SDNode *N) {
ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduceSeq(N, DAG));
return SDValue();
}
SDValue DAGTypeLegalizer::BitcastToInt_ATOMIC_SWAP(SDNode *N) {
EVT VT = N->getValueType(0);
AtomicSDNode *AM = cast<AtomicSDNode>(N);
SDLoc SL(N);
SDValue CastVal = BitConvertToInteger(AM->getVal());
EVT CastVT = CastVal.getValueType();
SDValue NewAtomic
= DAG.getAtomic(ISD::ATOMIC_SWAP, SL, CastVT,
DAG.getVTList(CastVT, MVT::Other),
{ AM->getChain(), AM->getBasePtr(), CastVal },
AM->getMemOperand());
SDValue Result = NewAtomic;
if (getTypeAction(VT) == TargetLowering::TypePromoteFloat) {
EVT NFPVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
Result = DAG.getNode(GetPromotionOpcode(VT, NFPVT), SL, NFPVT,
NewAtomic);
}
// Legalize the chain result by replacing uses of the old value chain with the
// new one
ReplaceValueWith(SDValue(N, 1), NewAtomic.getValue(1));
return Result;
}
//===----------------------------------------------------------------------===//
// Half Result Soft Promotion
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::SoftPromoteHalfResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Soft promote half result " << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n");
SDValue R = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true)) {
LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n");
return;
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SoftPromoteHalfResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to soft promote this operator's result!");
case ISD::BITCAST: R = SoftPromoteHalfRes_BITCAST(N); break;
case ISD::ConstantFP: R = SoftPromoteHalfRes_ConstantFP(N); break;
case ISD::EXTRACT_VECTOR_ELT:
R = SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::FCOPYSIGN: R = SoftPromoteHalfRes_FCOPYSIGN(N); break;
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: R = SoftPromoteHalfRes_FP_ROUND(N); break;
// Unary FP Operations
case ISD::FABS:
case ISD::FCBRT:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FREEZE:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FROUNDEVEN:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::FCANONICALIZE: R = SoftPromoteHalfRes_UnaryOp(N); break;
// Binary FP Operations
case ISD::FADD:
case ISD::FDIV:
case ISD::FMAXIMUM:
case ISD::FMINIMUM:
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB: R = SoftPromoteHalfRes_BinOp(N); break;
case ISD::FMA: // FMA is same as FMAD
case ISD::FMAD: R = SoftPromoteHalfRes_FMAD(N); break;
case ISD::FPOWI: R = SoftPromoteHalfRes_FPOWI(N); break;
case ISD::LOAD: R = SoftPromoteHalfRes_LOAD(N); break;
case ISD::SELECT: R = SoftPromoteHalfRes_SELECT(N); break;
case ISD::SELECT_CC: R = SoftPromoteHalfRes_SELECT_CC(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = SoftPromoteHalfRes_XINT_TO_FP(N); break;
case ISD::UNDEF: R = SoftPromoteHalfRes_UNDEF(N); break;
case ISD::ATOMIC_SWAP: R = BitcastToInt_ATOMIC_SWAP(N); break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_FMIN:
case ISD::VECREDUCE_FMAX:
R = SoftPromoteHalfRes_VECREDUCE(N);
break;
case ISD::VECREDUCE_SEQ_FADD:
case ISD::VECREDUCE_SEQ_FMUL:
R = SoftPromoteHalfRes_VECREDUCE_SEQ(N);
break;
}
if (R.getNode())
SetSoftPromotedHalf(SDValue(N, ResNo), R);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_BITCAST(SDNode *N) {
return BitConvertToInteger(N->getOperand(0));
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_ConstantFP(SDNode *N) {
ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
// Get the (bit-cast) APInt of the APFloat and build an integer constant
return DAG.getConstant(CN->getValueAPF().bitcastToAPInt(), SDLoc(CN),
MVT::i16);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
NewOp.getValueType().getVectorElementType(), NewOp,
N->getOperand(1));
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FCOPYSIGN(SDNode *N) {
SDValue LHS = GetSoftPromotedHalf(N->getOperand(0));
SDValue RHS = BitConvertToInteger(N->getOperand(1));
SDLoc dl(N);
EVT LVT = LHS.getValueType();
EVT RVT = RHS.getValueType();
unsigned LSize = LVT.getSizeInBits();
unsigned RSize = RVT.getSizeInBits();
// First get the sign bit of second operand.
SDValue SignBit = DAG.getNode(
ISD::SHL, dl, RVT, DAG.getConstant(1, dl, RVT),
DAG.getConstant(RSize - 1, dl,
TLI.getShiftAmountTy(RVT, DAG.getDataLayout())));
SignBit = DAG.getNode(ISD::AND, dl, RVT, RHS, SignBit);
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits();
if (SizeDiff > 0) {
SignBit =
DAG.getNode(ISD::SRL, dl, RVT, SignBit,
DAG.getConstant(SizeDiff, dl,
TLI.getShiftAmountTy(SignBit.getValueType(),
DAG.getDataLayout())));
SignBit = DAG.getNode(ISD::TRUNCATE, dl, LVT, SignBit);
} else if (SizeDiff < 0) {
SignBit = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, SignBit);
SignBit =
DAG.getNode(ISD::SHL, dl, LVT, SignBit,
DAG.getConstant(-SizeDiff, dl,
TLI.getShiftAmountTy(SignBit.getValueType(),
DAG.getDataLayout())));
}
// Clear the sign bit of the first operand.
SDValue Mask = DAG.getNode(
ISD::SHL, dl, LVT, DAG.getConstant(1, dl, LVT),
DAG.getConstant(LSize - 1, dl,
TLI.getShiftAmountTy(LVT, DAG.getDataLayout())));
Mask = DAG.getNode(ISD::SUB, dl, LVT, Mask, DAG.getConstant(1, dl, LVT));
LHS = DAG.getNode(ISD::AND, dl, LVT, LHS, Mask);
// Or the value with the sign bit.
return DAG.getNode(ISD::OR, dl, LVT, LHS, SignBit);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FMAD(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0));
SDValue Op1 = GetSoftPromotedHalf(N->getOperand(1));
SDValue Op2 = GetSoftPromotedHalf(N->getOperand(2));
SDLoc dl(N);
// Promote to the larger FP type.
Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0);
Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1);
Op2 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op2);
SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op0, Op1, Op2);
// Convert back to FP16 as an integer.
return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FPOWI(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0));
SDValue Op1 = N->getOperand(1);
SDLoc dl(N);
Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0);
SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op0, Op1);
// Convert back to FP16 as an integer.
return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_FP_ROUND(SDNode *N) {
if (N->isStrictFPOpcode()) {
SDValue Res =
DAG.getNode(ISD::STRICT_FP_TO_FP16, SDLoc(N), {MVT::i16, MVT::Other},
{N->getOperand(0), N->getOperand(1)});
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
return DAG.getNode(ISD::FP_TO_FP16, SDLoc(N), MVT::i16, N->getOperand(0));
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
// Load the value as an integer value with the same number of bits.
assert(L->getExtensionType() == ISD::NON_EXTLOAD && "Unexpected extension!");
SDValue NewL =
DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), MVT::i16,
SDLoc(N), L->getChain(), L->getBasePtr(), L->getOffset(),
L->getPointerInfo(), MVT::i16, L->getOriginalAlign(),
L->getMemOperand()->getFlags(), L->getAAInfo());
// Legalize the chain result by replacing uses of the old value chain with the
// new one
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
return NewL;
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_SELECT(SDNode *N) {
SDValue Op1 = GetSoftPromotedHalf(N->getOperand(1));
SDValue Op2 = GetSoftPromotedHalf(N->getOperand(2));
return DAG.getSelect(SDLoc(N), Op1.getValueType(), N->getOperand(0), Op1,
Op2);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_SELECT_CC(SDNode *N) {
SDValue Op2 = GetSoftPromotedHalf(N->getOperand(2));
SDValue Op3 = GetSoftPromotedHalf(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), Op2.getValueType(),
N->getOperand(0), N->getOperand(1), Op2, Op3,
N->getOperand(4));
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_XINT_TO_FP(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
// Round the value to the softened type.
return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(MVT::i16);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_UnaryOp(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftPromotedHalf(N->getOperand(0));
SDLoc dl(N);
// Promote to the larger FP type.
Op = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op);
SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op);
// Convert back to FP16 as an integer.
return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_BinOp(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0));
SDValue Op1 = GetSoftPromotedHalf(N->getOperand(1));
SDLoc dl(N);
// Promote to the larger FP type.
Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0);
Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1);
SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, Op0, Op1);
// Convert back to FP16 as an integer.
return DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, Res);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_VECREDUCE(SDNode *N) {
// Expand and soften recursively.
ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduce(N, DAG));
return SDValue();
}
SDValue DAGTypeLegalizer::SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N) {
// Expand and soften.
ReplaceValueWith(SDValue(N, 0), TLI.expandVecReduceSeq(N, DAG));
return SDValue();
}
//===----------------------------------------------------------------------===//
// Half Operand Soft Promotion
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::SoftPromoteHalfOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Soft promote half operand " << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) {
LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n");
return false;
}
// Nodes that use a promotion-requiring floating point operand, but doesn't
// produce a soft promotion-requiring floating point result, need to be
// legalized to use the soft promoted float operand. Nodes that produce at
// least one soft promotion-requiring floating point result have their
// operands legalized as a part of PromoteFloatResult.
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SoftPromoteHalfOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to soft promote this operator's operand!");
case ISD::BITCAST: Res = SoftPromoteHalfOp_BITCAST(N); break;
case ISD::FCOPYSIGN: Res = SoftPromoteHalfOp_FCOPYSIGN(N, OpNo); break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Res = SoftPromoteHalfOp_FP_TO_XINT(N); break;
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
Res = SoftPromoteHalfOp_FP_TO_XINT_SAT(N); break;
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND: Res = SoftPromoteHalfOp_FP_EXTEND(N); break;
case ISD::SELECT_CC: Res = SoftPromoteHalfOp_SELECT_CC(N, OpNo); break;
case ISD::SETCC: Res = SoftPromoteHalfOp_SETCC(N); break;
case ISD::STORE: Res = SoftPromoteHalfOp_STORE(N, OpNo); break;
}
if (!Res.getNode())
return false;
assert(Res.getNode() != N && "Expected a new node!");
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_BITCAST(SDNode *N) {
SDValue Op0 = GetSoftPromotedHalf(N->getOperand(0));
return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FCOPYSIGN(SDNode *N,
unsigned OpNo) {
assert(OpNo == 1 && "Only Operand 1 must need promotion here");
SDValue Op1 = N->getOperand(1);
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op1.getValueType());
Op1 = GetSoftPromotedHalf(Op1);
Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1);
return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), N->getOperand(0),
Op1);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FP_EXTEND(SDNode *N) {
bool IsStrict = N->isStrictFPOpcode();
SDValue Op = GetSoftPromotedHalf(N->getOperand(IsStrict ? 1 : 0));
if (IsStrict) {
SDValue Res =
DAG.getNode(ISD::STRICT_FP16_TO_FP, SDLoc(N),
{N->getValueType(0), MVT::Other}, {N->getOperand(0), Op});
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
ReplaceValueWith(SDValue(N, 0), Res);
return SDValue();
}
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FP_TO_XINT(SDNode *N) {
SDValue Op = N->getOperand(0);
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType());
Op = GetSoftPromotedHalf(Op);
SDValue Res = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op);
return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), Res);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N) {
SDValue Op = N->getOperand(0);
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType());
Op = GetSoftPromotedHalf(Op);
SDValue Res = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op);
return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), Res,
N->getOperand(1));
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_SELECT_CC(SDNode *N,
unsigned OpNo) {
assert(OpNo == 0 && "Can only soften the comparison values");
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op0.getValueType());
Op0 = GetSoftPromotedHalf(Op0);
Op1 = GetSoftPromotedHalf(Op1);
// Promote to the larger FP type.
Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0);
Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1);
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0), Op0, Op1,
N->getOperand(2), N->getOperand(3), N->getOperand(4));
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_SETCC(SDNode *N) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Op0.getValueType());
Op0 = GetSoftPromotedHalf(Op0);
Op1 = GetSoftPromotedHalf(Op1);
// Promote to the larger FP type.
Op0 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op0);
Op1 = DAG.getNode(ISD::FP16_TO_FP, dl, NVT, Op1);
return DAG.getSetCC(SDLoc(N), N->getValueType(0), Op0, Op1, CCCode);
}
SDValue DAGTypeLegalizer::SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "Can only soften the stored value!");
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Val = ST->getValue();
SDLoc dl(N);
assert(!ST->isTruncatingStore() && "Unexpected truncating store.");
SDValue Promoted = GetSoftPromotedHalf(Val);
return DAG.getStore(ST->getChain(), dl, Promoted, ST->getBasePtr(),
ST->getMemOperand());
}