blob: d36587ce2346eab6dbd0ee5226ebc2bc731fe996 [file] [log] [blame]
//===-- MainLoop.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/llvm-config.h"
#include "lldb/Host/Config.h"
#include "lldb/Host/MainLoop.h"
#include "lldb/Host/PosixApi.h"
#include "lldb/Utility/Status.h"
#include <algorithm>
#include <cassert>
#include <cerrno>
#include <csignal>
#include <ctime>
#include <vector>
// Multiplexing is implemented using kqueue on systems that support it (BSD
// variants including OSX). On linux we use ppoll, while android uses pselect
// (ppoll is present but not implemented properly). On windows we use WSApoll
// (which does not support signals).
#if HAVE_SYS_EVENT_H
#include <sys/event.h>
#elif defined(_WIN32)
#include <winsock2.h>
#elif defined(__ANDROID__)
#include <sys/syscall.h>
#else
#include <poll.h>
#endif
#ifdef _WIN32
#define POLL WSAPoll
#else
#define POLL poll
#endif
#if SIGNAL_POLLING_UNSUPPORTED
#ifdef _WIN32
typedef int sigset_t;
typedef int siginfo_t;
#endif
int ppoll(struct pollfd *fds, size_t nfds, const struct timespec *timeout_ts,
const sigset_t *) {
int timeout =
(timeout_ts == nullptr)
? -1
: (timeout_ts->tv_sec * 1000 + timeout_ts->tv_nsec / 1000000);
return POLL(fds, nfds, timeout);
}
#endif
using namespace lldb;
using namespace lldb_private;
static sig_atomic_t g_signal_flags[NSIG];
#ifndef SIGNAL_POLLING_UNSUPPORTED
static void SignalHandler(int signo, siginfo_t *info, void *) {
assert(signo < NSIG);
g_signal_flags[signo] = 1;
}
#endif
class MainLoop::RunImpl {
public:
RunImpl(MainLoop &loop);
~RunImpl() = default;
Status Poll();
void ProcessEvents();
private:
MainLoop &loop;
#if HAVE_SYS_EVENT_H
std::vector<struct kevent> in_events;
struct kevent out_events[4];
int num_events = -1;
#else
#ifdef __ANDROID__
fd_set read_fd_set;
#else
std::vector<struct pollfd> read_fds;
#endif
sigset_t get_sigmask();
#endif
};
#if HAVE_SYS_EVENT_H
MainLoop::RunImpl::RunImpl(MainLoop &loop) : loop(loop) {
in_events.reserve(loop.m_read_fds.size());
}
Status MainLoop::RunImpl::Poll() {
in_events.resize(loop.m_read_fds.size());
unsigned i = 0;
for (auto &fd : loop.m_read_fds)
EV_SET(&in_events[i++], fd.first, EVFILT_READ, EV_ADD, 0, 0, 0);
num_events = kevent(loop.m_kqueue, in_events.data(), in_events.size(),
out_events, llvm::array_lengthof(out_events), nullptr);
if (num_events < 0) {
if (errno == EINTR) {
// in case of EINTR, let the main loop run one iteration
// we need to zero num_events to avoid assertions failing
num_events = 0;
} else
return Status(errno, eErrorTypePOSIX);
}
return Status();
}
void MainLoop::RunImpl::ProcessEvents() {
assert(num_events >= 0);
for (int i = 0; i < num_events; ++i) {
if (loop.m_terminate_request)
return;
switch (out_events[i].filter) {
case EVFILT_READ:
loop.ProcessReadObject(out_events[i].ident);
break;
case EVFILT_SIGNAL:
loop.ProcessSignal(out_events[i].ident);
break;
default:
llvm_unreachable("Unknown event");
}
}
}
#else
MainLoop::RunImpl::RunImpl(MainLoop &loop) : loop(loop) {
#ifndef __ANDROID__
read_fds.reserve(loop.m_read_fds.size());
#endif
}
sigset_t MainLoop::RunImpl::get_sigmask() {
sigset_t sigmask;
#if defined(_WIN32)
sigmask = 0;
#elif SIGNAL_POLLING_UNSUPPORTED
sigemptyset(&sigmask);
#else
int ret = pthread_sigmask(SIG_SETMASK, nullptr, &sigmask);
assert(ret == 0);
(void) ret;
for (const auto &sig : loop.m_signals)
sigdelset(&sigmask, sig.first);
#endif
return sigmask;
}
#ifdef __ANDROID__
Status MainLoop::RunImpl::Poll() {
// ppoll(2) is not supported on older all android versions. Also, older
// versions android (API <= 19) implemented pselect in a non-atomic way, as a
// combination of pthread_sigmask and select. This is not sufficient for us,
// as we rely on the atomicity to correctly implement signal polling, so we
// call the underlying syscall ourselves.
FD_ZERO(&read_fd_set);
int nfds = 0;
for (const auto &fd : loop.m_read_fds) {
FD_SET(fd.first, &read_fd_set);
nfds = std::max(nfds, fd.first + 1);
}
union {
sigset_t set;
uint64_t pad;
} kernel_sigset;
memset(&kernel_sigset, 0, sizeof(kernel_sigset));
kernel_sigset.set = get_sigmask();
struct {
void *sigset_ptr;
size_t sigset_len;
} extra_data = {&kernel_sigset, sizeof(kernel_sigset)};
if (syscall(__NR_pselect6, nfds, &read_fd_set, nullptr, nullptr, nullptr,
&extra_data) == -1 &&
errno != EINTR)
return Status(errno, eErrorTypePOSIX);
return Status();
}
#else
Status MainLoop::RunImpl::Poll() {
read_fds.clear();
sigset_t sigmask = get_sigmask();
for (const auto &fd : loop.m_read_fds) {
struct pollfd pfd;
pfd.fd = fd.first;
pfd.events = POLLIN;
pfd.revents = 0;
read_fds.push_back(pfd);
}
if (ppoll(read_fds.data(), read_fds.size(), nullptr, &sigmask) == -1 &&
errno != EINTR)
return Status(errno, eErrorTypePOSIX);
return Status();
}
#endif
void MainLoop::RunImpl::ProcessEvents() {
#ifdef __ANDROID__
// Collect first all readable file descriptors into a separate vector and
// then iterate over it to invoke callbacks. Iterating directly over
// loop.m_read_fds is not possible because the callbacks can modify the
// container which could invalidate the iterator.
std::vector<IOObject::WaitableHandle> fds;
for (const auto &fd : loop.m_read_fds)
if (FD_ISSET(fd.first, &read_fd_set))
fds.push_back(fd.first);
for (const auto &handle : fds) {
#else
for (const auto &fd : read_fds) {
if ((fd.revents & (POLLIN | POLLHUP)) == 0)
continue;
IOObject::WaitableHandle handle = fd.fd;
#endif
if (loop.m_terminate_request)
return;
loop.ProcessReadObject(handle);
}
std::vector<int> signals;
for (const auto &entry : loop.m_signals)
if (g_signal_flags[entry.first] != 0)
signals.push_back(entry.first);
for (const auto &signal : signals) {
if (loop.m_terminate_request)
return;
g_signal_flags[signal] = 0;
loop.ProcessSignal(signal);
}
}
#endif
MainLoop::MainLoop() {
#if HAVE_SYS_EVENT_H
m_kqueue = kqueue();
assert(m_kqueue >= 0);
#endif
}
MainLoop::~MainLoop() {
#if HAVE_SYS_EVENT_H
close(m_kqueue);
#endif
assert(m_read_fds.size() == 0);
assert(m_signals.size() == 0);
}
MainLoop::ReadHandleUP MainLoop::RegisterReadObject(const IOObjectSP &object_sp,
const Callback &callback,
Status &error) {
#ifdef _WIN32
if (object_sp->GetFdType() != IOObject:: eFDTypeSocket) {
error.SetErrorString("MainLoop: non-socket types unsupported on Windows");
return nullptr;
}
#endif
if (!object_sp || !object_sp->IsValid()) {
error.SetErrorString("IO object is not valid.");
return nullptr;
}
const bool inserted =
m_read_fds.insert({object_sp->GetWaitableHandle(), callback}).second;
if (!inserted) {
error.SetErrorStringWithFormat("File descriptor %d already monitored.",
object_sp->GetWaitableHandle());
return nullptr;
}
return CreateReadHandle(object_sp);
}
// We shall block the signal, then install the signal handler. The signal will
// be unblocked in the Run() function to check for signal delivery.
MainLoop::SignalHandleUP
MainLoop::RegisterSignal(int signo, const Callback &callback, Status &error) {
#ifdef SIGNAL_POLLING_UNSUPPORTED
error.SetErrorString("Signal polling is not supported on this platform.");
return nullptr;
#else
auto signal_it = m_signals.find(signo);
if (signal_it != m_signals.end()) {
auto callback_it = signal_it->second.callbacks.insert(
signal_it->second.callbacks.end(), callback);
return SignalHandleUP(new SignalHandle(*this, signo, callback_it));
}
SignalInfo info;
info.callbacks.push_back(callback);
struct sigaction new_action;
new_action.sa_sigaction = &SignalHandler;
new_action.sa_flags = SA_SIGINFO;
sigemptyset(&new_action.sa_mask);
sigaddset(&new_action.sa_mask, signo);
sigset_t old_set;
g_signal_flags[signo] = 0;
// Even if using kqueue, the signal handler will still be invoked, so it's
// important to replace it with our "benign" handler.
int ret = sigaction(signo, &new_action, &info.old_action);
(void)ret;
assert(ret == 0 && "sigaction failed");
#if HAVE_SYS_EVENT_H
struct kevent ev;
EV_SET(&ev, signo, EVFILT_SIGNAL, EV_ADD, 0, 0, 0);
ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
assert(ret == 0);
#endif
// If we're using kqueue, the signal needs to be unblocked in order to
// receive it. If using pselect/ppoll, we need to block it, and later unblock
// it as a part of the system call.
ret = pthread_sigmask(HAVE_SYS_EVENT_H ? SIG_UNBLOCK : SIG_BLOCK,
&new_action.sa_mask, &old_set);
assert(ret == 0 && "pthread_sigmask failed");
info.was_blocked = sigismember(&old_set, signo);
auto insert_ret = m_signals.insert({signo, info});
return SignalHandleUP(new SignalHandle(
*this, signo, insert_ret.first->second.callbacks.begin()));
#endif
}
void MainLoop::UnregisterReadObject(IOObject::WaitableHandle handle) {
bool erased = m_read_fds.erase(handle);
UNUSED_IF_ASSERT_DISABLED(erased);
assert(erased);
}
void MainLoop::UnregisterSignal(int signo,
std::list<Callback>::iterator callback_it) {
#if SIGNAL_POLLING_UNSUPPORTED
Status("Signal polling is not supported on this platform.");
#else
auto it = m_signals.find(signo);
assert(it != m_signals.end());
it->second.callbacks.erase(callback_it);
// Do not remove the signal handler unless all callbacks have been erased.
if (!it->second.callbacks.empty())
return;
sigaction(signo, &it->second.old_action, nullptr);
sigset_t set;
sigemptyset(&set);
sigaddset(&set, signo);
int ret = pthread_sigmask(it->second.was_blocked ? SIG_BLOCK : SIG_UNBLOCK,
&set, nullptr);
assert(ret == 0);
(void)ret;
#if HAVE_SYS_EVENT_H
struct kevent ev;
EV_SET(&ev, signo, EVFILT_SIGNAL, EV_DELETE, 0, 0, 0);
ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
assert(ret == 0);
#endif
m_signals.erase(it);
#endif
}
Status MainLoop::Run() {
m_terminate_request = false;
Status error;
RunImpl impl(*this);
// run until termination or until we run out of things to listen to
while (!m_terminate_request && (!m_read_fds.empty() || !m_signals.empty())) {
error = impl.Poll();
if (error.Fail())
return error;
impl.ProcessEvents();
}
return Status();
}
void MainLoop::ProcessSignal(int signo) {
auto it = m_signals.find(signo);
if (it != m_signals.end()) {
// The callback may actually register/unregister signal handlers,
// so we need to create a copy first.
llvm::SmallVector<Callback, 4> callbacks_to_run{
it->second.callbacks.begin(), it->second.callbacks.end()};
for (auto &x : callbacks_to_run)
x(*this); // Do the work
}
}
void MainLoop::ProcessReadObject(IOObject::WaitableHandle handle) {
auto it = m_read_fds.find(handle);
if (it != m_read_fds.end())
it->second(*this); // Do the work
}