blob: 4ae2724d4dd8c398149b0e49e0d120f4571fb080 [file] [log] [blame]
//===-- IRMemoryMap.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/IRMemoryMap.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/Status.h"
using namespace lldb_private;
IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) {
if (target_sp)
m_process_wp = target_sp->GetProcessSP();
}
IRMemoryMap::~IRMemoryMap() {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp) {
AllocationMap::iterator iter;
Status err;
while ((iter = m_allocations.begin()) != m_allocations.end()) {
err.Clear();
if (iter->second.m_leak)
m_allocations.erase(iter);
else
Free(iter->first, err);
}
}
}
lldb::addr_t IRMemoryMap::FindSpace(size_t size) {
// The FindSpace algorithm's job is to find a region of memory that the
// underlying process is unlikely to be using.
//
// The memory returned by this function will never be written to. The only
// point is that it should not shadow process memory if possible, so that
// expressions processing real values from the process do not use the wrong
// data.
//
// If the process can in fact allocate memory (CanJIT() lets us know this)
// then this can be accomplished just be allocating memory in the inferior.
// Then no guessing is required.
lldb::TargetSP target_sp = m_target_wp.lock();
lldb::ProcessSP process_sp = m_process_wp.lock();
const bool process_is_alive = process_sp && process_sp->IsAlive();
lldb::addr_t ret = LLDB_INVALID_ADDRESS;
if (size == 0)
return ret;
if (process_is_alive && process_sp->CanJIT()) {
Status alloc_error;
ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable |
lldb::ePermissionsWritable,
alloc_error);
if (!alloc_error.Success())
return LLDB_INVALID_ADDRESS;
else
return ret;
}
// At this point we know that we need to hunt.
//
// First, go to the end of the existing allocations we've made if there are
// any allocations. Otherwise start at the beginning of memory.
if (m_allocations.empty()) {
ret = 0x0;
} else {
auto back = m_allocations.rbegin();
lldb::addr_t addr = back->first;
size_t alloc_size = back->second.m_size;
ret = llvm::alignTo(addr + alloc_size, 4096);
}
// Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped
// regions, walk forward through memory until a region is found that has
// adequate space for our allocation.
if (process_is_alive) {
const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8
? 0xffffffffffffffffull
: 0xffffffffull;
lldbassert(process_sp->GetAddressByteSize() == 4 ||
end_of_memory != 0xffffffffull);
MemoryRegionInfo region_info;
Status err = process_sp->GetMemoryRegionInfo(ret, region_info);
if (err.Success()) {
while (true) {
if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo ||
region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo ||
region_info.GetExecutable() !=
MemoryRegionInfo::OptionalBool::eNo) {
if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) {
ret = LLDB_INVALID_ADDRESS;
break;
} else {
ret = region_info.GetRange().GetRangeEnd();
}
} else if (ret + size < region_info.GetRange().GetRangeEnd()) {
return ret;
} else {
// ret stays the same. We just need to walk a bit further.
}
err = process_sp->GetMemoryRegionInfo(
region_info.GetRange().GetRangeEnd(), region_info);
if (err.Fail()) {
lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed");
ret = LLDB_INVALID_ADDRESS;
break;
}
}
}
}
// We've tried our algorithm, and it didn't work. Now we have to reset back
// to the end of the allocations we've already reported, or use a 'sensible'
// default if this is our first allocation.
if (m_allocations.empty()) {
uint32_t address_byte_size = GetAddressByteSize();
if (address_byte_size != UINT32_MAX) {
switch (address_byte_size) {
case 8:
ret = 0xffffffff00000000ull;
break;
case 4:
ret = 0xee000000ull;
break;
default:
break;
}
}
} else {
auto back = m_allocations.rbegin();
lldb::addr_t addr = back->first;
size_t alloc_size = back->second.m_size;
ret = llvm::alignTo(addr + alloc_size, 4096);
}
return ret;
}
IRMemoryMap::AllocationMap::iterator
IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) {
if (addr == LLDB_INVALID_ADDRESS)
return m_allocations.end();
AllocationMap::iterator iter = m_allocations.lower_bound(addr);
if (iter == m_allocations.end() || iter->first > addr) {
if (iter == m_allocations.begin())
return m_allocations.end();
iter--;
}
if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size)
return iter;
return m_allocations.end();
}
bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const {
if (addr == LLDB_INVALID_ADDRESS)
return false;
AllocationMap::const_iterator iter = m_allocations.lower_bound(addr);
// Since we only know that the returned interval begins at a location greater
// than or equal to where the given interval begins, it's possible that the
// given interval intersects either the returned interval or the previous
// interval. Thus, we need to check both. Note that we only need to check
// these two intervals. Since all intervals are disjoint it is not possible
// that an adjacent interval does not intersect, but a non-adjacent interval
// does intersect.
if (iter != m_allocations.end()) {
if (AllocationsIntersect(addr, size, iter->second.m_process_start,
iter->second.m_size))
return true;
}
if (iter != m_allocations.begin()) {
--iter;
if (AllocationsIntersect(addr, size, iter->second.m_process_start,
iter->second.m_size))
return true;
}
return false;
}
bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1,
lldb::addr_t addr2, size_t size2) {
// Given two half open intervals [A, B) and [X, Y), the only 6 permutations
// that satisfy A<B and X<Y are the following:
// A B X Y
// A X B Y (intersects)
// A X Y B (intersects)
// X A B Y (intersects)
// X A Y B (intersects)
// X Y A B
// The first is B <= X, and the last is Y <= A. So the condition is !(B <= X
// || Y <= A)), or (X < B && A < Y)
return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2));
}
lldb::ByteOrder IRMemoryMap::GetByteOrder() {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp)
return process_sp->GetByteOrder();
lldb::TargetSP target_sp = m_target_wp.lock();
if (target_sp)
return target_sp->GetArchitecture().GetByteOrder();
return lldb::eByteOrderInvalid;
}
uint32_t IRMemoryMap::GetAddressByteSize() {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp)
return process_sp->GetAddressByteSize();
lldb::TargetSP target_sp = m_target_wp.lock();
if (target_sp)
return target_sp->GetArchitecture().GetAddressByteSize();
return UINT32_MAX;
}
ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp)
return process_sp.get();
lldb::TargetSP target_sp = m_target_wp.lock();
if (target_sp)
return target_sp.get();
return nullptr;
}
IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc,
lldb::addr_t process_start, size_t size,
uint32_t permissions, uint8_t alignment,
AllocationPolicy policy)
: m_process_alloc(process_alloc), m_process_start(process_start),
m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions),
m_alignment(alignment) {
switch (policy) {
default:
llvm_unreachable("Invalid AllocationPolicy");
case eAllocationPolicyHostOnly:
case eAllocationPolicyMirror:
m_data.SetByteSize(size);
break;
case eAllocationPolicyProcessOnly:
break;
}
}
lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment,
uint32_t permissions, AllocationPolicy policy,
bool zero_memory, Status &error) {
lldb_private::Log *log(
lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
error.Clear();
lldb::ProcessSP process_sp;
lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS;
lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS;
size_t allocation_size;
if (size == 0) {
// FIXME: Malloc(0) should either return an invalid address or assert, in
// order to cut down on unnecessary allocations.
allocation_size = alignment;
} else {
// Round up the requested size to an aligned value.
allocation_size = llvm::alignTo(size, alignment);
// The process page cache does not see the requested alignment. We can't
// assume its result will be any more than 1-byte aligned. To work around
// this, request `alignment - 1` additional bytes.
allocation_size += alignment - 1;
}
switch (policy) {
default:
error.SetErrorToGenericError();
error.SetErrorString("Couldn't malloc: invalid allocation policy");
return LLDB_INVALID_ADDRESS;
case eAllocationPolicyHostOnly:
allocation_address = FindSpace(allocation_size);
if (allocation_address == LLDB_INVALID_ADDRESS) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't malloc: address space is full");
return LLDB_INVALID_ADDRESS;
}
break;
case eAllocationPolicyMirror:
process_sp = m_process_wp.lock();
LLDB_LOGF(log,
"IRMemoryMap::%s process_sp=0x%" PRIxPTR
", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s",
__FUNCTION__, reinterpret_cast<uintptr_t>(process_sp.get()),
process_sp && process_sp->CanJIT() ? "true" : "false",
process_sp && process_sp->IsAlive() ? "true" : "false");
if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) {
if (!zero_memory)
allocation_address =
process_sp->AllocateMemory(allocation_size, permissions, error);
else
allocation_address =
process_sp->CallocateMemory(allocation_size, permissions, error);
if (!error.Success())
return LLDB_INVALID_ADDRESS;
} else {
LLDB_LOGF(log,
"IRMemoryMap::%s switching to eAllocationPolicyHostOnly "
"due to failed condition (see previous expr log message)",
__FUNCTION__);
policy = eAllocationPolicyHostOnly;
allocation_address = FindSpace(allocation_size);
if (allocation_address == LLDB_INVALID_ADDRESS) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't malloc: address space is full");
return LLDB_INVALID_ADDRESS;
}
}
break;
case eAllocationPolicyProcessOnly:
process_sp = m_process_wp.lock();
if (process_sp) {
if (process_sp->CanJIT() && process_sp->IsAlive()) {
if (!zero_memory)
allocation_address =
process_sp->AllocateMemory(allocation_size, permissions, error);
else
allocation_address =
process_sp->CallocateMemory(allocation_size, permissions, error);
if (!error.Success())
return LLDB_INVALID_ADDRESS;
} else {
error.SetErrorToGenericError();
error.SetErrorString(
"Couldn't malloc: process doesn't support allocating memory");
return LLDB_INVALID_ADDRESS;
}
} else {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't malloc: process doesn't exist, and this "
"memory must be in the process");
return LLDB_INVALID_ADDRESS;
}
break;
}
lldb::addr_t mask = alignment - 1;
aligned_address = (allocation_address + mask) & (~mask);
m_allocations.emplace(
std::piecewise_construct, std::forward_as_tuple(aligned_address),
std::forward_as_tuple(allocation_address, aligned_address,
allocation_size, permissions, alignment, policy));
if (zero_memory) {
Status write_error;
std::vector<uint8_t> zero_buf(size, 0);
WriteMemory(aligned_address, zero_buf.data(), size, write_error);
}
if (log) {
const char *policy_string;
switch (policy) {
default:
policy_string = "<invalid policy>";
break;
case eAllocationPolicyHostOnly:
policy_string = "eAllocationPolicyHostOnly";
break;
case eAllocationPolicyProcessOnly:
policy_string = "eAllocationPolicyProcessOnly";
break;
case eAllocationPolicyMirror:
policy_string = "eAllocationPolicyMirror";
break;
}
LLDB_LOGF(log,
"IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64
", %s) -> 0x%" PRIx64,
(uint64_t)allocation_size, (uint64_t)alignment,
(uint64_t)permissions, policy_string, aligned_address);
}
return aligned_address;
}
void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) {
error.Clear();
AllocationMap::iterator iter = m_allocations.find(process_address);
if (iter == m_allocations.end()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't leak: allocation doesn't exist");
return;
}
Allocation &allocation = iter->second;
allocation.m_leak = true;
}
void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) {
error.Clear();
AllocationMap::iterator iter = m_allocations.find(process_address);
if (iter == m_allocations.end()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't free: allocation doesn't exist");
return;
}
Allocation &allocation = iter->second;
switch (allocation.m_policy) {
default:
case eAllocationPolicyHostOnly: {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp) {
if (process_sp->CanJIT() && process_sp->IsAlive())
process_sp->DeallocateMemory(
allocation.m_process_alloc); // FindSpace allocated this for real
}
break;
}
case eAllocationPolicyMirror:
case eAllocationPolicyProcessOnly: {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp)
process_sp->DeallocateMemory(allocation.m_process_alloc);
}
}
if (lldb_private::Log *log =
lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
LLDB_LOGF(log,
"IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64
"..0x%" PRIx64 ")",
(uint64_t)process_address, iter->second.m_process_start,
iter->second.m_process_start + iter->second.m_size);
}
m_allocations.erase(iter);
}
bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) {
AllocationMap::iterator iter = FindAllocation(address, size);
if (iter == m_allocations.end())
return false;
Allocation &al = iter->second;
if (address > (al.m_process_start + al.m_size)) {
size = 0;
return false;
}
if (address > al.m_process_start) {
int dif = address - al.m_process_start;
size = al.m_size - dif;
return true;
}
size = al.m_size;
return true;
}
void IRMemoryMap::WriteMemory(lldb::addr_t process_address,
const uint8_t *bytes, size_t size,
Status &error) {
error.Clear();
AllocationMap::iterator iter = FindAllocation(process_address, size);
if (iter == m_allocations.end()) {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp) {
process_sp->WriteMemory(process_address, bytes, size, error);
return;
}
error.SetErrorToGenericError();
error.SetErrorString("Couldn't write: no allocation contains the target "
"range and the process doesn't exist");
return;
}
Allocation &allocation = iter->second;
uint64_t offset = process_address - allocation.m_process_start;
lldb::ProcessSP process_sp;
switch (allocation.m_policy) {
default:
error.SetErrorToGenericError();
error.SetErrorString("Couldn't write: invalid allocation policy");
return;
case eAllocationPolicyHostOnly:
if (!allocation.m_data.GetByteSize()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't write: data buffer is empty");
return;
}
::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
break;
case eAllocationPolicyMirror:
if (!allocation.m_data.GetByteSize()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't write: data buffer is empty");
return;
}
::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
process_sp = m_process_wp.lock();
if (process_sp) {
process_sp->WriteMemory(process_address, bytes, size, error);
if (!error.Success())
return;
}
break;
case eAllocationPolicyProcessOnly:
process_sp = m_process_wp.lock();
if (process_sp) {
process_sp->WriteMemory(process_address, bytes, size, error);
if (!error.Success())
return;
}
break;
}
if (lldb_private::Log *log =
lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
LLDB_LOGF(log,
"IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIxPTR
", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")",
(uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size,
(uint64_t)allocation.m_process_start,
(uint64_t)allocation.m_process_start +
(uint64_t)allocation.m_size);
}
}
void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address,
Scalar &scalar, size_t size,
Status &error) {
error.Clear();
if (size == UINT32_MAX)
size = scalar.GetByteSize();
if (size > 0) {
uint8_t buf[32];
const size_t mem_size =
scalar.GetAsMemoryData(buf, size, GetByteOrder(), error);
if (mem_size > 0) {
return WriteMemory(process_address, buf, mem_size, error);
} else {
error.SetErrorToGenericError();
error.SetErrorString(
"Couldn't write scalar: failed to get scalar as memory data");
}
} else {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't write scalar: its size was zero");
}
return;
}
void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address,
lldb::addr_t address, Status &error) {
error.Clear();
Scalar scalar(address);
WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error);
}
void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address,
size_t size, Status &error) {
error.Clear();
AllocationMap::iterator iter = FindAllocation(process_address, size);
if (iter == m_allocations.end()) {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (process_sp) {
process_sp->ReadMemory(process_address, bytes, size, error);
return;
}
lldb::TargetSP target_sp = m_target_wp.lock();
if (target_sp) {
Address absolute_address(process_address);
target_sp->ReadMemory(absolute_address, bytes, size, error, true);
return;
}
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read: no allocation contains the target "
"range, and neither the process nor the target exist");
return;
}
Allocation &allocation = iter->second;
uint64_t offset = process_address - allocation.m_process_start;
if (offset > allocation.m_size) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read: data is not in the allocation");
return;
}
lldb::ProcessSP process_sp;
switch (allocation.m_policy) {
default:
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read: invalid allocation policy");
return;
case eAllocationPolicyHostOnly:
if (!allocation.m_data.GetByteSize()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read: data buffer is empty");
return;
}
if (allocation.m_data.GetByteSize() < offset + size) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read: not enough underlying data");
return;
}
::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
break;
case eAllocationPolicyMirror:
process_sp = m_process_wp.lock();
if (process_sp) {
process_sp->ReadMemory(process_address, bytes, size, error);
if (!error.Success())
return;
} else {
if (!allocation.m_data.GetByteSize()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read: data buffer is empty");
return;
}
::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
}
break;
case eAllocationPolicyProcessOnly:
process_sp = m_process_wp.lock();
if (process_sp) {
process_sp->ReadMemory(process_address, bytes, size, error);
if (!error.Success())
return;
}
break;
}
if (lldb_private::Log *log =
lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
LLDB_LOGF(log,
"IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIxPTR
", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")",
(uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size,
(uint64_t)allocation.m_process_start,
(uint64_t)allocation.m_process_start +
(uint64_t)allocation.m_size);
}
}
void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar,
lldb::addr_t process_address,
size_t size, Status &error) {
error.Clear();
if (size > 0) {
DataBufferHeap buf(size, 0);
ReadMemory(buf.GetBytes(), process_address, size, error);
if (!error.Success())
return;
DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(),
GetAddressByteSize());
lldb::offset_t offset = 0;
switch (size) {
default:
error.SetErrorToGenericError();
error.SetErrorStringWithFormat(
"Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size);
return;
case 1:
scalar = extractor.GetU8(&offset);
break;
case 2:
scalar = extractor.GetU16(&offset);
break;
case 4:
scalar = extractor.GetU32(&offset);
break;
case 8:
scalar = extractor.GetU64(&offset);
break;
}
} else {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't read scalar: its size was zero");
}
return;
}
void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address,
lldb::addr_t process_address,
Status &error) {
error.Clear();
Scalar pointer_scalar;
ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(),
error);
if (!error.Success())
return;
*address = pointer_scalar.ULongLong();
return;
}
void IRMemoryMap::GetMemoryData(DataExtractor &extractor,
lldb::addr_t process_address, size_t size,
Status &error) {
error.Clear();
if (size > 0) {
AllocationMap::iterator iter = FindAllocation(process_address, size);
if (iter == m_allocations.end()) {
error.SetErrorToGenericError();
error.SetErrorStringWithFormat(
"Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64
")",
process_address, process_address + size);
return;
}
Allocation &allocation = iter->second;
switch (allocation.m_policy) {
default:
error.SetErrorToGenericError();
error.SetErrorString(
"Couldn't get memory data: invalid allocation policy");
return;
case eAllocationPolicyProcessOnly:
error.SetErrorToGenericError();
error.SetErrorString(
"Couldn't get memory data: memory is only in the target");
return;
case eAllocationPolicyMirror: {
lldb::ProcessSP process_sp = m_process_wp.lock();
if (!allocation.m_data.GetByteSize()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't get memory data: data buffer is empty");
return;
}
if (process_sp) {
process_sp->ReadMemory(allocation.m_process_start,
allocation.m_data.GetBytes(),
allocation.m_data.GetByteSize(), error);
if (!error.Success())
return;
uint64_t offset = process_address - allocation.m_process_start;
extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
GetByteOrder(), GetAddressByteSize());
return;
}
} break;
case eAllocationPolicyHostOnly:
if (!allocation.m_data.GetByteSize()) {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't get memory data: data buffer is empty");
return;
}
uint64_t offset = process_address - allocation.m_process_start;
extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
GetByteOrder(), GetAddressByteSize());
return;
}
} else {
error.SetErrorToGenericError();
error.SetErrorString("Couldn't get memory data: its size was zero");
return;
}
}