| //===-- DWARFExpression.cpp -----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "lldb/Expression/DWARFExpression.h" |
| |
| #include <cinttypes> |
| |
| #include <vector> |
| |
| #include "lldb/Core/Module.h" |
| #include "lldb/Core/Value.h" |
| #include "lldb/Core/dwarf.h" |
| #include "lldb/Utility/DataEncoder.h" |
| #include "lldb/Utility/Log.h" |
| #include "lldb/Utility/RegisterValue.h" |
| #include "lldb/Utility/Scalar.h" |
| #include "lldb/Utility/StreamString.h" |
| #include "lldb/Utility/VMRange.h" |
| |
| #include "lldb/Host/Host.h" |
| #include "lldb/Utility/Endian.h" |
| |
| #include "lldb/Symbol/Function.h" |
| |
| #include "lldb/Target/ABI.h" |
| #include "lldb/Target/ExecutionContext.h" |
| #include "lldb/Target/Process.h" |
| #include "lldb/Target/RegisterContext.h" |
| #include "lldb/Target/StackFrame.h" |
| #include "lldb/Target/StackID.h" |
| #include "lldb/Target/Target.h" |
| #include "lldb/Target/Thread.h" |
| |
| #include "Plugins/SymbolFile/DWARF/DWARFUnit.h" |
| |
| using namespace lldb; |
| using namespace lldb_private; |
| |
| static lldb::addr_t |
| ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu, |
| uint32_t index) { |
| uint32_t index_size = dwarf_cu->GetAddressByteSize(); |
| dw_offset_t addr_base = dwarf_cu->GetAddrBase(); |
| lldb::offset_t offset = addr_base + index * index_size; |
| const DWARFDataExtractor &data = |
| dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData(); |
| if (data.ValidOffsetForDataOfSize(offset, index_size)) |
| return data.GetMaxU64_unchecked(&offset, index_size); |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| // DWARFExpression constructor |
| DWARFExpression::DWARFExpression() : m_module_wp(), m_data() {} |
| |
| DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp, |
| const DataExtractor &data, |
| const DWARFUnit *dwarf_cu) |
| : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu), |
| m_reg_kind(eRegisterKindDWARF) { |
| if (module_sp) |
| m_module_wp = module_sp; |
| } |
| |
| // Destructor |
| DWARFExpression::~DWARFExpression() = default; |
| |
| bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; } |
| |
| void DWARFExpression::UpdateValue(uint64_t const_value, |
| lldb::offset_t const_value_byte_size, |
| uint8_t addr_byte_size) { |
| if (!const_value_byte_size) |
| return; |
| |
| m_data.SetData( |
| DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size))); |
| m_data.SetByteOrder(endian::InlHostByteOrder()); |
| m_data.SetAddressByteSize(addr_byte_size); |
| } |
| |
| void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data, |
| lldb::DescriptionLevel level, |
| ABI *abi) const { |
| llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize()) |
| .print(s->AsRawOstream(), llvm::DIDumpOptions(), |
| abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr); |
| } |
| |
| void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr, |
| addr_t func_file_addr) { |
| m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr}; |
| } |
| |
| int DWARFExpression::GetRegisterKind() { return m_reg_kind; } |
| |
| void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) { |
| m_reg_kind = reg_kind; |
| } |
| |
| bool DWARFExpression::IsLocationList() const { |
| return bool(m_loclist_addresses); |
| } |
| |
| namespace { |
| /// Implement enough of the DWARFObject interface in order to be able to call |
| /// DWARFLocationTable::dumpLocationList. We don't have access to a real |
| /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too. |
| class DummyDWARFObject final: public llvm::DWARFObject { |
| public: |
| DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {} |
| |
| bool isLittleEndian() const override { return IsLittleEndian; } |
| |
| llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec, |
| uint64_t Pos) const override { |
| return llvm::None; |
| } |
| private: |
| bool IsLittleEndian; |
| }; |
| } |
| |
| void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level, |
| addr_t location_list_base_addr, |
| ABI *abi) const { |
| if (IsLocationList()) { |
| // We have a location list |
| lldb::offset_t offset = 0; |
| std::unique_ptr<llvm::DWARFLocationTable> loctable_up = |
| m_dwarf_cu->GetLocationTable(m_data); |
| |
| llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr; |
| llvm::DIDumpOptions DumpOpts; |
| DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) { |
| s->AsRawOstream() << "error: " << toString(std::move(E)); |
| }; |
| loctable_up->dumpLocationList( |
| &offset, s->AsRawOstream(), |
| llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI, |
| DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr, |
| DumpOpts, s->GetIndentLevel() + 2); |
| } else { |
| // We have a normal location that contains DW_OP location opcodes |
| DumpLocation(s, m_data, level, abi); |
| } |
| } |
| |
| static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx, |
| lldb::RegisterKind reg_kind, |
| uint32_t reg_num, Status *error_ptr, |
| Value &value) { |
| if (reg_ctx == nullptr) { |
| if (error_ptr) |
| error_ptr->SetErrorString("No register context in frame.\n"); |
| } else { |
| uint32_t native_reg = |
| reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); |
| if (native_reg == LLDB_INVALID_REGNUM) { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat("Unable to convert register " |
| "kind=%u reg_num=%u to a native " |
| "register number.\n", |
| reg_kind, reg_num); |
| } else { |
| const RegisterInfo *reg_info = |
| reg_ctx->GetRegisterInfoAtIndex(native_reg); |
| RegisterValue reg_value; |
| if (reg_ctx->ReadRegister(reg_info, reg_value)) { |
| if (reg_value.GetScalarValue(value.GetScalar())) { |
| value.SetValueType(Value::ValueType::Scalar); |
| value.SetContext(Value::ContextType::RegisterInfo, |
| const_cast<RegisterInfo *>(reg_info)); |
| if (error_ptr) |
| error_ptr->Clear(); |
| return true; |
| } else { |
| // If we get this error, then we need to implement a value buffer in |
| // the dwarf expression evaluation function... |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "register %s can't be converted to a scalar value", |
| reg_info->name); |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat("register %s is not available", |
| reg_info->name); |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// Return the length in bytes of the set of operands for \p op. No guarantees |
| /// are made on the state of \p data after this call. |
| static offset_t GetOpcodeDataSize(const DataExtractor &data, |
| const lldb::offset_t data_offset, |
| const uint8_t op) { |
| lldb::offset_t offset = data_offset; |
| switch (op) { |
| case DW_OP_addr: |
| case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) |
| return data.GetAddressByteSize(); |
| |
| // Opcodes with no arguments |
| case DW_OP_deref: // 0x06 |
| case DW_OP_dup: // 0x12 |
| case DW_OP_drop: // 0x13 |
| case DW_OP_over: // 0x14 |
| case DW_OP_swap: // 0x16 |
| case DW_OP_rot: // 0x17 |
| case DW_OP_xderef: // 0x18 |
| case DW_OP_abs: // 0x19 |
| case DW_OP_and: // 0x1a |
| case DW_OP_div: // 0x1b |
| case DW_OP_minus: // 0x1c |
| case DW_OP_mod: // 0x1d |
| case DW_OP_mul: // 0x1e |
| case DW_OP_neg: // 0x1f |
| case DW_OP_not: // 0x20 |
| case DW_OP_or: // 0x21 |
| case DW_OP_plus: // 0x22 |
| case DW_OP_shl: // 0x24 |
| case DW_OP_shr: // 0x25 |
| case DW_OP_shra: // 0x26 |
| case DW_OP_xor: // 0x27 |
| case DW_OP_eq: // 0x29 |
| case DW_OP_ge: // 0x2a |
| case DW_OP_gt: // 0x2b |
| case DW_OP_le: // 0x2c |
| case DW_OP_lt: // 0x2d |
| case DW_OP_ne: // 0x2e |
| case DW_OP_lit0: // 0x30 |
| case DW_OP_lit1: // 0x31 |
| case DW_OP_lit2: // 0x32 |
| case DW_OP_lit3: // 0x33 |
| case DW_OP_lit4: // 0x34 |
| case DW_OP_lit5: // 0x35 |
| case DW_OP_lit6: // 0x36 |
| case DW_OP_lit7: // 0x37 |
| case DW_OP_lit8: // 0x38 |
| case DW_OP_lit9: // 0x39 |
| case DW_OP_lit10: // 0x3A |
| case DW_OP_lit11: // 0x3B |
| case DW_OP_lit12: // 0x3C |
| case DW_OP_lit13: // 0x3D |
| case DW_OP_lit14: // 0x3E |
| case DW_OP_lit15: // 0x3F |
| case DW_OP_lit16: // 0x40 |
| case DW_OP_lit17: // 0x41 |
| case DW_OP_lit18: // 0x42 |
| case DW_OP_lit19: // 0x43 |
| case DW_OP_lit20: // 0x44 |
| case DW_OP_lit21: // 0x45 |
| case DW_OP_lit22: // 0x46 |
| case DW_OP_lit23: // 0x47 |
| case DW_OP_lit24: // 0x48 |
| case DW_OP_lit25: // 0x49 |
| case DW_OP_lit26: // 0x4A |
| case DW_OP_lit27: // 0x4B |
| case DW_OP_lit28: // 0x4C |
| case DW_OP_lit29: // 0x4D |
| case DW_OP_lit30: // 0x4E |
| case DW_OP_lit31: // 0x4f |
| case DW_OP_reg0: // 0x50 |
| case DW_OP_reg1: // 0x51 |
| case DW_OP_reg2: // 0x52 |
| case DW_OP_reg3: // 0x53 |
| case DW_OP_reg4: // 0x54 |
| case DW_OP_reg5: // 0x55 |
| case DW_OP_reg6: // 0x56 |
| case DW_OP_reg7: // 0x57 |
| case DW_OP_reg8: // 0x58 |
| case DW_OP_reg9: // 0x59 |
| case DW_OP_reg10: // 0x5A |
| case DW_OP_reg11: // 0x5B |
| case DW_OP_reg12: // 0x5C |
| case DW_OP_reg13: // 0x5D |
| case DW_OP_reg14: // 0x5E |
| case DW_OP_reg15: // 0x5F |
| case DW_OP_reg16: // 0x60 |
| case DW_OP_reg17: // 0x61 |
| case DW_OP_reg18: // 0x62 |
| case DW_OP_reg19: // 0x63 |
| case DW_OP_reg20: // 0x64 |
| case DW_OP_reg21: // 0x65 |
| case DW_OP_reg22: // 0x66 |
| case DW_OP_reg23: // 0x67 |
| case DW_OP_reg24: // 0x68 |
| case DW_OP_reg25: // 0x69 |
| case DW_OP_reg26: // 0x6A |
| case DW_OP_reg27: // 0x6B |
| case DW_OP_reg28: // 0x6C |
| case DW_OP_reg29: // 0x6D |
| case DW_OP_reg30: // 0x6E |
| case DW_OP_reg31: // 0x6F |
| case DW_OP_nop: // 0x96 |
| case DW_OP_push_object_address: // 0x97 DWARF3 |
| case DW_OP_form_tls_address: // 0x9b DWARF3 |
| case DW_OP_call_frame_cfa: // 0x9c DWARF3 |
| case DW_OP_stack_value: // 0x9f DWARF4 |
| case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension |
| return 0; |
| |
| // Opcodes with a single 1 byte arguments |
| case DW_OP_const1u: // 0x08 1 1-byte constant |
| case DW_OP_const1s: // 0x09 1 1-byte constant |
| case DW_OP_pick: // 0x15 1 1-byte stack index |
| case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved |
| case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved |
| return 1; |
| |
| // Opcodes with a single 2 byte arguments |
| case DW_OP_const2u: // 0x0a 1 2-byte constant |
| case DW_OP_const2s: // 0x0b 1 2-byte constant |
| case DW_OP_skip: // 0x2f 1 signed 2-byte constant |
| case DW_OP_bra: // 0x28 1 signed 2-byte constant |
| case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) |
| return 2; |
| |
| // Opcodes with a single 4 byte arguments |
| case DW_OP_const4u: // 0x0c 1 4-byte constant |
| case DW_OP_const4s: // 0x0d 1 4-byte constant |
| case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) |
| return 4; |
| |
| // Opcodes with a single 8 byte arguments |
| case DW_OP_const8u: // 0x0e 1 8-byte constant |
| case DW_OP_const8s: // 0x0f 1 8-byte constant |
| return 8; |
| |
| // All opcodes that have a single ULEB (signed or unsigned) argument |
| case DW_OP_addrx: // 0xa1 1 ULEB128 index |
| case DW_OP_constu: // 0x10 1 ULEB128 constant |
| case DW_OP_consts: // 0x11 1 SLEB128 constant |
| case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend |
| case DW_OP_breg0: // 0x70 1 ULEB128 register |
| case DW_OP_breg1: // 0x71 1 ULEB128 register |
| case DW_OP_breg2: // 0x72 1 ULEB128 register |
| case DW_OP_breg3: // 0x73 1 ULEB128 register |
| case DW_OP_breg4: // 0x74 1 ULEB128 register |
| case DW_OP_breg5: // 0x75 1 ULEB128 register |
| case DW_OP_breg6: // 0x76 1 ULEB128 register |
| case DW_OP_breg7: // 0x77 1 ULEB128 register |
| case DW_OP_breg8: // 0x78 1 ULEB128 register |
| case DW_OP_breg9: // 0x79 1 ULEB128 register |
| case DW_OP_breg10: // 0x7a 1 ULEB128 register |
| case DW_OP_breg11: // 0x7b 1 ULEB128 register |
| case DW_OP_breg12: // 0x7c 1 ULEB128 register |
| case DW_OP_breg13: // 0x7d 1 ULEB128 register |
| case DW_OP_breg14: // 0x7e 1 ULEB128 register |
| case DW_OP_breg15: // 0x7f 1 ULEB128 register |
| case DW_OP_breg16: // 0x80 1 ULEB128 register |
| case DW_OP_breg17: // 0x81 1 ULEB128 register |
| case DW_OP_breg18: // 0x82 1 ULEB128 register |
| case DW_OP_breg19: // 0x83 1 ULEB128 register |
| case DW_OP_breg20: // 0x84 1 ULEB128 register |
| case DW_OP_breg21: // 0x85 1 ULEB128 register |
| case DW_OP_breg22: // 0x86 1 ULEB128 register |
| case DW_OP_breg23: // 0x87 1 ULEB128 register |
| case DW_OP_breg24: // 0x88 1 ULEB128 register |
| case DW_OP_breg25: // 0x89 1 ULEB128 register |
| case DW_OP_breg26: // 0x8a 1 ULEB128 register |
| case DW_OP_breg27: // 0x8b 1 ULEB128 register |
| case DW_OP_breg28: // 0x8c 1 ULEB128 register |
| case DW_OP_breg29: // 0x8d 1 ULEB128 register |
| case DW_OP_breg30: // 0x8e 1 ULEB128 register |
| case DW_OP_breg31: // 0x8f 1 ULEB128 register |
| case DW_OP_regx: // 0x90 1 ULEB128 register |
| case DW_OP_fbreg: // 0x91 1 SLEB128 offset |
| case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed |
| case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index |
| case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index |
| data.Skip_LEB128(&offset); |
| return offset - data_offset; |
| |
| // All opcodes that have a 2 ULEB (signed or unsigned) arguments |
| case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset |
| case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); |
| data.Skip_LEB128(&offset); |
| data.Skip_LEB128(&offset); |
| return offset - data_offset; |
| |
| case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size |
| // (DWARF4) |
| { |
| uint64_t block_len = data.Skip_LEB128(&offset); |
| offset += block_len; |
| return offset - data_offset; |
| } |
| |
| case DW_OP_GNU_entry_value: |
| case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block |
| { |
| uint64_t subexpr_len = data.GetULEB128(&offset); |
| return (offset - data_offset) + subexpr_len; |
| } |
| |
| default: |
| break; |
| } |
| return LLDB_INVALID_OFFSET; |
| } |
| |
| lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx, |
| bool &error) const { |
| error = false; |
| if (IsLocationList()) |
| return LLDB_INVALID_ADDRESS; |
| lldb::offset_t offset = 0; |
| uint32_t curr_op_addr_idx = 0; |
| while (m_data.ValidOffset(offset)) { |
| const uint8_t op = m_data.GetU8(&offset); |
| |
| if (op == DW_OP_addr) { |
| const lldb::addr_t op_file_addr = m_data.GetAddress(&offset); |
| if (curr_op_addr_idx == op_addr_idx) |
| return op_file_addr; |
| else |
| ++curr_op_addr_idx; |
| } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) { |
| uint64_t index = m_data.GetULEB128(&offset); |
| if (curr_op_addr_idx == op_addr_idx) { |
| if (!m_dwarf_cu) { |
| error = true; |
| break; |
| } |
| |
| return ReadAddressFromDebugAddrSection(m_dwarf_cu, index); |
| } else |
| ++curr_op_addr_idx; |
| } else { |
| const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); |
| if (op_arg_size == LLDB_INVALID_OFFSET) { |
| error = true; |
| break; |
| } |
| offset += op_arg_size; |
| } |
| } |
| return LLDB_INVALID_ADDRESS; |
| } |
| |
| bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) { |
| if (IsLocationList()) |
| return false; |
| lldb::offset_t offset = 0; |
| while (m_data.ValidOffset(offset)) { |
| const uint8_t op = m_data.GetU8(&offset); |
| |
| if (op == DW_OP_addr) { |
| const uint32_t addr_byte_size = m_data.GetAddressByteSize(); |
| // We have to make a copy of the data as we don't know if this data is |
| // from a read only memory mapped buffer, so we duplicate all of the data |
| // first, then modify it, and if all goes well, we then replace the data |
| // for this expression |
| |
| // So first we copy the data into a heap buffer |
| std::unique_ptr<DataBufferHeap> head_data_up( |
| new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize())); |
| |
| // Make en encoder so we can write the address into the buffer using the |
| // correct byte order (endianness) |
| DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(), |
| m_data.GetByteOrder(), addr_byte_size); |
| |
| // Replace the address in the new buffer |
| if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX) |
| return false; |
| |
| // All went well, so now we can reset the data using a shared pointer to |
| // the heap data so "m_data" will now correctly manage the heap data. |
| m_data.SetData(DataBufferSP(head_data_up.release())); |
| return true; |
| } else { |
| const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); |
| if (op_arg_size == LLDB_INVALID_OFFSET) |
| break; |
| offset += op_arg_size; |
| } |
| } |
| return false; |
| } |
| |
| bool DWARFExpression::ContainsThreadLocalStorage() const { |
| // We are assuming for now that any thread local variable will not have a |
| // location list. This has been true for all thread local variables we have |
| // seen so far produced by any compiler. |
| if (IsLocationList()) |
| return false; |
| lldb::offset_t offset = 0; |
| while (m_data.ValidOffset(offset)) { |
| const uint8_t op = m_data.GetU8(&offset); |
| |
| if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address) |
| return true; |
| const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); |
| if (op_arg_size == LLDB_INVALID_OFFSET) |
| return false; |
| else |
| offset += op_arg_size; |
| } |
| return false; |
| } |
| bool DWARFExpression::LinkThreadLocalStorage( |
| lldb::ModuleSP new_module_sp, |
| std::function<lldb::addr_t(lldb::addr_t file_addr)> const |
| &link_address_callback) { |
| // We are assuming for now that any thread local variable will not have a |
| // location list. This has been true for all thread local variables we have |
| // seen so far produced by any compiler. |
| if (IsLocationList()) |
| return false; |
| |
| const uint32_t addr_byte_size = m_data.GetAddressByteSize(); |
| // We have to make a copy of the data as we don't know if this data is from a |
| // read only memory mapped buffer, so we duplicate all of the data first, |
| // then modify it, and if all goes well, we then replace the data for this |
| // expression |
| |
| // So first we copy the data into a heap buffer |
| std::shared_ptr<DataBufferHeap> heap_data_sp( |
| new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize())); |
| |
| // Make en encoder so we can write the address into the buffer using the |
| // correct byte order (endianness) |
| DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(), |
| m_data.GetByteOrder(), addr_byte_size); |
| |
| lldb::offset_t offset = 0; |
| lldb::offset_t const_offset = 0; |
| lldb::addr_t const_value = 0; |
| size_t const_byte_size = 0; |
| while (m_data.ValidOffset(offset)) { |
| const uint8_t op = m_data.GetU8(&offset); |
| |
| bool decoded_data = false; |
| switch (op) { |
| case DW_OP_const4u: |
| // Remember the const offset in case we later have a |
| // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address |
| const_offset = offset; |
| const_value = m_data.GetU32(&offset); |
| decoded_data = true; |
| const_byte_size = 4; |
| break; |
| |
| case DW_OP_const8u: |
| // Remember the const offset in case we later have a |
| // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address |
| const_offset = offset; |
| const_value = m_data.GetU64(&offset); |
| decoded_data = true; |
| const_byte_size = 8; |
| break; |
| |
| case DW_OP_form_tls_address: |
| case DW_OP_GNU_push_tls_address: |
| // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded |
| // by a file address on the stack. We assume that DW_OP_const4u or |
| // DW_OP_const8u is used for these values, and we check that the last |
| // opcode we got before either of these was DW_OP_const4u or |
| // DW_OP_const8u. If so, then we can link the value accodingly. For |
| // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file |
| // address of a structure that contains a function pointer, the pthread |
| // key and the offset into the data pointed to by the pthread key. So we |
| // must link this address and also set the module of this expression to |
| // the new_module_sp so we can resolve the file address correctly |
| if (const_byte_size > 0) { |
| lldb::addr_t linked_file_addr = link_address_callback(const_value); |
| if (linked_file_addr == LLDB_INVALID_ADDRESS) |
| return false; |
| // Replace the address in the new buffer |
| if (encoder.PutUnsigned(const_offset, const_byte_size, |
| linked_file_addr) == UINT32_MAX) |
| return false; |
| } |
| break; |
| |
| default: |
| const_offset = 0; |
| const_value = 0; |
| const_byte_size = 0; |
| break; |
| } |
| |
| if (!decoded_data) { |
| const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); |
| if (op_arg_size == LLDB_INVALID_OFFSET) |
| return false; |
| else |
| offset += op_arg_size; |
| } |
| } |
| |
| // If we linked the TLS address correctly, update the module so that when the |
| // expression is evaluated it can resolve the file address to a load address |
| // and read the |
| // TLS data |
| m_module_wp = new_module_sp; |
| m_data.SetData(heap_data_sp); |
| return true; |
| } |
| |
| bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr, |
| lldb::addr_t addr) const { |
| if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS) |
| return false; |
| |
| if (!IsLocationList()) |
| return false; |
| |
| return GetLocationExpression(func_load_addr, addr) != llvm::None; |
| } |
| |
| bool DWARFExpression::DumpLocationForAddress(Stream *s, |
| lldb::DescriptionLevel level, |
| addr_t func_load_addr, |
| addr_t address, ABI *abi) { |
| if (!IsLocationList()) { |
| DumpLocation(s, m_data, level, abi); |
| return true; |
| } |
| if (llvm::Optional<DataExtractor> expr = |
| GetLocationExpression(func_load_addr, address)) { |
| DumpLocation(s, *expr, level, abi); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack, |
| ExecutionContext *exe_ctx, |
| RegisterContext *reg_ctx, |
| const DataExtractor &opcodes, |
| lldb::offset_t &opcode_offset, |
| Status *error_ptr, Log *log) { |
| // DW_OP_entry_value(sub-expr) describes the location a variable had upon |
| // function entry: this variable location is presumed to be optimized out at |
| // the current PC value. The caller of the function may have call site |
| // information that describes an alternate location for the variable (e.g. a |
| // constant literal, or a spilled stack value) in the parent frame. |
| // |
| // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative): |
| // |
| // void child(int &sink, int x) { |
| // ... |
| // /* "x" gets optimized out. */ |
| // |
| // /* The location of "x" here is: DW_OP_entry_value($reg2). */ |
| // ++sink; |
| // } |
| // |
| // void parent() { |
| // int sink; |
| // |
| // /* |
| // * The callsite information emitted here is: |
| // * |
| // * DW_TAG_call_site |
| // * DW_AT_return_pc ... (for "child(sink, 123);") |
| // * DW_TAG_call_site_parameter (for "sink") |
| // * DW_AT_location ($reg1) |
| // * DW_AT_call_value ($SP - 8) |
| // * DW_TAG_call_site_parameter (for "x") |
| // * DW_AT_location ($reg2) |
| // * DW_AT_call_value ($literal 123) |
| // * |
| // * DW_TAG_call_site |
| // * DW_AT_return_pc ... (for "child(sink, 456);") |
| // * ... |
| // */ |
| // child(sink, 123); |
| // child(sink, 456); |
| // } |
| // |
| // When the program stops at "++sink" within `child`, the debugger determines |
| // the call site by analyzing the return address. Once the call site is found, |
| // the debugger determines which parameter is referenced by DW_OP_entry_value |
| // and evaluates the corresponding location for that parameter in `parent`. |
| |
| // 1. Find the function which pushed the current frame onto the stack. |
| if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context"); |
| return false; |
| } |
| |
| StackFrame *current_frame = exe_ctx->GetFramePtr(); |
| Thread *thread = exe_ctx->GetThreadPtr(); |
| if (!current_frame || !thread) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread"); |
| return false; |
| } |
| |
| Target &target = exe_ctx->GetTargetRef(); |
| StackFrameSP parent_frame = nullptr; |
| addr_t return_pc = LLDB_INVALID_ADDRESS; |
| uint32_t current_frame_idx = current_frame->GetFrameIndex(); |
| uint32_t num_frames = thread->GetStackFrameCount(); |
| for (uint32_t parent_frame_idx = current_frame_idx + 1; |
| parent_frame_idx < num_frames; ++parent_frame_idx) { |
| parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx); |
| // Require a valid sequence of frames. |
| if (!parent_frame) |
| break; |
| |
| // Record the first valid return address, even if this is an inlined frame, |
| // in order to look up the associated call edge in the first non-inlined |
| // parent frame. |
| if (return_pc == LLDB_INVALID_ADDRESS) { |
| return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target); |
| LLDB_LOG(log, |
| "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}", |
| return_pc); |
| } |
| |
| // If we've found an inlined frame, skip it (these have no call site |
| // parameters). |
| if (parent_frame->IsInlined()) |
| continue; |
| |
| // We've found the first non-inlined parent frame. |
| break; |
| } |
| if (!parent_frame || !parent_frame->GetRegisterContext()) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx"); |
| return false; |
| } |
| |
| Function *parent_func = |
| parent_frame->GetSymbolContext(eSymbolContextFunction).function; |
| if (!parent_func) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function"); |
| return false; |
| } |
| |
| // 2. Find the call edge in the parent function responsible for creating the |
| // current activation. |
| Function *current_func = |
| current_frame->GetSymbolContext(eSymbolContextFunction).function; |
| if (!current_func) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function"); |
| return false; |
| } |
| |
| CallEdge *call_edge = nullptr; |
| ModuleList &modlist = target.GetImages(); |
| ExecutionContext parent_exe_ctx = *exe_ctx; |
| parent_exe_ctx.SetFrameSP(parent_frame); |
| if (!parent_frame->IsArtificial()) { |
| // If the parent frame is not artificial, the current activation may be |
| // produced by an ambiguous tail call. In this case, refuse to proceed. |
| call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target); |
| if (!call_edge) { |
| LLDB_LOG(log, |
| "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} " |
| "in parent frame {1}", |
| return_pc, parent_func->GetName()); |
| return false; |
| } |
| Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx); |
| if (callee_func != current_func) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, " |
| "can't find real parent frame"); |
| return false; |
| } |
| } else { |
| // The StackFrameList solver machinery has deduced that an unambiguous tail |
| // call sequence that produced the current activation. The first edge in |
| // the parent that points to the current function must be valid. |
| for (auto &edge : parent_func->GetTailCallingEdges()) { |
| if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) { |
| call_edge = edge.get(); |
| break; |
| } |
| } |
| } |
| if (!call_edge) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent " |
| "to current function"); |
| return false; |
| } |
| |
| // 3. Attempt to locate the DW_OP_entry_value expression in the set of |
| // available call site parameters. If found, evaluate the corresponding |
| // parameter in the context of the parent frame. |
| const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset); |
| const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len); |
| if (!subexpr_data) { |
| LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read"); |
| return false; |
| } |
| |
| const CallSiteParameter *matched_param = nullptr; |
| for (const CallSiteParameter ¶m : call_edge->GetCallSiteParameters()) { |
| DataExtractor param_subexpr_extractor; |
| if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor)) |
| continue; |
| lldb::offset_t param_subexpr_offset = 0; |
| const void *param_subexpr_data = |
| param_subexpr_extractor.GetData(¶m_subexpr_offset, subexpr_len); |
| if (!param_subexpr_data || |
| param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0) |
| continue; |
| |
| // At this point, the DW_OP_entry_value sub-expression and the callee-side |
| // expression in the call site parameter are known to have the same length. |
| // Check whether they are equal. |
| // |
| // Note that an equality check is sufficient: the contents of the |
| // DW_OP_entry_value subexpression are only used to identify the right call |
| // site parameter in the parent, and do not require any special handling. |
| if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) { |
| matched_param = ¶m; |
| break; |
| } |
| } |
| if (!matched_param) { |
| LLDB_LOG(log, |
| "Evaluate_DW_OP_entry_value: no matching call site param found"); |
| return false; |
| } |
| |
| // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value |
| // subexpresion whenever llvm does. |
| Value result; |
| const DWARFExpression ¶m_expr = matched_param->LocationInCaller; |
| if (!param_expr.Evaluate(&parent_exe_ctx, |
| parent_frame->GetRegisterContext().get(), |
| /*loclist_base_addr=*/LLDB_INVALID_ADDRESS, |
| /*initial_value_ptr=*/nullptr, |
| /*object_address_ptr=*/nullptr, result, error_ptr)) { |
| LLDB_LOG(log, |
| "Evaluate_DW_OP_entry_value: call site param evaluation failed"); |
| return false; |
| } |
| |
| stack.push_back(result); |
| return true; |
| } |
| |
| bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope, |
| lldb::addr_t loclist_base_load_addr, |
| const Value *initial_value_ptr, |
| const Value *object_address_ptr, Value &result, |
| Status *error_ptr) const { |
| ExecutionContext exe_ctx(exe_scope); |
| return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr, |
| object_address_ptr, result, error_ptr); |
| } |
| |
| bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx, |
| RegisterContext *reg_ctx, |
| lldb::addr_t func_load_addr, |
| const Value *initial_value_ptr, |
| const Value *object_address_ptr, Value &result, |
| Status *error_ptr) const { |
| ModuleSP module_sp = m_module_wp.lock(); |
| |
| if (IsLocationList()) { |
| addr_t pc; |
| StackFrame *frame = nullptr; |
| if (reg_ctx) |
| pc = reg_ctx->GetPC(); |
| else { |
| frame = exe_ctx->GetFramePtr(); |
| if (!frame) |
| return false; |
| RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); |
| if (!reg_ctx_sp) |
| return false; |
| pc = reg_ctx_sp->GetPC(); |
| } |
| |
| if (func_load_addr != LLDB_INVALID_ADDRESS) { |
| if (pc == LLDB_INVALID_ADDRESS) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Invalid PC in frame."); |
| return false; |
| } |
| |
| if (llvm::Optional<DataExtractor> expr = |
| GetLocationExpression(func_load_addr, pc)) { |
| return DWARFExpression::Evaluate( |
| exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind, |
| initial_value_ptr, object_address_ptr, result, error_ptr); |
| } |
| } |
| if (error_ptr) |
| error_ptr->SetErrorString("variable not available"); |
| return false; |
| } |
| |
| // Not a location list, just a single expression. |
| return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data, |
| m_dwarf_cu, m_reg_kind, initial_value_ptr, |
| object_address_ptr, result, error_ptr); |
| } |
| |
| namespace { |
| /// The location description kinds described by the DWARF v5 |
| /// specification. Composite locations are handled out-of-band and |
| /// thus aren't part of the enum. |
| enum LocationDescriptionKind { |
| Empty, |
| Memory, |
| Register, |
| Implicit |
| /* Composite*/ |
| }; |
| /// Adjust value's ValueType according to the kind of location description. |
| void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu, |
| LocationDescriptionKind kind, |
| Value *value = nullptr) { |
| // Note that this function is conflating DWARF expressions with |
| // DWARF location descriptions. Perhaps it would be better to define |
| // a wrapper for DWARFExpresssion::Eval() that deals with DWARF |
| // location descriptions (which consist of one or more DWARF |
| // expressions). But doing this would mean we'd also need factor the |
| // handling of DW_OP_(bit_)piece out of this function. |
| if (dwarf_cu && dwarf_cu->GetVersion() >= 4) { |
| const char *log_msg = "DWARF location description kind: %s"; |
| switch (kind) { |
| case Empty: |
| LLDB_LOGF(log, log_msg, "Empty"); |
| break; |
| case Memory: |
| LLDB_LOGF(log, log_msg, "Memory"); |
| if (value->GetValueType() == Value::ValueType::Scalar) |
| value->SetValueType(Value::ValueType::LoadAddress); |
| break; |
| case Register: |
| LLDB_LOGF(log, log_msg, "Register"); |
| value->SetValueType(Value::ValueType::Scalar); |
| break; |
| case Implicit: |
| LLDB_LOGF(log, log_msg, "Implicit"); |
| if (value->GetValueType() == Value::ValueType::LoadAddress) |
| value->SetValueType(Value::ValueType::Scalar); |
| break; |
| } |
| } |
| } |
| } // namespace |
| |
| bool DWARFExpression::Evaluate( |
| ExecutionContext *exe_ctx, RegisterContext *reg_ctx, |
| lldb::ModuleSP module_sp, const DataExtractor &opcodes, |
| const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind, |
| const Value *initial_value_ptr, const Value *object_address_ptr, |
| Value &result, Status *error_ptr) { |
| |
| if (opcodes.GetByteSize() == 0) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "no location, value may have been optimized out"); |
| return false; |
| } |
| std::vector<Value> stack; |
| |
| Process *process = nullptr; |
| StackFrame *frame = nullptr; |
| |
| if (exe_ctx) { |
| process = exe_ctx->GetProcessPtr(); |
| frame = exe_ctx->GetFramePtr(); |
| } |
| if (reg_ctx == nullptr && frame) |
| reg_ctx = frame->GetRegisterContext().get(); |
| |
| if (initial_value_ptr) |
| stack.push_back(*initial_value_ptr); |
| |
| lldb::offset_t offset = 0; |
| Value tmp; |
| uint32_t reg_num; |
| |
| /// Insertion point for evaluating multi-piece expression. |
| uint64_t op_piece_offset = 0; |
| Value pieces; // Used for DW_OP_piece |
| |
| Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); |
| // A generic type is "an integral type that has the size of an address and an |
| // unspecified signedness". For now, just use the signedness of the operand. |
| // TODO: Implement a real typed stack, and store the genericness of the value |
| // there. |
| auto to_generic = [&](auto v) { |
| bool is_signed = std::is_signed<decltype(v)>::value; |
| return Scalar(llvm::APSInt( |
| llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed), |
| !is_signed)); |
| }; |
| |
| // The default kind is a memory location. This is updated by any |
| // operation that changes this, such as DW_OP_stack_value, and reset |
| // by composition operations like DW_OP_piece. |
| LocationDescriptionKind dwarf4_location_description_kind = Memory; |
| |
| while (opcodes.ValidOffset(offset)) { |
| const lldb::offset_t op_offset = offset; |
| const uint8_t op = opcodes.GetU8(&offset); |
| |
| if (log && log->GetVerbose()) { |
| size_t count = stack.size(); |
| LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:", |
| (uint64_t)count); |
| for (size_t i = 0; i < count; ++i) { |
| StreamString new_value; |
| new_value.Printf("[%" PRIu64 "]", (uint64_t)i); |
| stack[i].Dump(&new_value); |
| LLDB_LOGF(log, " %s", new_value.GetData()); |
| } |
| LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset, |
| DW_OP_value_to_name(op)); |
| } |
| |
| switch (op) { |
| // The DW_OP_addr operation has a single operand that encodes a machine |
| // address and whose size is the size of an address on the target machine. |
| case DW_OP_addr: |
| stack.push_back(Scalar(opcodes.GetAddress(&offset))); |
| stack.back().SetValueType(Value::ValueType::FileAddress); |
| // Convert the file address to a load address, so subsequent |
| // DWARF operators can operate on it. |
| if (frame) |
| stack.back().ConvertToLoadAddress(module_sp.get(), |
| frame->CalculateTarget().get()); |
| break; |
| |
| // The DW_OP_addr_sect_offset4 is used for any location expressions in |
| // shared libraries that have a location like: |
| // DW_OP_addr(0x1000) |
| // If this address resides in a shared library, then this virtual address |
| // won't make sense when it is evaluated in the context of a running |
| // process where shared libraries have been slid. To account for this, this |
| // new address type where we can store the section pointer and a 4 byte |
| // offset. |
| // case DW_OP_addr_sect_offset4: |
| // { |
| // result_type = eResultTypeFileAddress; |
| // lldb::Section *sect = (lldb::Section |
| // *)opcodes.GetMaxU64(&offset, sizeof(void *)); |
| // lldb::addr_t sect_offset = opcodes.GetU32(&offset); |
| // |
| // Address so_addr (sect, sect_offset); |
| // lldb::addr_t load_addr = so_addr.GetLoadAddress(); |
| // if (load_addr != LLDB_INVALID_ADDRESS) |
| // { |
| // // We successfully resolve a file address to a load |
| // // address. |
| // stack.push_back(load_addr); |
| // break; |
| // } |
| // else |
| // { |
| // // We were able |
| // if (error_ptr) |
| // error_ptr->SetErrorStringWithFormat ("Section %s in |
| // %s is not currently loaded.\n", |
| // sect->GetName().AsCString(), |
| // sect->GetModule()->GetFileSpec().GetFilename().AsCString()); |
| // return false; |
| // } |
| // } |
| // break; |
| |
| // OPCODE: DW_OP_deref |
| // OPERANDS: none |
| // DESCRIPTION: Pops the top stack entry and treats it as an address. |
| // The value retrieved from that address is pushed. The size of the data |
| // retrieved from the dereferenced address is the size of an address on the |
| // target machine. |
| case DW_OP_deref: { |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Expression stack empty for DW_OP_deref."); |
| return false; |
| } |
| Value::ValueType value_type = stack.back().GetValueType(); |
| switch (value_type) { |
| case Value::ValueType::HostAddress: { |
| void *src = (void *)stack.back().GetScalar().ULongLong(); |
| intptr_t ptr; |
| ::memcpy(&ptr, src, sizeof(void *)); |
| stack.back().GetScalar() = ptr; |
| stack.back().ClearContext(); |
| } break; |
| case Value::ValueType::FileAddress: { |
| auto file_addr = stack.back().GetScalar().ULongLong( |
| LLDB_INVALID_ADDRESS); |
| if (!module_sp) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "need module to resolve file address for DW_OP_deref"); |
| return false; |
| } |
| Address so_addr; |
| if (!module_sp->ResolveFileAddress(file_addr, so_addr)) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "failed to resolve file address in module"); |
| return false; |
| } |
| addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr()); |
| if (load_Addr == LLDB_INVALID_ADDRESS) { |
| if (error_ptr) |
| error_ptr->SetErrorString("failed to resolve load address"); |
| return false; |
| } |
| stack.back().GetScalar() = load_Addr; |
| // Fall through to load address promotion code below. |
| } LLVM_FALLTHROUGH; |
| case Value::ValueType::Scalar: |
| // Promote Scalar to LoadAddress and fall through. |
| stack.back().SetValueType(Value::ValueType::LoadAddress); |
| LLVM_FALLTHROUGH; |
| case Value::ValueType::LoadAddress: |
| if (exe_ctx) { |
| if (process) { |
| lldb::addr_t pointer_addr = |
| stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
| Status error; |
| lldb::addr_t pointer_value = |
| process->ReadPointerFromMemory(pointer_addr, error); |
| if (pointer_value != LLDB_INVALID_ADDRESS) { |
| if (ABISP abi_sp = process->GetABI()) |
| pointer_value = abi_sp->FixCodeAddress(pointer_value); |
| stack.back().GetScalar() = pointer_value; |
| stack.back().ClearContext(); |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "Failed to dereference pointer from 0x%" PRIx64 |
| " for DW_OP_deref: %s\n", |
| pointer_addr, error.AsCString()); |
| return false; |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString("NULL process for DW_OP_deref.\n"); |
| return false; |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "NULL execution context for DW_OP_deref.\n"); |
| return false; |
| } |
| break; |
| |
| case Value::ValueType::Invalid: |
| if (error_ptr) |
| error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n"); |
| return false; |
| } |
| |
| } break; |
| |
| // OPCODE: DW_OP_deref_size |
| // OPERANDS: 1 |
| // 1 - uint8_t that specifies the size of the data to dereference. |
| // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top |
| // stack entry and treats it as an address. The value retrieved from that |
| // address is pushed. In the DW_OP_deref_size operation, however, the size |
| // in bytes of the data retrieved from the dereferenced address is |
| // specified by the single operand. This operand is a 1-byte unsigned |
| // integral constant whose value may not be larger than the size of an |
| // address on the target machine. The data retrieved is zero extended to |
| // the size of an address on the target machine before being pushed on the |
| // expression stack. |
| case DW_OP_deref_size: { |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack empty for DW_OP_deref_size."); |
| return false; |
| } |
| uint8_t size = opcodes.GetU8(&offset); |
| Value::ValueType value_type = stack.back().GetValueType(); |
| switch (value_type) { |
| case Value::ValueType::HostAddress: { |
| void *src = (void *)stack.back().GetScalar().ULongLong(); |
| intptr_t ptr; |
| ::memcpy(&ptr, src, sizeof(void *)); |
| // I can't decide whether the size operand should apply to the bytes in |
| // their |
| // lldb-host endianness or the target endianness.. I doubt this'll ever |
| // come up but I'll opt for assuming big endian regardless. |
| switch (size) { |
| case 1: |
| ptr = ptr & 0xff; |
| break; |
| case 2: |
| ptr = ptr & 0xffff; |
| break; |
| case 3: |
| ptr = ptr & 0xffffff; |
| break; |
| case 4: |
| ptr = ptr & 0xffffffff; |
| break; |
| // the casts are added to work around the case where intptr_t is a 32 |
| // bit quantity; |
| // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this |
| // program. |
| case 5: |
| ptr = (intptr_t)ptr & 0xffffffffffULL; |
| break; |
| case 6: |
| ptr = (intptr_t)ptr & 0xffffffffffffULL; |
| break; |
| case 7: |
| ptr = (intptr_t)ptr & 0xffffffffffffffULL; |
| break; |
| default: |
| break; |
| } |
| stack.back().GetScalar() = ptr; |
| stack.back().ClearContext(); |
| } break; |
| case Value::ValueType::Scalar: |
| case Value::ValueType::LoadAddress: |
| if (exe_ctx) { |
| if (process) { |
| lldb::addr_t pointer_addr = |
| stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
| uint8_t addr_bytes[sizeof(lldb::addr_t)]; |
| Status error; |
| if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == |
| size) { |
| DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), |
| process->GetByteOrder(), size); |
| lldb::offset_t addr_data_offset = 0; |
| switch (size) { |
| case 1: |
| stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); |
| break; |
| case 2: |
| stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); |
| break; |
| case 4: |
| stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); |
| break; |
| case 8: |
| stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); |
| break; |
| default: |
| stack.back().GetScalar() = |
| addr_data.GetAddress(&addr_data_offset); |
| } |
| stack.back().ClearContext(); |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "Failed to dereference pointer from 0x%" PRIx64 |
| " for DW_OP_deref: %s\n", |
| pointer_addr, error.AsCString()); |
| return false; |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n"); |
| return false; |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "NULL execution context for DW_OP_deref_size.\n"); |
| return false; |
| } |
| break; |
| |
| case Value::ValueType::FileAddress: |
| case Value::ValueType::Invalid: |
| if (error_ptr) |
| error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n"); |
| return false; |
| } |
| |
| } break; |
| |
| // OPCODE: DW_OP_xderef_size |
| // OPERANDS: 1 |
| // 1 - uint8_t that specifies the size of the data to dereference. |
| // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at |
| // the top of the stack is treated as an address. The second stack entry is |
| // treated as an "address space identifier" for those architectures that |
| // support multiple address spaces. The top two stack elements are popped, |
| // a data item is retrieved through an implementation-defined address |
| // calculation and pushed as the new stack top. In the DW_OP_xderef_size |
| // operation, however, the size in bytes of the data retrieved from the |
| // dereferenced address is specified by the single operand. This operand is |
| // a 1-byte unsigned integral constant whose value may not be larger than |
| // the size of an address on the target machine. The data retrieved is zero |
| // extended to the size of an address on the target machine before being |
| // pushed on the expression stack. |
| case DW_OP_xderef_size: |
| if (error_ptr) |
| error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); |
| return false; |
| // OPCODE: DW_OP_xderef |
| // OPERANDS: none |
| // DESCRIPTION: Provides an extended dereference mechanism. The entry at |
| // the top of the stack is treated as an address. The second stack entry is |
| // treated as an "address space identifier" for those architectures that |
| // support multiple address spaces. The top two stack elements are popped, |
| // a data item is retrieved through an implementation-defined address |
| // calculation and pushed as the new stack top. The size of the data |
| // retrieved from the dereferenced address is the size of an address on the |
| // target machine. |
| case DW_OP_xderef: |
| if (error_ptr) |
| error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); |
| return false; |
| |
| // All DW_OP_constXXX opcodes have a single operand as noted below: |
| // |
| // Opcode Operand 1 |
| // DW_OP_const1u 1-byte unsigned integer constant |
| // DW_OP_const1s 1-byte signed integer constant |
| // DW_OP_const2u 2-byte unsigned integer constant |
| // DW_OP_const2s 2-byte signed integer constant |
| // DW_OP_const4u 4-byte unsigned integer constant |
| // DW_OP_const4s 4-byte signed integer constant |
| // DW_OP_const8u 8-byte unsigned integer constant |
| // DW_OP_const8s 8-byte signed integer constant |
| // DW_OP_constu unsigned LEB128 integer constant |
| // DW_OP_consts signed LEB128 integer constant |
| case DW_OP_const1u: |
| stack.push_back(to_generic(opcodes.GetU8(&offset))); |
| break; |
| case DW_OP_const1s: |
| stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset))); |
| break; |
| case DW_OP_const2u: |
| stack.push_back(to_generic(opcodes.GetU16(&offset))); |
| break; |
| case DW_OP_const2s: |
| stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset))); |
| break; |
| case DW_OP_const4u: |
| stack.push_back(to_generic(opcodes.GetU32(&offset))); |
| break; |
| case DW_OP_const4s: |
| stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset))); |
| break; |
| case DW_OP_const8u: |
| stack.push_back(to_generic(opcodes.GetU64(&offset))); |
| break; |
| case DW_OP_const8s: |
| stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset))); |
| break; |
| // These should also use to_generic, but we can't do that due to a |
| // producer-side bug in llvm. See llvm.org/pr48087. |
| case DW_OP_constu: |
| stack.push_back(Scalar(opcodes.GetULEB128(&offset))); |
| break; |
| case DW_OP_consts: |
| stack.push_back(Scalar(opcodes.GetSLEB128(&offset))); |
| break; |
| |
| // OPCODE: DW_OP_dup |
| // OPERANDS: none |
| // DESCRIPTION: duplicates the value at the top of the stack |
| case DW_OP_dup: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); |
| return false; |
| } else |
| stack.push_back(stack.back()); |
| break; |
| |
| // OPCODE: DW_OP_drop |
| // OPERANDS: none |
| // DESCRIPTION: pops the value at the top of the stack |
| case DW_OP_drop: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); |
| return false; |
| } else |
| stack.pop_back(); |
| break; |
| |
| // OPCODE: DW_OP_over |
| // OPERANDS: none |
| // DESCRIPTION: Duplicates the entry currently second in the stack at |
| // the top of the stack. |
| case DW_OP_over: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_over."); |
| return false; |
| } else |
| stack.push_back(stack[stack.size() - 2]); |
| break; |
| |
| // OPCODE: DW_OP_pick |
| // OPERANDS: uint8_t index into the current stack |
| // DESCRIPTION: The stack entry with the specified index (0 through 255, |
| // inclusive) is pushed on the stack |
| case DW_OP_pick: { |
| uint8_t pick_idx = opcodes.GetU8(&offset); |
| if (pick_idx < stack.size()) |
| stack.push_back(stack[stack.size() - 1 - pick_idx]); |
| else { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "Index %u out of range for DW_OP_pick.\n", pick_idx); |
| return false; |
| } |
| } break; |
| |
| // OPCODE: DW_OP_swap |
| // OPERANDS: none |
| // DESCRIPTION: swaps the top two stack entries. The entry at the top |
| // of the stack becomes the second stack entry, and the second entry |
| // becomes the top of the stack |
| case DW_OP_swap: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_swap."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.back() = stack[stack.size() - 2]; |
| stack[stack.size() - 2] = tmp; |
| } |
| break; |
| |
| // OPCODE: DW_OP_rot |
| // OPERANDS: none |
| // DESCRIPTION: Rotates the first three stack entries. The entry at |
| // the top of the stack becomes the third stack entry, the second entry |
| // becomes the top of the stack, and the third entry becomes the second |
| // entry. |
| case DW_OP_rot: |
| if (stack.size() < 3) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 3 items for DW_OP_rot."); |
| return false; |
| } else { |
| size_t last_idx = stack.size() - 1; |
| Value old_top = stack[last_idx]; |
| stack[last_idx] = stack[last_idx - 1]; |
| stack[last_idx - 1] = stack[last_idx - 2]; |
| stack[last_idx - 2] = old_top; |
| } |
| break; |
| |
| // OPCODE: DW_OP_abs |
| // OPERANDS: none |
| // DESCRIPTION: pops the top stack entry, interprets it as a signed |
| // value and pushes its absolute value. If the absolute value can not be |
| // represented, the result is undefined. |
| case DW_OP_abs: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_abs."); |
| return false; |
| } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Failed to take the absolute value of the first stack item."); |
| return false; |
| } |
| break; |
| |
| // OPCODE: DW_OP_and |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, performs a bitwise and |
| // operation on the two, and pushes the result. |
| case DW_OP_and: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_and."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_div |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, divides the former second |
| // entry by the former top of the stack using signed division, and pushes |
| // the result. |
| case DW_OP_div: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_div."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| if (tmp.ResolveValue(exe_ctx).IsZero()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Divide by zero."); |
| return false; |
| } else { |
| stack.pop_back(); |
| stack.back() = |
| stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx); |
| if (!stack.back().ResolveValue(exe_ctx).IsValid()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Divide failed."); |
| return false; |
| } |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_minus |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, subtracts the former top |
| // of the stack from the former second entry, and pushes the result. |
| case DW_OP_minus: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_minus."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_mod |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values and pushes the result of |
| // the calculation: former second stack entry modulo the former top of the |
| // stack. |
| case DW_OP_mod: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_mod."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_mul |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, multiplies them |
| // together, and pushes the result. |
| case DW_OP_mul: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_mul."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_neg |
| // OPERANDS: none |
| // DESCRIPTION: pops the top stack entry, and pushes its negation. |
| case DW_OP_neg: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_neg."); |
| return false; |
| } else { |
| if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Unary negate failed."); |
| return false; |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_not |
| // OPERANDS: none |
| // DESCRIPTION: pops the top stack entry, and pushes its bitwise |
| // complement |
| case DW_OP_not: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_not."); |
| return false; |
| } else { |
| if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Logical NOT failed."); |
| return false; |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_or |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, performs a bitwise or |
| // operation on the two, and pushes the result. |
| case DW_OP_or: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_or."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_plus |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, adds them together, and |
| // pushes the result. |
| case DW_OP_plus: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_plus."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().GetScalar() += tmp.GetScalar(); |
| } |
| break; |
| |
| // OPCODE: DW_OP_plus_uconst |
| // OPERANDS: none |
| // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 |
| // constant operand and pushes the result. |
| case DW_OP_plus_uconst: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_plus_uconst."); |
| return false; |
| } else { |
| const uint64_t uconst_value = opcodes.GetULEB128(&offset); |
| // Implicit conversion from a UINT to a Scalar... |
| stack.back().GetScalar() += uconst_value; |
| if (!stack.back().GetScalar().IsValid()) { |
| if (error_ptr) |
| error_ptr->SetErrorString("DW_OP_plus_uconst failed."); |
| return false; |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_shl |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, shifts the former |
| // second entry left by the number of bits specified by the former top of |
| // the stack, and pushes the result. |
| case DW_OP_shl: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_shl."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_shr |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, shifts the former second |
| // entry right logically (filling with zero bits) by the number of bits |
| // specified by the former top of the stack, and pushes the result. |
| case DW_OP_shr: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_shr."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical( |
| tmp.ResolveValue(exe_ctx))) { |
| if (error_ptr) |
| error_ptr->SetErrorString("DW_OP_shr failed."); |
| return false; |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_shra |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, shifts the former second |
| // entry right arithmetically (divide the magnitude by 2, keep the same |
| // sign for the result) by the number of bits specified by the former top |
| // of the stack, and pushes the result. |
| case DW_OP_shra: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_shra."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_xor |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack entries, performs the bitwise |
| // exclusive-or operation on the two, and pushes the result. |
| case DW_OP_xor: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_xor."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_skip |
| // OPERANDS: int16_t |
| // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte |
| // signed integer constant. The 2-byte constant is the number of bytes of |
| // the DWARF expression to skip forward or backward from the current |
| // operation, beginning after the 2-byte constant. |
| case DW_OP_skip: { |
| int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); |
| lldb::offset_t new_offset = offset + skip_offset; |
| if (opcodes.ValidOffset(new_offset)) |
| offset = new_offset; |
| else { |
| if (error_ptr) |
| error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); |
| return false; |
| } |
| } break; |
| |
| // OPCODE: DW_OP_bra |
| // OPERANDS: int16_t |
| // DESCRIPTION: A conditional branch. Its single operand is a 2-byte |
| // signed integer constant. This operation pops the top of stack. If the |
| // value popped is not the constant 0, the 2-byte constant operand is the |
| // number of bytes of the DWARF expression to skip forward or backward from |
| // the current operation, beginning after the 2-byte constant. |
| case DW_OP_bra: |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_bra."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); |
| Scalar zero(0); |
| if (tmp.ResolveValue(exe_ctx) != zero) { |
| lldb::offset_t new_offset = offset + bra_offset; |
| if (opcodes.ValidOffset(new_offset)) |
| offset = new_offset; |
| else { |
| if (error_ptr) |
| error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); |
| return false; |
| } |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_eq |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, compares using the |
| // equals (==) operator. |
| // STACK RESULT: push the constant value 1 onto the stack if the result |
| // of the operation is true or the constant value 0 if the result of the |
| // operation is false. |
| case DW_OP_eq: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_eq."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_ge |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, compares using the |
| // greater than or equal to (>=) operator. |
| // STACK RESULT: push the constant value 1 onto the stack if the result |
| // of the operation is true or the constant value 0 if the result of the |
| // operation is false. |
| case DW_OP_ge: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_ge."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_gt |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, compares using the |
| // greater than (>) operator. |
| // STACK RESULT: push the constant value 1 onto the stack if the result |
| // of the operation is true or the constant value 0 if the result of the |
| // operation is false. |
| case DW_OP_gt: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_gt."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_le |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, compares using the |
| // less than or equal to (<=) operator. |
| // STACK RESULT: push the constant value 1 onto the stack if the result |
| // of the operation is true or the constant value 0 if the result of the |
| // operation is false. |
| case DW_OP_le: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_le."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_lt |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, compares using the |
| // less than (<) operator. |
| // STACK RESULT: push the constant value 1 onto the stack if the result |
| // of the operation is true or the constant value 0 if the result of the |
| // operation is false. |
| case DW_OP_lt: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_lt."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_ne |
| // OPERANDS: none |
| // DESCRIPTION: pops the top two stack values, compares using the |
| // not equal (!=) operator. |
| // STACK RESULT: push the constant value 1 onto the stack if the result |
| // of the operation is true or the constant value 0 if the result of the |
| // operation is false. |
| case DW_OP_ne: |
| if (stack.size() < 2) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 2 items for DW_OP_ne."); |
| return false; |
| } else { |
| tmp = stack.back(); |
| stack.pop_back(); |
| stack.back().ResolveValue(exe_ctx) = |
| stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx); |
| } |
| break; |
| |
| // OPCODE: DW_OP_litn |
| // OPERANDS: none |
| // DESCRIPTION: encode the unsigned literal values from 0 through 31. |
| // STACK RESULT: push the unsigned literal constant value onto the top |
| // of the stack. |
| case DW_OP_lit0: |
| case DW_OP_lit1: |
| case DW_OP_lit2: |
| case DW_OP_lit3: |
| case DW_OP_lit4: |
| case DW_OP_lit5: |
| case DW_OP_lit6: |
| case DW_OP_lit7: |
| case DW_OP_lit8: |
| case DW_OP_lit9: |
| case DW_OP_lit10: |
| case DW_OP_lit11: |
| case DW_OP_lit12: |
| case DW_OP_lit13: |
| case DW_OP_lit14: |
| case DW_OP_lit15: |
| case DW_OP_lit16: |
| case DW_OP_lit17: |
| case DW_OP_lit18: |
| case DW_OP_lit19: |
| case DW_OP_lit20: |
| case DW_OP_lit21: |
| case DW_OP_lit22: |
| case DW_OP_lit23: |
| case DW_OP_lit24: |
| case DW_OP_lit25: |
| case DW_OP_lit26: |
| case DW_OP_lit27: |
| case DW_OP_lit28: |
| case DW_OP_lit29: |
| case DW_OP_lit30: |
| case DW_OP_lit31: |
| stack.push_back(to_generic(op - DW_OP_lit0)); |
| break; |
| |
| // OPCODE: DW_OP_regN |
| // OPERANDS: none |
| // DESCRIPTION: Push the value in register n on the top of the stack. |
| case DW_OP_reg0: |
| case DW_OP_reg1: |
| case DW_OP_reg2: |
| case DW_OP_reg3: |
| case DW_OP_reg4: |
| case DW_OP_reg5: |
| case DW_OP_reg6: |
| case DW_OP_reg7: |
| case DW_OP_reg8: |
| case DW_OP_reg9: |
| case DW_OP_reg10: |
| case DW_OP_reg11: |
| case DW_OP_reg12: |
| case DW_OP_reg13: |
| case DW_OP_reg14: |
| case DW_OP_reg15: |
| case DW_OP_reg16: |
| case DW_OP_reg17: |
| case DW_OP_reg18: |
| case DW_OP_reg19: |
| case DW_OP_reg20: |
| case DW_OP_reg21: |
| case DW_OP_reg22: |
| case DW_OP_reg23: |
| case DW_OP_reg24: |
| case DW_OP_reg25: |
| case DW_OP_reg26: |
| case DW_OP_reg27: |
| case DW_OP_reg28: |
| case DW_OP_reg29: |
| case DW_OP_reg30: |
| case DW_OP_reg31: { |
| dwarf4_location_description_kind = Register; |
| reg_num = op - DW_OP_reg0; |
| |
| if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) |
| stack.push_back(tmp); |
| else |
| return false; |
| } break; |
| // OPCODE: DW_OP_regx |
| // OPERANDS: |
| // ULEB128 literal operand that encodes the register. |
| // DESCRIPTION: Push the value in register on the top of the stack. |
| case DW_OP_regx: { |
| dwarf4_location_description_kind = Register; |
| reg_num = opcodes.GetULEB128(&offset); |
| if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) |
| stack.push_back(tmp); |
| else |
| return false; |
| } break; |
| |
| // OPCODE: DW_OP_bregN |
| // OPERANDS: |
| // SLEB128 offset from register N |
| // DESCRIPTION: Value is in memory at the address specified by register |
| // N plus an offset. |
| case DW_OP_breg0: |
| case DW_OP_breg1: |
| case DW_OP_breg2: |
| case DW_OP_breg3: |
| case DW_OP_breg4: |
| case DW_OP_breg5: |
| case DW_OP_breg6: |
| case DW_OP_breg7: |
| case DW_OP_breg8: |
| case DW_OP_breg9: |
| case DW_OP_breg10: |
| case DW_OP_breg11: |
| case DW_OP_breg12: |
| case DW_OP_breg13: |
| case DW_OP_breg14: |
| case DW_OP_breg15: |
| case DW_OP_breg16: |
| case DW_OP_breg17: |
| case DW_OP_breg18: |
| case DW_OP_breg19: |
| case DW_OP_breg20: |
| case DW_OP_breg21: |
| case DW_OP_breg22: |
| case DW_OP_breg23: |
| case DW_OP_breg24: |
| case DW_OP_breg25: |
| case DW_OP_breg26: |
| case DW_OP_breg27: |
| case DW_OP_breg28: |
| case DW_OP_breg29: |
| case DW_OP_breg30: |
| case DW_OP_breg31: { |
| reg_num = op - DW_OP_breg0; |
| |
| if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, |
| tmp)) { |
| int64_t breg_offset = opcodes.GetSLEB128(&offset); |
| tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; |
| tmp.ClearContext(); |
| stack.push_back(tmp); |
| stack.back().SetValueType(Value::ValueType::LoadAddress); |
| } else |
| return false; |
| } break; |
| // OPCODE: DW_OP_bregx |
| // OPERANDS: 2 |
| // ULEB128 literal operand that encodes the register. |
| // SLEB128 offset from register N |
| // DESCRIPTION: Value is in memory at the address specified by register |
| // N plus an offset. |
| case DW_OP_bregx: { |
| reg_num = opcodes.GetULEB128(&offset); |
| |
| if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, |
| tmp)) { |
| int64_t breg_offset = opcodes.GetSLEB128(&offset); |
| tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; |
| tmp.ClearContext(); |
| stack.push_back(tmp); |
| stack.back().SetValueType(Value::ValueType::LoadAddress); |
| } else |
| return false; |
| } break; |
| |
| case DW_OP_fbreg: |
| if (exe_ctx) { |
| if (frame) { |
| Scalar value; |
| if (frame->GetFrameBaseValue(value, error_ptr)) { |
| int64_t fbreg_offset = opcodes.GetSLEB128(&offset); |
| value += fbreg_offset; |
| stack.push_back(value); |
| stack.back().SetValueType(Value::ValueType::LoadAddress); |
| } else |
| return false; |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Invalid stack frame in context for DW_OP_fbreg opcode."); |
| return false; |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "NULL execution context for DW_OP_fbreg.\n"); |
| return false; |
| } |
| |
| break; |
| |
| // OPCODE: DW_OP_nop |
| // OPERANDS: none |
| // DESCRIPTION: A place holder. It has no effect on the location stack |
| // or any of its values. |
| case DW_OP_nop: |
| break; |
| |
| // OPCODE: DW_OP_piece |
| // OPERANDS: 1 |
| // ULEB128: byte size of the piece |
| // DESCRIPTION: The operand describes the size in bytes of the piece of |
| // the object referenced by the DWARF expression whose result is at the top |
| // of the stack. If the piece is located in a register, but does not occupy |
| // the entire register, the placement of the piece within that register is |
| // defined by the ABI. |
| // |
| // Many compilers store a single variable in sets of registers, or store a |
| // variable partially in memory and partially in registers. DW_OP_piece |
| // provides a way of describing how large a part of a variable a particular |
| // DWARF expression refers to. |
| case DW_OP_piece: { |
| LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind; |
| // Reset for the next piece. |
| dwarf4_location_description_kind = Memory; |
| |
| const uint64_t piece_byte_size = opcodes.GetULEB128(&offset); |
| |
| if (piece_byte_size > 0) { |
| Value curr_piece; |
| |
| if (stack.empty()) { |
| UpdateValueTypeFromLocationDescription( |
| log, dwarf_cu, LocationDescriptionKind::Empty); |
| // In a multi-piece expression, this means that the current piece is |
| // not available. Fill with zeros for now by resizing the data and |
| // appending it |
| curr_piece.ResizeData(piece_byte_size); |
| // Note that "0" is not a correct value for the unknown bits. |
| // It would be better to also return a mask of valid bits together |
| // with the expression result, so the debugger can print missing |
| // members as "<optimized out>" or something. |
| ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size); |
| pieces.AppendDataToHostBuffer(curr_piece); |
| } else { |
| Status error; |
| // Extract the current piece into "curr_piece" |
| Value curr_piece_source_value(stack.back()); |
| stack.pop_back(); |
| UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc, |
| &curr_piece_source_value); |
| |
| const Value::ValueType curr_piece_source_value_type = |
| curr_piece_source_value.GetValueType(); |
| switch (curr_piece_source_value_type) { |
| case Value::ValueType::Invalid: |
| return false; |
| case Value::ValueType::LoadAddress: |
| if (process) { |
| if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) { |
| lldb::addr_t load_addr = |
| curr_piece_source_value.GetScalar().ULongLong( |
| LLDB_INVALID_ADDRESS); |
| if (process->ReadMemory( |
| load_addr, curr_piece.GetBuffer().GetBytes(), |
| piece_byte_size, error) != piece_byte_size) { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "failed to read memory DW_OP_piece(%" PRIu64 |
| ") from 0x%" PRIx64, |
| piece_byte_size, load_addr); |
| return false; |
| } |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "failed to resize the piece memory buffer for " |
| "DW_OP_piece(%" PRIu64 ")", |
| piece_byte_size); |
| return false; |
| } |
| } |
| break; |
| |
| case Value::ValueType::FileAddress: |
| case Value::ValueType::HostAddress: |
| if (error_ptr) { |
| lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong( |
| LLDB_INVALID_ADDRESS); |
| error_ptr->SetErrorStringWithFormat( |
| "failed to read memory DW_OP_piece(%" PRIu64 |
| ") from %s address 0x%" PRIx64, |
| piece_byte_size, curr_piece_source_value.GetValueType() == |
| Value::ValueType::FileAddress |
| ? "file" |
| : "host", |
| addr); |
| } |
| return false; |
| |
| case Value::ValueType::Scalar: { |
| uint32_t bit_size = piece_byte_size * 8; |
| uint32_t bit_offset = 0; |
| Scalar &scalar = curr_piece_source_value.GetScalar(); |
| if (!scalar.ExtractBitfield( |
| bit_size, bit_offset)) { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "unable to extract %" PRIu64 " bytes from a %" PRIu64 |
| " byte scalar value.", |
| piece_byte_size, |
| (uint64_t)curr_piece_source_value.GetScalar() |
| .GetByteSize()); |
| return false; |
| } |
| // Create curr_piece with bit_size. By default Scalar |
| // grows to the nearest host integer type. |
| llvm::APInt fail_value(1, 0, false); |
| llvm::APInt ap_int = scalar.UInt128(fail_value); |
| assert(ap_int.getBitWidth() >= bit_size); |
| llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(), |
| ap_int.getNumWords()}; |
| curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf)); |
| } break; |
| } |
| |
| // Check if this is the first piece? |
| if (op_piece_offset == 0) { |
| // This is the first piece, we should push it back onto the stack |
| // so subsequent pieces will be able to access this piece and add |
| // to it. |
| if (pieces.AppendDataToHostBuffer(curr_piece) == 0) { |
| if (error_ptr) |
| error_ptr->SetErrorString("failed to append piece data"); |
| return false; |
| } |
| } else { |
| // If this is the second or later piece there should be a value on |
| // the stack. |
| if (pieces.GetBuffer().GetByteSize() != op_piece_offset) { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "DW_OP_piece for offset %" PRIu64 |
| " but top of stack is of size %" PRIu64, |
| op_piece_offset, pieces.GetBuffer().GetByteSize()); |
| return false; |
| } |
| |
| if (pieces.AppendDataToHostBuffer(curr_piece) == 0) { |
| if (error_ptr) |
| error_ptr->SetErrorString("failed to append piece data"); |
| return false; |
| } |
| } |
| } |
| op_piece_offset += piece_byte_size; |
| } |
| } break; |
| |
| case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); |
| if (stack.size() < 1) { |
| UpdateValueTypeFromLocationDescription(log, dwarf_cu, |
| LocationDescriptionKind::Empty); |
| // Reset for the next piece. |
| dwarf4_location_description_kind = Memory; |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_bit_piece."); |
| return false; |
| } else { |
| UpdateValueTypeFromLocationDescription( |
| log, dwarf_cu, dwarf4_location_description_kind, &stack.back()); |
| // Reset for the next piece. |
| dwarf4_location_description_kind = Memory; |
| const uint64_t piece_bit_size = opcodes.GetULEB128(&offset); |
| const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset); |
| switch (stack.back().GetValueType()) { |
| case Value::ValueType::Invalid: |
| return false; |
| case Value::ValueType::Scalar: { |
| if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size, |
| piece_bit_offset)) { |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormat( |
| "unable to extract %" PRIu64 " bit value with %" PRIu64 |
| " bit offset from a %" PRIu64 " bit scalar value.", |
| piece_bit_size, piece_bit_offset, |
| (uint64_t)(stack.back().GetScalar().GetByteSize() * 8)); |
| return false; |
| } |
| } break; |
| |
| case Value::ValueType::FileAddress: |
| case Value::ValueType::LoadAddress: |
| case Value::ValueType::HostAddress: |
| if (error_ptr) { |
| error_ptr->SetErrorStringWithFormat( |
| "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 |
| ", bit_offset = %" PRIu64 ") from an address value.", |
| piece_bit_size, piece_bit_offset); |
| } |
| return false; |
| } |
| } |
| break; |
| |
| // OPCODE: DW_OP_implicit_value |
| // OPERANDS: 2 |
| // ULEB128 size of the value block in bytes |
| // uint8_t* block bytes encoding value in target's memory |
| // representation |
| // DESCRIPTION: Value is immediately stored in block in the debug info with |
| // the memory representation of the target. |
| case DW_OP_implicit_value: { |
| dwarf4_location_description_kind = Implicit; |
| |
| const uint32_t len = opcodes.GetULEB128(&offset); |
| const void *data = opcodes.GetData(&offset, len); |
| |
| if (!data) { |
| LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data"); |
| LLDB_ERRORF(error_ptr, "Could not evaluate %s.", |
| DW_OP_value_to_name(op)); |
| return false; |
| } |
| |
| Value result(data, len); |
| stack.push_back(result); |
| break; |
| } |
| |
| case DW_OP_implicit_pointer: { |
| dwarf4_location_description_kind = Implicit; |
| LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op)); |
| return false; |
| } |
| |
| // OPCODE: DW_OP_push_object_address |
| // OPERANDS: none |
| // DESCRIPTION: Pushes the address of the object currently being |
| // evaluated as part of evaluation of a user presented expression. This |
| // object may correspond to an independent variable described by its own |
| // DIE or it may be a component of an array, structure, or class whose |
| // address has been dynamically determined by an earlier step during user |
| // expression evaluation. |
| case DW_OP_push_object_address: |
| if (object_address_ptr) |
| stack.push_back(*object_address_ptr); |
| else { |
| if (error_ptr) |
| error_ptr->SetErrorString("DW_OP_push_object_address used without " |
| "specifying an object address"); |
| return false; |
| } |
| break; |
| |
| // OPCODE: DW_OP_call2 |
| // OPERANDS: |
| // uint16_t compile unit relative offset of a DIE |
| // DESCRIPTION: Performs subroutine calls during evaluation |
| // of a DWARF expression. The operand is the 2-byte unsigned offset of a |
| // debugging information entry in the current compilation unit. |
| // |
| // Operand interpretation is exactly like that for DW_FORM_ref2. |
| // |
| // This operation transfers control of DWARF expression evaluation to the |
| // DW_AT_location attribute of the referenced DIE. If there is no such |
| // attribute, then there is no effect. Execution of the DWARF expression of |
| // a DW_AT_location attribute may add to and/or remove from values on the |
| // stack. Execution returns to the point following the call when the end of |
| // the attribute is reached. Values on the stack at the time of the call |
| // may be used as parameters by the called expression and values left on |
| // the stack by the called expression may be used as return values by prior |
| // agreement between the calling and called expressions. |
| case DW_OP_call2: |
| if (error_ptr) |
| error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2."); |
| return false; |
| // OPCODE: DW_OP_call4 |
| // OPERANDS: 1 |
| // uint32_t compile unit relative offset of a DIE |
| // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF |
| // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of |
| // a debugging information entry in the current compilation unit. |
| // |
| // Operand interpretation DW_OP_call4 is exactly like that for |
| // DW_FORM_ref4. |
| // |
| // This operation transfers control of DWARF expression evaluation to the |
| // DW_AT_location attribute of the referenced DIE. If there is no such |
| // attribute, then there is no effect. Execution of the DWARF expression of |
| // a DW_AT_location attribute may add to and/or remove from values on the |
| // stack. Execution returns to the point following the call when the end of |
| // the attribute is reached. Values on the stack at the time of the call |
| // may be used as parameters by the called expression and values left on |
| // the stack by the called expression may be used as return values by prior |
| // agreement between the calling and called expressions. |
| case DW_OP_call4: |
| if (error_ptr) |
| error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4."); |
| return false; |
| |
| // OPCODE: DW_OP_stack_value |
| // OPERANDS: None |
| // DESCRIPTION: Specifies that the object does not exist in memory but |
| // rather is a constant value. The value from the top of the stack is the |
| // value to be used. This is the actual object value and not the location. |
| case DW_OP_stack_value: |
| dwarf4_location_description_kind = Implicit; |
| if (stack.empty()) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_stack_value."); |
| return false; |
| } |
| stack.back().SetValueType(Value::ValueType::Scalar); |
| break; |
| |
| // OPCODE: DW_OP_convert |
| // OPERANDS: 1 |
| // A ULEB128 that is either a DIE offset of a |
| // DW_TAG_base_type or 0 for the generic (pointer-sized) type. |
| // |
| // DESCRIPTION: Pop the top stack element, convert it to a |
| // different type, and push the result. |
| case DW_OP_convert: { |
| if (stack.size() < 1) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "Expression stack needs at least 1 item for DW_OP_convert."); |
| return false; |
| } |
| const uint64_t die_offset = opcodes.GetULEB128(&offset); |
| uint64_t bit_size; |
| bool sign; |
| if (die_offset == 0) { |
| // The generic type has the size of an address on the target |
| // machine and an unspecified signedness. Scalar has no |
| // "unspecified signedness", so we use unsigned types. |
| if (!module_sp) { |
| if (error_ptr) |
| error_ptr->SetErrorString("No module"); |
| return false; |
| } |
| sign = false; |
| bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8; |
| if (!bit_size) { |
| if (error_ptr) |
| error_ptr->SetErrorString("unspecified architecture"); |
| return false; |
| } |
| } else { |
| // Retrieve the type DIE that the value is being converted to. |
| // FIXME: the constness has annoying ripple effects. |
| DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset); |
| if (!die) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE"); |
| return false; |
| } |
| uint64_t encoding = |
| die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user); |
| bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8; |
| if (!bit_size) |
| bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0); |
| if (!bit_size) { |
| if (error_ptr) |
| error_ptr->SetErrorString("Unsupported type size in DW_OP_convert"); |
| return false; |
| } |
| switch (encoding) { |
| case DW_ATE_signed: |
| case DW_ATE_signed_char: |
| sign = true; |
| break; |
| case DW_ATE_unsigned: |
| case DW_ATE_unsigned_char: |
| sign = false; |
| break; |
| default: |
| if (error_ptr) |
| error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert"); |
| return false; |
| } |
| } |
| Scalar &top = stack.back().ResolveValue(exe_ctx); |
| top.TruncOrExtendTo(bit_size, sign); |
| break; |
| } |
| |
| // OPCODE: DW_OP_call_frame_cfa |
| // OPERANDS: None |
| // DESCRIPTION: Specifies a DWARF expression that pushes the value of |
| // the canonical frame address consistent with the call frame information |
| // located in .debug_frame (or in the FDEs of the eh_frame section). |
| case DW_OP_call_frame_cfa: |
| if (frame) { |
| // Note that we don't have to parse FDEs because this DWARF expression |
| // is commonly evaluated with a valid stack frame. |
| StackID id = frame->GetStackID(); |
| addr_t cfa = id.GetCallFrameAddress(); |
| if (cfa != LLDB_INVALID_ADDRESS) { |
| stack.push_back(Scalar(cfa)); |
| stack.back().SetValueType(Value::ValueType::LoadAddress); |
| } else if (error_ptr) |
| error_ptr->SetErrorString("Stack frame does not include a canonical " |
| "frame address for DW_OP_call_frame_cfa " |
| "opcode."); |
| } else { |
| if (error_ptr) |
| error_ptr->SetErrorString("Invalid stack frame in context for " |
| "DW_OP_call_frame_cfa opcode."); |
| return false; |
| } |
| break; |
| |
| // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension |
| // opcode, DW_OP_GNU_push_tls_address) |
| // OPERANDS: none |
| // DESCRIPTION: Pops a TLS offset from the stack, converts it to |
| // an address in the current thread's thread-local storage block, and |
| // pushes it on the stack. |
| case DW_OP_form_tls_address: |
| case DW_OP_GNU_push_tls_address: { |
| if (stack.size() < 1) { |
| if (error_ptr) { |
| if (op == DW_OP_form_tls_address) |
| error_ptr->SetErrorString( |
| "DW_OP_form_tls_address needs an argument."); |
| else |
| error_ptr->SetErrorString( |
| "DW_OP_GNU_push_tls_address needs an argument."); |
| } |
| return false; |
| } |
| |
| if (!exe_ctx || !module_sp) { |
| if (error_ptr) |
| error_ptr->SetErrorString("No context to evaluate TLS within."); |
| return false; |
| } |
| |
| Thread *thread = exe_ctx->GetThreadPtr(); |
| if (!thread) { |
| if (error_ptr) |
| error_ptr->SetErrorString("No thread to evaluate TLS within."); |
| return false; |
| } |
| |
| // Lookup the TLS block address for this thread and module. |
| const addr_t tls_file_addr = |
| stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
| const addr_t tls_load_addr = |
| thread->GetThreadLocalData(module_sp, tls_file_addr); |
| |
| if (tls_load_addr == LLDB_INVALID_ADDRESS) { |
| if (error_ptr) |
| error_ptr->SetErrorString( |
| "No TLS data currently exists for this thread."); |
| return false; |
| } |
| |
| stack.back().GetScalar() = tls_load_addr; |
| stack.back().SetValueType(Value::ValueType::LoadAddress); |
| } break; |
| |
| // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.) |
| // OPERANDS: 1 |
| // ULEB128: index to the .debug_addr section |
| // DESCRIPTION: Pushes an address to the stack from the .debug_addr |
| // section with the base address specified by the DW_AT_addr_base attribute |
| // and the 0 based index is the ULEB128 encoded index. |
| case DW_OP_addrx: |
| case DW_OP_GNU_addr_index: { |
| if (!dwarf_cu) { |
| if (error_ptr) |
| error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a " |
| "compile unit being specified"); |
| return false; |
| } |
| uint64_t index = opcodes.GetULEB128(&offset); |
| lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index); |
| stack.push_back(Scalar(value)); |
| stack.back().SetValueType(Value::ValueType::FileAddress); |
| } break; |
| |
| // OPCODE: DW_OP_GNU_const_index |
| // OPERANDS: 1 |
| // ULEB128: index to the .debug_addr section |
| // DESCRIPTION: Pushes an constant with the size of a machine address to |
| // the stack from the .debug_addr section with the base address specified |
| // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128 |
| // encoded index. |
| case DW_OP_GNU_const_index: { |
| if (!dwarf_cu) { |
| if (error_ptr) |
| error_ptr->SetErrorString("DW_OP_GNU_const_index found without a " |
| "compile unit being specified"); |
| return false; |
| } |
| uint64_t index = opcodes.GetULEB128(&offset); |
| lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index); |
| stack.push_back(Scalar(value)); |
| } break; |
| |
| case DW_OP_GNU_entry_value: |
| case DW_OP_entry_value: { |
| if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset, |
| error_ptr, log)) { |
| LLDB_ERRORF(error_ptr, "Could not evaluate %s.", |
| DW_OP_value_to_name(op)); |
| return false; |
| } |
| break; |
| } |
| |
| default: |
| if (error_ptr) |
| error_ptr->SetErrorStringWithFormatv( |
| "Unhandled opcode {0} in DWARFExpression", LocationAtom(op)); |
| return false; |
| } |
| } |
| |
| if (stack.empty()) { |
| // Nothing on the stack, check if we created a piece value from DW_OP_piece |
| // or DW_OP_bit_piece opcodes |
| if (pieces.GetBuffer().GetByteSize()) { |
| result = pieces; |
| return true; |
| } |
| if (error_ptr) |
| error_ptr->SetErrorString("Stack empty after evaluation."); |
| return false; |
| } |
| |
| UpdateValueTypeFromLocationDescription( |
| log, dwarf_cu, dwarf4_location_description_kind, &stack.back()); |
| |
| if (log && log->GetVerbose()) { |
| size_t count = stack.size(); |
| LLDB_LOGF(log, |
| "Stack after operation has %" PRIu64 " values:", (uint64_t)count); |
| for (size_t i = 0; i < count; ++i) { |
| StreamString new_value; |
| new_value.Printf("[%" PRIu64 "]", (uint64_t)i); |
| stack[i].Dump(&new_value); |
| LLDB_LOGF(log, " %s", new_value.GetData()); |
| } |
| } |
| result = stack.back(); |
| return true; // Return true on success |
| } |
| |
| static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc, |
| ByteOrder byte_order, uint32_t addr_size) { |
| auto buffer_sp = |
| std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size()); |
| return DataExtractor(buffer_sp, byte_order, addr_size); |
| } |
| |
| llvm::Optional<DataExtractor> |
| DWARFExpression::GetLocationExpression(addr_t load_function_start, |
| addr_t addr) const { |
| Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS); |
| |
| std::unique_ptr<llvm::DWARFLocationTable> loctable_up = |
| m_dwarf_cu->GetLocationTable(m_data); |
| llvm::Optional<DataExtractor> result; |
| uint64_t offset = 0; |
| auto lookup_addr = |
| [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> { |
| addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index); |
| if (address == LLDB_INVALID_ADDRESS) |
| return llvm::None; |
| return llvm::object::SectionedAddress{address}; |
| }; |
| auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) { |
| if (!loc) { |
| LLDB_LOG_ERROR(log, loc.takeError(), "{0}"); |
| return true; |
| } |
| if (loc->Range) { |
| // This relocates low_pc and high_pc by adding the difference between the |
| // function file address, and the actual address it is loaded in memory. |
| addr_t slide = load_function_start - m_loclist_addresses->func_file_addr; |
| loc->Range->LowPC += slide; |
| loc->Range->HighPC += slide; |
| |
| if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC) |
| result = ToDataExtractor(*loc, m_data.GetByteOrder(), |
| m_data.GetAddressByteSize()); |
| } |
| return !result; |
| }; |
| llvm::Error E = loctable_up->visitAbsoluteLocationList( |
| offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, |
| lookup_addr, process_list); |
| if (E) |
| LLDB_LOG_ERROR(log, std::move(E), "{0}"); |
| return result; |
| } |
| |
| bool DWARFExpression::MatchesOperand(StackFrame &frame, |
| const Instruction::Operand &operand) { |
| using namespace OperandMatchers; |
| |
| RegisterContextSP reg_ctx_sp = frame.GetRegisterContext(); |
| if (!reg_ctx_sp) { |
| return false; |
| } |
| |
| DataExtractor opcodes; |
| if (IsLocationList()) { |
| SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction); |
| if (!sc.function) |
| return false; |
| |
| addr_t load_function_start = |
| sc.function->GetAddressRange().GetBaseAddress().GetFileAddress(); |
| if (load_function_start == LLDB_INVALID_ADDRESS) |
| return false; |
| |
| addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress( |
| frame.CalculateTarget().get()); |
| |
| if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc)) |
| opcodes = std::move(*expr); |
| else |
| return false; |
| } else |
| opcodes = m_data; |
| |
| |
| lldb::offset_t op_offset = 0; |
| uint8_t opcode = opcodes.GetU8(&op_offset); |
| |
| if (opcode == DW_OP_fbreg) { |
| int64_t offset = opcodes.GetSLEB128(&op_offset); |
| |
| DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr); |
| if (!fb_expr) { |
| return false; |
| } |
| |
| auto recurse = [&frame, fb_expr](const Instruction::Operand &child) { |
| return fb_expr->MatchesOperand(frame, child); |
| }; |
| |
| if (!offset && |
| MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference), |
| recurse)(operand)) { |
| return true; |
| } |
| |
| return MatchUnaryOp( |
| MatchOpType(Instruction::Operand::Type::Dereference), |
| MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum), |
| MatchImmOp(offset), recurse))(operand); |
| } |
| |
| bool dereference = false; |
| const RegisterInfo *reg = nullptr; |
| int64_t offset = 0; |
| |
| if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) { |
| reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0); |
| } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) { |
| offset = opcodes.GetSLEB128(&op_offset); |
| reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0); |
| } else if (opcode == DW_OP_regx) { |
| uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset)); |
| reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num); |
| } else if (opcode == DW_OP_bregx) { |
| uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset)); |
| offset = opcodes.GetSLEB128(&op_offset); |
| reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num); |
| } else { |
| return false; |
| } |
| |
| if (!reg) { |
| return false; |
| } |
| |
| if (dereference) { |
| if (!offset && |
| MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference), |
| MatchRegOp(*reg))(operand)) { |
| return true; |
| } |
| |
| return MatchUnaryOp( |
| MatchOpType(Instruction::Operand::Type::Dereference), |
| MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum), |
| MatchRegOp(*reg), |
| MatchImmOp(offset)))(operand); |
| } else { |
| return MatchRegOp(*reg)(operand); |
| } |
| } |
| |