blob: b6898d4e854e98a5226521d8201cf0ca5d2bbc4b [file] [log] [blame]
//===-- flang/unittests/RuntimeGTest/Time.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "flang/Runtime/time-intrinsic.h"
#include <algorithm>
#include <cctype>
#include <charconv>
#include <string>
using namespace Fortran::runtime;
TEST(TimeIntrinsics, CpuTime) {
// We can't really test that we get the "right" result for CPU_TIME, but we
// can have a smoke test to see that we get something reasonable on the
// platforms where we expect to support it.
double start{RTNAME(CpuTime)()};
ASSERT_GE(start, 0.0);
// Loop until we get a different value from CpuTime. If we don't get one
// before we time out, then we should probably look into an implementation
// for CpuTime with a better timer resolution.
for (double end = start; end == start; end = RTNAME(CpuTime)()) {
ASSERT_GE(end, 0.0);
ASSERT_GE(end, start);
}
}
using count_t = std::int64_t;
TEST(TimeIntrinsics, SystemClock) {
// We can't really test that we get the "right" result for SYSTEM_CLOCK, but
// we can have a smoke test to see that we get something reasonable on the
// platforms where we expect to support it.
// The value of the count rate and max will vary by platform, but they should
// always be strictly positive if we have a working implementation of
// SYSTEM_CLOCK.
EXPECT_GT(RTNAME(SystemClockCountRate)(), 0);
count_t max1{RTNAME(SystemClockCountMax)(1)};
EXPECT_GT(max1, 0);
EXPECT_LE(max1, static_cast<count_t>(0x7f));
count_t start1{RTNAME(SystemClockCount)(1)};
EXPECT_GE(start1, 0);
EXPECT_LE(start1, max1);
count_t max2{RTNAME(SystemClockCountMax)(2)};
EXPECT_GT(max2, 0);
EXPECT_LE(max2, static_cast<count_t>(0x7fff));
count_t start2{RTNAME(SystemClockCount)(2)};
EXPECT_GE(start2, 0);
EXPECT_LE(start2, max2);
count_t max4{RTNAME(SystemClockCountMax)(4)};
EXPECT_GT(max4, 0);
EXPECT_LE(max4, static_cast<count_t>(0x7fffffff));
count_t start4{RTNAME(SystemClockCount)(4)};
EXPECT_GE(start4, 0);
EXPECT_LE(start4, max4);
count_t max8{RTNAME(SystemClockCountMax)(8)};
EXPECT_GT(max8, 0);
count_t start8{RTNAME(SystemClockCount)(8)};
EXPECT_GE(start8, 0);
EXPECT_LT(start8, max8);
count_t max16{RTNAME(SystemClockCountMax)(16)};
EXPECT_GT(max16, 0);
count_t start16{RTNAME(SystemClockCount)(16)};
EXPECT_GE(start16, 0);
EXPECT_LT(start16, max16);
// Loop until we get a different value from SystemClockCount. If we don't get
// one before we time out, then we should probably look into an implementation
// for SystemClokcCount with a better timer resolution on this platform.
for (count_t end{start8}; end == start8; end = RTNAME(SystemClockCount)(8)) {
EXPECT_GE(end, 0);
EXPECT_LE(end, max8);
EXPECT_GE(end, start8);
}
}
TEST(TimeIntrinsics, DateAndTime) {
constexpr std::size_t bufferSize{16};
std::string date(bufferSize, 'Z'), time(bufferSize, 'Z'),
zone(bufferSize, 'Z');
RTNAME(DateAndTime)
(date.data(), date.size(), time.data(), time.size(), zone.data(), zone.size(),
/*source=*/nullptr, /*line=*/0, /*values=*/nullptr);
auto isBlank = [](const std::string &s) -> bool {
return std::all_of(
s.begin(), s.end(), [](char c) { return std::isblank(c); });
};
// Validate date is blank or YYYYMMDD.
if (isBlank(date)) {
EXPECT_TRUE(true);
} else {
count_t number{-1};
auto [_, ec]{
std::from_chars(date.data(), date.data() + date.size(), number)};
ASSERT_TRUE(ec != std::errc::invalid_argument &&
ec != std::errc::result_out_of_range);
EXPECT_GE(number, 0);
auto year = number / 10000;
auto month = (number - year * 10000) / 100;
auto day = number % 100;
// Do not assume anything about the year, the test could be
// run on system with fake/outdated dates.
EXPECT_LE(month, 12);
EXPECT_GT(month, 0);
EXPECT_LE(day, 31);
EXPECT_GT(day, 0);
}
// Validate time is hhmmss.sss or blank.
if (isBlank(time)) {
EXPECT_TRUE(true);
} else {
count_t number{-1};
auto [next, ec]{
std::from_chars(time.data(), time.data() + date.size(), number)};
ASSERT_TRUE(ec != std::errc::invalid_argument &&
ec != std::errc::result_out_of_range);
ASSERT_GE(number, 0);
auto hours = number / 10000;
auto minutes = (number - hours * 10000) / 100;
auto seconds = number % 100;
EXPECT_LE(hours, 23);
EXPECT_LE(minutes, 59);
// Accept 60 for leap seconds.
EXPECT_LE(seconds, 60);
ASSERT_TRUE(next != time.data() + time.size());
EXPECT_EQ(*next, '.');
count_t milliseconds{-1};
ASSERT_TRUE(next + 1 != time.data() + time.size());
auto [_, ec2]{
std::from_chars(next + 1, time.data() + date.size(), milliseconds)};
ASSERT_TRUE(ec2 != std::errc::invalid_argument &&
ec2 != std::errc::result_out_of_range);
EXPECT_GE(milliseconds, 0);
EXPECT_LE(milliseconds, 999);
}
// Validate zone is +hhmm or -hhmm or blank.
if (isBlank(zone)) {
EXPECT_TRUE(true);
} else {
ASSERT_TRUE(zone.size() > 1);
EXPECT_TRUE(zone[0] == '+' || zone[0] == '-');
count_t number{-1};
auto [next, ec]{
std::from_chars(zone.data() + 1, zone.data() + zone.size(), number)};
ASSERT_TRUE(ec != std::errc::invalid_argument &&
ec != std::errc::result_out_of_range);
ASSERT_GE(number, 0);
auto hours = number / 100;
auto minutes = number % 100;
EXPECT_LE(hours, 23);
EXPECT_LE(minutes, 59);
}
}