blob: dc3d8030caa47da6ab8cca95bb119113e99206fd [file] [log] [blame]
//===-- Shared memory RPC server instantiation ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is intended to be used externally as part of the `shared/`
// interface. For that purpose, we manually define a few options normally
// handled by the libc build system.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_RPC_RPC_SERVER_H
#define LLVM_LIBC_SRC___SUPPORT_RPC_RPC_SERVER_H
// Workaround for missing __has_builtin in < GCC 10.
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
// Workaround for missing __builtin_is_constant_evaluated in < GCC 10.
#ifndef __builtin_is_constant_evaluated
#define __builtin_is_constant_evaluated(x) 0
#endif
// Configs for using the LLVM libc writer interface.
#define LIBC_COPT_USE_C_ASSERT
#define LIBC_COPT_MEMCPY_USE_EMBEDDED_TINY
#define LIBC_COPT_ARRAY_ARG_LIST
#define LIBC_COPT_PRINTF_DISABLE_WRITE_INT
#define LIBC_COPT_PRINTF_DISABLE_INDEX_MODE
#define LIBC_COPT_PRINTF_DISABLE_STRERROR
// The 'long double' type is 8 bytes.
#define LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64
#include "shared/rpc.h"
#include "shared/rpc_opcodes.h"
#include "src/__support/arg_list.h"
#include "src/stdio/printf_core/converter.h"
#include "src/stdio/printf_core/parser.h"
#include "src/stdio/printf_core/writer.h"
#include "hdr/stdio_overlay.h"
#include "hdr/stdlib_overlay.h"
namespace LIBC_NAMESPACE_DECL {
namespace internal {
// Minimal replacement for 'std::vector' that works for trivial types.
template <typename T> class TempVector {
static_assert(cpp::is_trivially_constructible<T>::value &&
cpp::is_trivially_destructible<T>::value,
"Not a trivial type.");
T *data;
size_t current;
size_t capacity;
public:
LIBC_INLINE TempVector() : data(nullptr), current(0), capacity(0) {}
LIBC_INLINE ~TempVector() { free(data); }
LIBC_INLINE void push_back(const T &value) {
if (current == capacity)
grow();
data[current] = T(value);
++current;
}
LIBC_INLINE void push_back(T &&value) {
if (current == capacity)
grow();
data[current] = T(static_cast<T &&>(value));
++current;
}
LIBC_INLINE void pop_back() { --current; }
LIBC_INLINE bool empty() { return current == 0; }
LIBC_INLINE size_t size() { return current; }
LIBC_INLINE T &operator[](size_t index) { return data[index]; }
LIBC_INLINE T &back() { return data[current - 1]; }
private:
LIBC_INLINE void grow() {
size_t new_capacity = capacity ? capacity * 2 : 1;
void *new_data = realloc(data, new_capacity * sizeof(T));
data = static_cast<T *>(new_data);
capacity = new_capacity;
}
};
struct TempStorage {
LIBC_INLINE char *alloc(size_t size) {
storage.push_back(reinterpret_cast<char *>(malloc(size)));
return storage.back();
}
LIBC_INLINE ~TempStorage() {
for (size_t i = 0; i < storage.size(); ++i)
free(storage[i]);
}
TempVector<char *> storage;
};
// Get the associated stream out of an encoded number.
LIBC_INLINE static ::FILE *to_stream(uintptr_t f) {
enum Stream {
File = 0,
Stdin = 1,
Stdout = 2,
Stderr = 3,
};
::FILE *stream = reinterpret_cast<FILE *>(f & ~0x3ull);
Stream type = static_cast<Stream>(f & 0x3ull);
if (type == Stdin)
return stdin;
if (type == Stdout)
return stdout;
if (type == Stderr)
return stderr;
return stream;
}
template <bool packed, uint32_t num_lanes>
LIBC_INLINE static void handle_printf(rpc::Server::Port &port,
TempStorage &temp_storage) {
FILE *files[num_lanes] = {nullptr};
// Get the appropriate output stream to use.
if (port.get_opcode() == LIBC_PRINTF_TO_STREAM ||
port.get_opcode() == LIBC_PRINTF_TO_STREAM_PACKED) {
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
} else if (port.get_opcode() == LIBC_PRINTF_TO_STDOUT ||
port.get_opcode() == LIBC_PRINTF_TO_STDOUT_PACKED) {
for (uint32_t i = 0; i < num_lanes; ++i)
files[i] = stdout;
} else {
for (uint32_t i = 0; i < num_lanes; ++i)
files[i] = stderr;
}
uint64_t format_sizes[num_lanes] = {0};
void *format[num_lanes] = {nullptr};
uint64_t args_sizes[num_lanes] = {0};
void *args[num_lanes] = {nullptr};
// Recieve the format string and arguments from the client.
port.recv_n(format, format_sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
// Parse the format string to get the expected size of the buffer.
for (uint32_t lane = 0; lane < num_lanes; ++lane) {
if (!format[lane])
continue;
printf_core::WriteBuffer<
printf_core::WriteMode::FILL_BUFF_AND_DROP_OVERFLOW>
wb(nullptr, 0);
printf_core::Writer writer(wb);
internal::DummyArgList<packed> printf_args;
printf_core::Parser<internal::DummyArgList<packed> &> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
for (printf_core::FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section())
;
args_sizes[lane] = printf_args.read_count();
}
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = args_sizes[id];
});
port.recv_n(args, args_sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
// Identify any arguments that are actually pointers to strings on the client.
// Additionally we want to determine how much buffer space we need to print.
TempVector<void *> strs_to_copy[num_lanes];
int buffer_size[num_lanes] = {0};
for (uint32_t lane = 0; lane < num_lanes; ++lane) {
if (!format[lane])
continue;
printf_core::WriteBuffer<
printf_core::WriteMode::FILL_BUFF_AND_DROP_OVERFLOW>
wb(nullptr, 0);
printf_core::Writer writer(wb);
internal::StructArgList<packed> printf_args(args[lane], args_sizes[lane]);
printf_core::Parser<internal::StructArgList<packed>> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
for (printf_core::FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section()) {
if (cur_section.has_conv && cur_section.conv_name == 's' &&
cur_section.conv_val_ptr) {
strs_to_copy[lane].push_back(cur_section.conv_val_ptr);
// Get the minimum size of the string in the case of padding.
char c = '\0';
cur_section.conv_val_ptr = &c;
convert(&writer, cur_section);
} else if (cur_section.has_conv) {
// Ignore conversion errors for the first pass.
convert(&writer, cur_section);
} else {
writer.write(cur_section.raw_string);
}
}
buffer_size[lane] = writer.get_chars_written();
}
// Recieve any strings from the client and push them into a buffer.
TempVector<void *> copied_strs[num_lanes];
auto HasPendingCopies = [](TempVector<void *> v[num_lanes]) {
for (uint32_t i = 0; i < num_lanes; ++i)
if (!v[i].empty() && v[i].back())
return true;
return false;
};
while (HasPendingCopies(strs_to_copy)) {
port.send([&](rpc::Buffer *buffer, uint32_t id) {
void *ptr = !strs_to_copy[id].empty() ? strs_to_copy[id].back() : nullptr;
buffer->data[1] = reinterpret_cast<uintptr_t>(ptr);
if (!strs_to_copy[id].empty())
strs_to_copy[id].pop_back();
});
uint64_t str_sizes[num_lanes] = {0};
void *strs[num_lanes] = {nullptr};
port.recv_n(strs, str_sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
for (uint32_t lane = 0; lane < num_lanes; ++lane) {
if (!strs[lane])
continue;
copied_strs[lane].push_back(strs[lane]);
buffer_size[lane] += str_sizes[lane];
}
}
// Perform the final formatting and printing using the LLVM C library printf.
int results[num_lanes] = {0};
for (uint32_t lane = 0; lane < num_lanes; ++lane) {
if (!format[lane])
continue;
char *buffer = temp_storage.alloc(buffer_size[lane]);
printf_core::WriteBuffer<
printf_core::WriteMode::FILL_BUFF_AND_DROP_OVERFLOW>
wb(buffer, buffer_size[lane]);
printf_core::Writer writer(wb);
internal::StructArgList<packed> printf_args(args[lane], args_sizes[lane]);
printf_core::Parser<internal::StructArgList<packed>> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
// Parse and print the format string using the arguments we copied from
// the client.
int ret = 0;
for (printf_core::FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section()) {
// If this argument was a string we use the memory buffer we copied from
// the client by replacing the raw pointer with the copied one.
if (cur_section.has_conv && cur_section.conv_name == 's') {
if (!copied_strs[lane].empty()) {
cur_section.conv_val_ptr = copied_strs[lane].back();
copied_strs[lane].pop_back();
} else {
cur_section.conv_val_ptr = nullptr;
}
}
if (cur_section.has_conv) {
ret = convert(&writer, cur_section);
if (ret == -1)
break;
} else {
writer.write(cur_section.raw_string);
}
}
results[lane] = static_cast<int>(
fwrite(buffer, 1, writer.get_chars_written(), files[lane]));
if (results[lane] != writer.get_chars_written() || ret == -1)
results[lane] = -1;
}
// Send the final return value and signal completion by setting the string
// argument to null.
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(results[id]);
buffer->data[1] = reinterpret_cast<uintptr_t>(nullptr);
});
}
template <uint32_t num_lanes>
LIBC_INLINE static rpc::Status handle_port_impl(rpc::Server::Port &port) {
TempStorage temp_storage;
switch (port.get_opcode()) {
case LIBC_WRITE_TO_STREAM:
case LIBC_WRITE_TO_STDERR:
case LIBC_WRITE_TO_STDOUT:
case LIBC_WRITE_TO_STDOUT_NEWLINE: {
uint64_t sizes[num_lanes] = {0};
void *strs[num_lanes] = {nullptr};
FILE *files[num_lanes] = {nullptr};
if (port.get_opcode() == LIBC_WRITE_TO_STREAM) {
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
} else {
for (uint32_t i = 0; i < num_lanes; ++i)
files[i] = port.get_opcode() == LIBC_WRITE_TO_STDERR ? stderr : stdout;
}
port.recv_n(strs, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.send([&](rpc::Buffer *buffer, uint32_t id) {
flockfile(files[id]);
buffer->data[0] = fwrite_unlocked(strs[id], 1, sizes[id], files[id]);
if (port.get_opcode() == LIBC_WRITE_TO_STDOUT_NEWLINE &&
buffer->data[0] == sizes[id])
buffer->data[0] += fwrite_unlocked("\n", 1, 1, files[id]);
funlockfile(files[id]);
});
break;
}
case LIBC_READ_FROM_STREAM: {
uint64_t sizes[num_lanes] = {0};
void *data[num_lanes] = {nullptr};
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = temp_storage.alloc(buffer->data[0]);
sizes[id] =
fread(data[id], 1, buffer->data[0], to_stream(buffer->data[1]));
});
port.send_n(data, sizes);
port.send([&](rpc::Buffer *buffer, uint32_t id) {
__builtin_memcpy(buffer->data, &sizes[id], sizeof(uint64_t));
});
break;
}
case LIBC_READ_FGETS: {
uint64_t sizes[num_lanes] = {0};
void *data[num_lanes] = {nullptr};
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = temp_storage.alloc(buffer->data[0]);
const char *str = ::fgets(reinterpret_cast<char *>(data[id]),
static_cast<int>(buffer->data[0]),
to_stream(buffer->data[1]));
sizes[id] = !str ? 0 : __builtin_strlen(str) + 1;
});
port.send_n(data, sizes);
break;
}
case LIBC_OPEN_FILE: {
uint64_t sizes[num_lanes] = {0};
void *paths[num_lanes] = {nullptr};
port.recv_n(paths, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = fopen(reinterpret_cast<char *>(paths[id]),
reinterpret_cast<char *>(buffer->data));
buffer->data[0] = reinterpret_cast<uintptr_t>(file);
});
break;
}
case LIBC_CLOSE_FILE: {
port.recv_and_send([&](rpc::Buffer *buffer, uint32_t) {
FILE *file = reinterpret_cast<FILE *>(buffer->data[0]);
buffer->data[0] = ::fclose(file);
});
break;
}
case LIBC_EXIT: {
// Send a response to the client to signal that we are ready to exit.
port.recv_and_send([](rpc::Buffer *, uint32_t) {});
port.recv([](rpc::Buffer *buffer, uint32_t) {
int status = 0;
__builtin_memcpy(&status, buffer->data, sizeof(int));
exit(status);
});
break;
}
case LIBC_ABORT: {
// Send a response to the client to signal that we are ready to abort.
port.recv_and_send([](rpc::Buffer *, uint32_t) {});
port.recv([](rpc::Buffer *, uint32_t) {});
abort();
break;
}
case LIBC_HOST_CALL: {
uint64_t sizes[num_lanes] = {0};
unsigned long long results[num_lanes] = {0};
void *args[num_lanes] = {nullptr};
port.recv_n(args, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
using func_ptr_t = unsigned long long (*)(void *);
auto func = reinterpret_cast<func_ptr_t>(buffer->data[0]);
results[id] = func(args[id]);
});
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(results[id]);
});
break;
}
case LIBC_FEOF: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] = feof(to_stream(buffer->data[0]));
});
break;
}
case LIBC_FERROR: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] = ferror(to_stream(buffer->data[0]));
});
break;
}
case LIBC_CLEARERR: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
clearerr(to_stream(buffer->data[0]));
});
break;
}
case LIBC_FSEEK: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] =
fseek(to_stream(buffer->data[0]), static_cast<long>(buffer->data[1]),
static_cast<int>(buffer->data[2]));
});
break;
}
case LIBC_FTELL: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] = ftell(to_stream(buffer->data[0]));
});
break;
}
case LIBC_FFLUSH: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] = fflush(to_stream(buffer->data[0]));
});
break;
}
case LIBC_UNGETC: {
port.recv_and_send([](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] =
ungetc(static_cast<int>(buffer->data[0]), to_stream(buffer->data[1]));
});
break;
}
case LIBC_PRINTF_TO_STREAM_PACKED:
case LIBC_PRINTF_TO_STDOUT_PACKED:
case LIBC_PRINTF_TO_STDERR_PACKED: {
handle_printf<true, num_lanes>(port, temp_storage);
break;
}
case LIBC_PRINTF_TO_STREAM:
case LIBC_PRINTF_TO_STDOUT:
case LIBC_PRINTF_TO_STDERR: {
handle_printf<false, num_lanes>(port, temp_storage);
break;
}
case LIBC_REMOVE: {
uint64_t sizes[num_lanes] = {0};
void *args[num_lanes] = {nullptr};
port.recv_n(args, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
remove(reinterpret_cast<const char *>(args[id])));
});
break;
}
case LIBC_RENAME: {
uint64_t oldsizes[num_lanes] = {0};
uint64_t newsizes[num_lanes] = {0};
void *oldpath[num_lanes] = {nullptr};
void *newpath[num_lanes] = {nullptr};
port.recv_n(oldpath, oldsizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.recv_n(newpath, newsizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
rename(reinterpret_cast<const char *>(oldpath[id]),
reinterpret_cast<const char *>(newpath[id])));
});
break;
}
case LIBC_SYSTEM: {
uint64_t sizes[num_lanes] = {0};
void *args[num_lanes] = {nullptr};
port.recv_n(args, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
system(reinterpret_cast<const char *>(args[id])));
});
break;
}
case LIBC_NOOP: {
port.recv([](rpc::Buffer *, uint32_t) {});
break;
}
default:
return rpc::RPC_UNHANDLED_OPCODE;
}
return rpc::RPC_SUCCESS;
}
} // namespace internal
} // namespace LIBC_NAMESPACE_DECL
namespace LIBC_NAMESPACE_DECL {
namespace rpc {
// Handles any opcode generated from the 'libc' client code.
LIBC_INLINE ::rpc::Status handle_libc_opcodes(::rpc::Server::Port &port,
uint32_t num_lanes) {
switch (num_lanes) {
case 1:
return internal::handle_port_impl<1>(port);
case 32:
return internal::handle_port_impl<32>(port);
case 64:
return internal::handle_port_impl<64>(port);
default:
return ::rpc::RPC_ERROR;
}
}
} // namespace rpc
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_RPC_RPC_SERVER_H