blob: ea730eb46422d687dc26e6ec0762c704e9432f06 [file] [log] [blame]
//===- Value.cpp - MLIR Value Classes -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Value.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace mlir;
using namespace mlir::detail;
/// If this value is the result of an Operation, return the operation that
/// defines it.
Operation *Value::getDefiningOp() const {
if (auto result = dyn_cast<OpResult>())
return result.getOwner();
return nullptr;
}
Location Value::getLoc() const {
if (auto *op = getDefiningOp())
return op->getLoc();
return cast<BlockArgument>().getLoc();
}
void Value::setLoc(Location loc) {
if (auto *op = getDefiningOp())
return op->setLoc(loc);
return cast<BlockArgument>().setLoc(loc);
}
/// Return the Region in which this Value is defined.
Region *Value::getParentRegion() {
if (auto *op = getDefiningOp())
return op->getParentRegion();
return cast<BlockArgument>().getOwner()->getParent();
}
/// Return the Block in which this Value is defined.
Block *Value::getParentBlock() {
if (Operation *op = getDefiningOp())
return op->getBlock();
return cast<BlockArgument>().getOwner();
}
//===----------------------------------------------------------------------===//
// Value::UseLists
//===----------------------------------------------------------------------===//
/// Replace all uses of 'this' value with the new value, updating anything in
/// the IR that uses 'this' to use the other value instead except if the user is
/// listed in 'exceptions' .
void Value::replaceAllUsesExcept(
Value newValue, const SmallPtrSetImpl<Operation *> &exceptions) const {
for (OpOperand &use : llvm::make_early_inc_range(getUses())) {
if (exceptions.count(use.getOwner()) == 0)
use.set(newValue);
}
}
/// Replace all uses of 'this' value with 'newValue', updating anything in the
/// IR that uses 'this' to use the other value instead except if the user is
/// 'exceptedUser'.
void Value::replaceAllUsesExcept(Value newValue,
Operation *exceptedUser) const {
for (OpOperand &use : llvm::make_early_inc_range(getUses())) {
if (use.getOwner() != exceptedUser)
use.set(newValue);
}
}
/// Replace all uses of 'this' value with 'newValue' if the given callback
/// returns true.
void Value::replaceUsesWithIf(Value newValue,
function_ref<bool(OpOperand &)> shouldReplace) {
for (OpOperand &use : llvm::make_early_inc_range(getUses()))
if (shouldReplace(use))
use.set(newValue);
}
/// Returns true if the value is used outside of the given block.
bool Value::isUsedOutsideOfBlock(Block *block) {
return llvm::any_of(getUsers(), [block](Operation *user) {
return user->getBlock() != block;
});
}
//===----------------------------------------------------------------------===//
// OpResult
//===----------------------------------------------------------------------===//
/// Returns the parent operation of this trailing result.
Operation *OpResultImpl::getOwner() const {
// We need to do some arithmetic to get the operation pointer. Results are
// stored in reverse order before the operation, so move the trailing owner up
// to the start of the array. A rough diagram of the memory layout is:
//
// | Out-of-Line results | Inline results | Operation |
//
// Given that the results are reverse order we use the result number to know
// how far to jump to get to the operation. So if we are currently the 0th
// result, the layout would be:
//
// | Inline result 0 | Operation
//
// ^-- To get the base address of the operation, we add the result count + 1.
if (const auto *result = dyn_cast<InlineOpResult>(this)) {
result += result->getResultNumber() + 1;
return reinterpret_cast<Operation *>(const_cast<InlineOpResult *>(result));
}
// Out-of-line results are stored in an array just before the inline results.
const OutOfLineOpResult *outOfLineIt = (const OutOfLineOpResult *)(this);
outOfLineIt += (outOfLineIt->outOfLineIndex + 1);
// Move the owner past the inline results to get to the operation.
const auto *inlineIt = reinterpret_cast<const InlineOpResult *>(outOfLineIt);
inlineIt += getMaxInlineResults();
return reinterpret_cast<Operation *>(const_cast<InlineOpResult *>(inlineIt));
}
OpResultImpl *OpResultImpl::getNextResultAtOffset(intptr_t offset) {
if (offset == 0)
return this;
// We need to do some arithmetic to get the next result given that results are
// in reverse order, and that we need to account for the different types of
// results. As a reminder, the rough diagram of the memory layout is:
//
// | Out-of-Line results | Inline results | Operation |
//
// So an example operation with two results would look something like:
//
// | Inline result 1 | Inline result 0 | Operation |
//
// Handle the case where this result is an inline result.
OpResultImpl *result = this;
if (auto *inlineResult = dyn_cast<InlineOpResult>(this)) {
// Check to see how many results there are after this one before the start
// of the out-of-line results. If the desired offset is less than the number
// remaining, we can directly use the offset from the current result
// pointer. The following diagrams highlight the two situations.
//
// | Out-of-Line results | Inline results | Operation |
// ^- Say we are here.
// ^- If our destination is here, we can use the
// offset directly.
//
intptr_t leftBeforeTrailing =
getMaxInlineResults() - inlineResult->getResultNumber() - 1;
if (leftBeforeTrailing >= offset)
return inlineResult - offset;
// Otherwise, adjust the current result pointer to the end (start in memory)
// of the inline result array.
//
// | Out-of-Line results | Inline results | Operation |
// ^- Say we are here.
// ^- If our destination is here, we need to first jump to
// the end (start in memory) of the inline result array.
//
result = inlineResult - leftBeforeTrailing;
offset -= leftBeforeTrailing;
}
// If we land here, the current result is an out-of-line result and we can
// offset directly.
return reinterpret_cast<OutOfLineOpResult *>(result) - offset;
}
/// Given a number of operation results, returns the number that need to be
/// stored inline.
unsigned OpResult::getNumInline(unsigned numResults) {
return std::min(numResults, OpResultImpl::getMaxInlineResults());
}
/// Given a number of operation results, returns the number that need to be
/// stored as trailing.
unsigned OpResult::getNumTrailing(unsigned numResults) {
// If we can pack all of the results, there is no need for additional storage.
unsigned maxInline = OpResultImpl::getMaxInlineResults();
return numResults <= maxInline ? 0 : numResults - maxInline;
}
//===----------------------------------------------------------------------===//
// BlockOperand
//===----------------------------------------------------------------------===//
/// Provide the use list that is attached to the given block.
IRObjectWithUseList<BlockOperand> *BlockOperand::getUseList(Block *value) {
return value;
}
/// Return which operand this is in the operand list.
unsigned BlockOperand::getOperandNumber() {
return this - &getOwner()->getBlockOperands()[0];
}
//===----------------------------------------------------------------------===//
// OpOperand
//===----------------------------------------------------------------------===//
/// Return which operand this is in the operand list.
unsigned OpOperand::getOperandNumber() {
return this - &getOwner()->getOpOperands()[0];
}