[BOLT] Explicitly check for returns when extending call continuation profile (#143295)

Call continuation logic relies on assumptions about fall-through origin:
- the branch is external to the function,
- fall-through start is at the beginning of the block,
- the block is not an entry point or a landing pad.

Leverage trace information to explicitly check whether the origin is a
return instruction, and defer to checks above only in case of
DSO-external branch source.

This covers both regular and BAT cases, addressing call continuation
fall-through undercounting in the latter mode, which improves BAT
profile quality metrics. For example, for one large binary:
- CFG discontinuity 21.83% -> 0.00%,
- CFG flow imbalance 10.77%/100.00% -> 3.40%/13.82% (weighted/worst)
- CG flow imbalance 8.49% —> 8.49%.

Depends on #143289.

Test Plan: updated callcont-fallthru.s
3 files changed
tree: 415dfa32b84dd0c8632e9cf68aa6bd31cbaab7f0
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-format-ignore
  30. .clang-tidy
  31. .git-blame-ignore-revs
  32. .gitattributes
  33. .gitignore
  34. .mailmap
  35. CODE_OF_CONDUCT.md
  36. CONTRIBUTING.md
  37. LICENSE.TXT
  38. pyproject.toml
  39. README.md
  40. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.