| //===- ParallelLoopTiling.cpp - Tiles scf.parallel ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements loop tiling on parallel loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PassDetail.h" |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
| #include "mlir/Dialect/SCF/Passes.h" |
| #include "mlir/Dialect/SCF/SCF.h" |
| #include "mlir/Dialect/SCF/Transforms.h" |
| #include "mlir/Dialect/SCF/Utils.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| |
| using namespace mlir; |
| using namespace mlir::scf; |
| |
| /// Tile a parallel loop of the form |
| /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) |
| /// step (%arg4, %arg5) |
| /// |
| /// into |
| /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) |
| /// step (%arg4*tileSize[0], |
| /// %arg5*tileSize[1]) |
| /// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0) |
| /// min(%arg5*tileSize[1], %arg3-%i1)) |
| /// step (%arg4, %arg5) |
| /// |
| /// or, when no-min-max-bounds is true, into |
| /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) |
| /// step (%arg4*tileSize[0], |
| /// %arg5*tileSize[1]) |
| /// scf.parallel (%j0, %j1) = (0, 0) to (%arg4*tileSize[0], |
| /// %arg5*tileSize[1]) |
| /// step (%arg4, %arg5) |
| /// %inbound = (%j0 * %arg4 + %i0 < %arg2) && |
| /// (%j1 * %arg5 + %i1 < %arg3) |
| /// scf.if (%inbound) |
| /// .... |
| /// |
| /// where the uses of %i0 and %i1 in the loop body are replaced by |
| /// %i0 + j0 and %i1 + %j1. |
| // |
| /// The old loop is replaced with the new one. |
| std::pair<ParallelOp, ParallelOp> |
| mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes, |
| bool noMinMaxBounds) { |
| OpBuilder b(op); |
| auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0); |
| SmallVector<Value, 2> tileSizeConstants; |
| tileSizeConstants.reserve(op.upperBound().size()); |
| for (size_t i = 0, end = op.upperBound().size(); i != end; ++i) { |
| if (i < tileSizes.size()) |
| tileSizeConstants.push_back( |
| b.create<arith::ConstantIndexOp>(op.getLoc(), tileSizes[i])); |
| else |
| // Just pick 1 for the remaining dimensions. |
| tileSizeConstants.push_back( |
| b.create<arith::ConstantIndexOp>(op.getLoc(), 1)); |
| } |
| |
| // Create the outer loop with adjusted steps. |
| SmallVector<Value, 2> newSteps; |
| newSteps.reserve(op.step().size()); |
| for (auto step : llvm::zip(op.step(), tileSizeConstants)) { |
| newSteps.push_back(b.create<arith::MulIOp>(op.getLoc(), std::get<0>(step), |
| std::get<1>(step))); |
| } |
| auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.lowerBound(), |
| op.upperBound(), newSteps); |
| b.setInsertionPointToStart(outerLoop.getBody()); |
| |
| // Compute min(size, dim - offset) to avoid out-of-bounds accesses. |
| auto minMap = AffineMap::get( |
| /*dimCount=*/3, /*symbolCount=*/0, |
| {getAffineDimExpr(/*position=*/0, b.getContext()), |
| getAffineDimExpr(/*position=*/1, b.getContext()) - |
| getAffineDimExpr(/*position=*/2, b.getContext())}, |
| b.getContext()); |
| |
| // Create the inner loop with adjusted bounds. |
| SmallVector<Value, 2> newBounds; |
| newBounds.reserve(op.upperBound().size()); |
| bool needInboundCheck = false; |
| for (auto dim : llvm::zip(outerLoop.lowerBound(), outerLoop.upperBound(), |
| outerLoop.step(), outerLoop.getInductionVars(), |
| op.step(), tileSizeConstants)) { |
| Value lowerBound, upperBound, newStep, iv, step, tileSizeConstant; |
| std::tie(lowerBound, upperBound, newStep, iv, step, tileSizeConstant) = dim; |
| // Collect the statically known loop bounds |
| auto lowerBoundConstant = |
| dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp()); |
| auto upperBoundConstant = |
| dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp()); |
| auto stepConstant = |
| dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp()); |
| auto tileSize = |
| cast<arith::ConstantIndexOp>(tileSizeConstant.getDefiningOp()).value(); |
| // If the loop bounds and the loop step are constant and if the number of |
| // loop iterations is an integer multiple of the tile size, we use a static |
| // bound for the inner loop. |
| if (lowerBoundConstant && upperBoundConstant && stepConstant) { |
| auto numIterations = llvm::divideCeil(upperBoundConstant.value() - |
| lowerBoundConstant.value(), |
| stepConstant.value()); |
| if (numIterations % tileSize == 0) { |
| newBounds.push_back(newStep); |
| continue; |
| } |
| } |
| |
| // For InboundCheck mode, just use the variable outer step |
| if (noMinMaxBounds) { |
| newBounds.push_back(newStep); |
| needInboundCheck = true; |
| continue; |
| } |
| |
| // Otherwise, we dynamically compute the bound for |
| // each iteration of the outer loop. |
| newBounds.push_back( |
| b.create<AffineMinOp>(op.getLoc(), b.getIndexType(), minMap, |
| ValueRange{newStep, upperBound, iv})); |
| } |
| auto innerLoop = b.create<ParallelOp>( |
| op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds, |
| op.step()); |
| |
| if (noMinMaxBounds && needInboundCheck) { |
| b.setInsertionPointToStart(innerLoop.getBody()); |
| // Insert in-bound check |
| Value inbound = |
| b.create<arith::ConstantIntOp>(op.getLoc(), 1, b.getIntegerType(1)); |
| for (auto dim : |
| llvm::zip(outerLoop.upperBound(), outerLoop.getInductionVars(), |
| innerLoop.getInductionVars(), innerLoop.step())) { |
| Value outerUpperBound, outerIV, innerIV, innerStep; |
| std::tie(outerUpperBound, outerIV, innerIV, innerStep) = dim; |
| // %in_bound = %in_bound && |
| // (%inner_iv * %inner_step + %outer_iv < %outer_upper_bound) |
| Value index = b.create<arith::AddIOp>( |
| op.getLoc(), b.create<arith::MulIOp>(op.getLoc(), innerIV, innerStep), |
| outerIV); |
| Value dimInbound = b.create<arith::CmpIOp>( |
| op.getLoc(), arith::CmpIPredicate::ult, index, outerUpperBound); |
| inbound = b.create<arith::AndIOp>(op.getLoc(), inbound, dimInbound); |
| } |
| auto ifInbound = b.create<IfOp>(op.getLoc(), |
| /*resultTypes*/ ArrayRef<Type>{}, inbound, |
| /*hasElseRegion*/ false); |
| ifInbound.thenRegion().takeBody(op.region()); |
| Block &thenBlock = ifInbound.thenRegion().front(); |
| b.setInsertionPointToStart(innerLoop.getBody()); |
| for (auto ivs : llvm::enumerate(llvm::zip(innerLoop.getInductionVars(), |
| outerLoop.getInductionVars()))) { |
| auto newIndex = b.create<arith::AddIOp>( |
| op.getLoc(), std::get<0>(ivs.value()), std::get<1>(ivs.value())); |
| thenBlock.getArgument(ivs.index()) |
| .replaceAllUsesExcept(newIndex, newIndex); |
| } |
| thenBlock.eraseArguments(llvm::to_vector<4>( |
| llvm::seq((unsigned)0, thenBlock.getNumArguments()))); |
| } else { |
| innerLoop.region().takeBody(op.region()); |
| b.setInsertionPointToStart(innerLoop.getBody()); |
| for (auto ivs : llvm::zip(innerLoop.getInductionVars(), |
| outerLoop.getInductionVars())) { |
| Value innerIndex = std::get<0>(ivs); |
| auto newIndex = b.create<arith::AddIOp>(op.getLoc(), std::get<0>(ivs), |
| std::get<1>(ivs)); |
| innerIndex.replaceAllUsesExcept(newIndex, newIndex); |
| } |
| } |
| |
| op.erase(); |
| return std::make_pair(outerLoop, innerLoop); |
| } |
| |
| namespace { |
| struct ParallelLoopTiling |
| : public SCFParallelLoopTilingBase<ParallelLoopTiling> { |
| ParallelLoopTiling() = default; |
| explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes, |
| bool noMinMaxBounds = false) { |
| this->tileSizes = tileSizes; |
| this->noMinMaxBounds = noMinMaxBounds; |
| } |
| |
| void runOnFunction() override { |
| SmallVector<ParallelOp, 2> innermostPloops; |
| getInnermostParallelLoops(getFunction().getOperation(), innermostPloops); |
| for (ParallelOp ploop : innermostPloops) { |
| // FIXME: Add reduction support. |
| if (ploop.getNumReductions() == 0) |
| tileParallelLoop(ploop, tileSizes, noMinMaxBounds); |
| } |
| } |
| }; |
| } // namespace |
| |
| std::unique_ptr<Pass> |
| mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes, |
| bool noMinMaxBounds) { |
| return std::make_unique<ParallelLoopTiling>(tileSizes, noMinMaxBounds); |
| } |