blob: 48c335f9a777c2cac5139a36b1d7d8e831a9b9cd [file] [log] [blame]
//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as Intel-style
// assembly.
//
//===----------------------------------------------------------------------===//
#include "X86IntelInstPrinter.h"
#include "X86BaseInfo.h"
#include "X86InstComments.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
// Include the auto-generated portion of the assembly writer.
#define PRINT_ALIAS_INSTR
#include "X86GenAsmWriter1.inc"
void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
OS << getRegisterName(RegNo);
}
void X86IntelInstPrinter::printInst(const MCInst *MI, uint64_t Address,
StringRef Annot, const MCSubtargetInfo &STI,
raw_ostream &OS) {
printInstFlags(MI, OS);
// In 16-bit mode, print data16 as data32.
if (MI->getOpcode() == X86::DATA16_PREFIX &&
STI.getFeatureBits()[X86::Mode16Bit]) {
OS << "\tdata32";
} else if (!printAliasInstr(MI, Address, OS) && !printVecCompareInstr(MI, OS))
printInstruction(MI, Address, OS);
// Next always print the annotation.
printAnnotation(OS, Annot);
// If verbose assembly is enabled, we can print some informative comments.
if (CommentStream)
EmitAnyX86InstComments(MI, *CommentStream, MII);
}
bool X86IntelInstPrinter::printVecCompareInstr(const MCInst *MI, raw_ostream &OS) {
if (MI->getNumOperands() == 0 ||
!MI->getOperand(MI->getNumOperands() - 1).isImm())
return false;
int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
// Custom print the vector compare instructions to get the immediate
// translated into the mnemonic.
switch (MI->getOpcode()) {
case X86::CMPPDrmi: case X86::CMPPDrri:
case X86::CMPPSrmi: case X86::CMPPSrri:
case X86::CMPSDrm: case X86::CMPSDrr:
case X86::CMPSDrm_Int: case X86::CMPSDrr_Int:
case X86::CMPSSrm: case X86::CMPSSrr:
case X86::CMPSSrm_Int: case X86::CMPSSrr_Int:
if (Imm >= 0 && Imm <= 7) {
OS << '\t';
printCMPMnemonic(MI, /*IsVCMP*/false, OS);
printOperand(MI, 0, OS);
OS << ", ";
// Skip operand 1 as its tied to the dest.
if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
printdwordmem(MI, 2, OS);
else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
printqwordmem(MI, 2, OS);
else
printxmmwordmem(MI, 2, OS);
} else
printOperand(MI, 2, OS);
return true;
}
break;
case X86::VCMPPDrmi: case X86::VCMPPDrri:
case X86::VCMPPDYrmi: case X86::VCMPPDYrri:
case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri:
case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri:
case X86::VCMPPDZrmi: case X86::VCMPPDZrri:
case X86::VCMPPSrmi: case X86::VCMPPSrri:
case X86::VCMPPSYrmi: case X86::VCMPPSYrri:
case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri:
case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri:
case X86::VCMPPSZrmi: case X86::VCMPPSZrri:
case X86::VCMPSDrm: case X86::VCMPSDrr:
case X86::VCMPSDZrm: case X86::VCMPSDZrr:
case X86::VCMPSDrm_Int: case X86::VCMPSDrr_Int:
case X86::VCMPSDZrm_Int: case X86::VCMPSDZrr_Int:
case X86::VCMPSSrm: case X86::VCMPSSrr:
case X86::VCMPSSZrm: case X86::VCMPSSZrr:
case X86::VCMPSSrm_Int: case X86::VCMPSSrr_Int:
case X86::VCMPSSZrm_Int: case X86::VCMPSSZrr_Int:
case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
case X86::VCMPPDZrmik: case X86::VCMPPDZrrik:
case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
case X86::VCMPPSZrmik: case X86::VCMPPSZrrik:
case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk:
case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk:
case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik:
case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik:
case X86::VCMPPDZrrib: case X86::VCMPPDZrribk:
case X86::VCMPPSZrrib: case X86::VCMPPSZrribk:
case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk:
case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk:
case X86::VCMPPHZ128rmi: case X86::VCMPPHZ128rri:
case X86::VCMPPHZ256rmi: case X86::VCMPPHZ256rri:
case X86::VCMPPHZrmi: case X86::VCMPPHZrri:
case X86::VCMPSHZrm: case X86::VCMPSHZrr:
case X86::VCMPSHZrm_Int: case X86::VCMPSHZrr_Int:
case X86::VCMPPHZ128rmik: case X86::VCMPPHZ128rrik:
case X86::VCMPPHZ256rmik: case X86::VCMPPHZ256rrik:
case X86::VCMPPHZrmik: case X86::VCMPPHZrrik:
case X86::VCMPSHZrm_Intk: case X86::VCMPSHZrr_Intk:
case X86::VCMPPHZ128rmbi: case X86::VCMPPHZ128rmbik:
case X86::VCMPPHZ256rmbi: case X86::VCMPPHZ256rmbik:
case X86::VCMPPHZrmbi: case X86::VCMPPHZrmbik:
case X86::VCMPPHZrrib: case X86::VCMPPHZrribk:
case X86::VCMPSHZrrb_Int: case X86::VCMPSHZrrb_Intk:
if (Imm >= 0 && Imm <= 31) {
OS << '\t';
printCMPMnemonic(MI, /*IsVCMP*/true, OS);
unsigned CurOp = 0;
printOperand(MI, CurOp++, OS);
if (Desc.TSFlags & X86II::EVEX_K) {
// Print mask operand.
OS << " {";
printOperand(MI, CurOp++, OS);
OS << "}";
}
OS << ", ";
printOperand(MI, CurOp++, OS);
OS << ", ";
if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
if (Desc.TSFlags & X86II::EVEX_B) {
// Broadcast form.
// Load size is word for TA map. Otherwise it is based on W-bit.
if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
assert(!(Desc.TSFlags & X86II::VEX_W) && "Unknown W-bit value!");
printwordmem(MI, CurOp++, OS);
} else if (Desc.TSFlags & X86II::VEX_W) {
printqwordmem(MI, CurOp++, OS);
} else {
printdwordmem(MI, CurOp++, OS);
}
// Print the number of elements broadcasted.
unsigned NumElts;
if (Desc.TSFlags & X86II::EVEX_L2)
NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
else if (Desc.TSFlags & X86II::VEX_L)
NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
else
NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
assert(!(Desc.TSFlags & X86II::VEX_W) && "Unknown W-bit value!");
NumElts *= 2;
}
OS << "{1to" << NumElts << "}";
} else {
if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) {
if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA)
printwordmem(MI, CurOp++, OS);
else
printdwordmem(MI, CurOp++, OS);
} else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) {
assert((Desc.TSFlags & X86II::OpMapMask) != X86II::TA &&
"Unexpected op map!");
printqwordmem(MI, CurOp++, OS);
} else if (Desc.TSFlags & X86II::EVEX_L2) {
printzmmwordmem(MI, CurOp++, OS);
} else if (Desc.TSFlags & X86II::VEX_L) {
printymmwordmem(MI, CurOp++, OS);
} else {
printxmmwordmem(MI, CurOp++, OS);
}
}
} else {
printOperand(MI, CurOp++, OS);
if (Desc.TSFlags & X86II::EVEX_B)
OS << ", {sae}";
}
return true;
}
break;
case X86::VPCOMBmi: case X86::VPCOMBri:
case X86::VPCOMDmi: case X86::VPCOMDri:
case X86::VPCOMQmi: case X86::VPCOMQri:
case X86::VPCOMUBmi: case X86::VPCOMUBri:
case X86::VPCOMUDmi: case X86::VPCOMUDri:
case X86::VPCOMUQmi: case X86::VPCOMUQri:
case X86::VPCOMUWmi: case X86::VPCOMUWri:
case X86::VPCOMWmi: case X86::VPCOMWri:
if (Imm >= 0 && Imm <= 7) {
OS << '\t';
printVPCOMMnemonic(MI, OS);
printOperand(MI, 0, OS);
OS << ", ";
printOperand(MI, 1, OS);
OS << ", ";
if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem)
printxmmwordmem(MI, 2, OS);
else
printOperand(MI, 2, OS);
return true;
}
break;
case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri:
case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri:
case X86::VPCMPBZrmi: case X86::VPCMPBZrri:
case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri:
case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri:
case X86::VPCMPDZrmi: case X86::VPCMPDZrri:
case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri:
case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri:
case X86::VPCMPQZrmi: case X86::VPCMPQZrri:
case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri:
case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri:
case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri:
case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri:
case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri:
case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri:
case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri:
case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri:
case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri:
case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri:
case X86::VPCMPUWZ256rmi: case X86::VPCMPUWZ256rri:
case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri:
case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri:
case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri:
case X86::VPCMPWZrmi: case X86::VPCMPWZrri:
case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik:
case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik:
case X86::VPCMPBZrmik: case X86::VPCMPBZrrik:
case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik:
case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik:
case X86::VPCMPDZrmik: case X86::VPCMPDZrrik:
case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik:
case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik:
case X86::VPCMPQZrmik: case X86::VPCMPQZrrik:
case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik:
case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik:
case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik:
case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik:
case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik:
case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik:
case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik:
case X86::VPCMPWZrmik: case X86::VPCMPWZrrik:
case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk:
case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk:
if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) {
OS << '\t';
printVPCMPMnemonic(MI, OS);
unsigned CurOp = 0;
printOperand(MI, CurOp++, OS);
if (Desc.TSFlags & X86II::EVEX_K) {
// Print mask operand.
OS << " {";
printOperand(MI, CurOp++, OS);
OS << "}";
}
OS << ", ";
printOperand(MI, CurOp++, OS);
OS << ", ";
if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
if (Desc.TSFlags & X86II::EVEX_B) {
// Broadcast form.
// Load size is based on W-bit as only D and Q are supported.
if (Desc.TSFlags & X86II::VEX_W)
printqwordmem(MI, CurOp++, OS);
else
printdwordmem(MI, CurOp++, OS);
// Print the number of elements broadcasted.
unsigned NumElts;
if (Desc.TSFlags & X86II::EVEX_L2)
NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
else if (Desc.TSFlags & X86II::VEX_L)
NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
else
NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
OS << "{1to" << NumElts << "}";
} else {
if (Desc.TSFlags & X86II::EVEX_L2)
printzmmwordmem(MI, CurOp++, OS);
else if (Desc.TSFlags & X86II::VEX_L)
printymmwordmem(MI, CurOp++, OS);
else
printxmmwordmem(MI, CurOp++, OS);
}
} else {
printOperand(MI, CurOp++, OS);
}
return true;
}
break;
}
return false;
}
void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
printRegName(O, Op.getReg());
} else if (Op.isImm()) {
O << formatImm((int64_t)Op.getImm());
} else {
assert(Op.isExpr() && "unknown operand kind in printOperand");
O << "offset ";
Op.getExpr()->print(O, &MAI);
}
}
void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
raw_ostream &O) {
// Do not print the exact form of the memory operand if it references a known
// binary object.
if (SymbolizeOperands && MIA) {
uint64_t Target;
if (MIA->evaluateBranch(*MI, 0, 0, Target))
return;
if (MIA->evaluateMemoryOperandAddress(*MI, /*STI=*/nullptr, 0, 0))
return;
}
const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
// If this has a segment register, print it.
printOptionalSegReg(MI, Op + X86::AddrSegmentReg, O);
O << '[';
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOperand(MI, Op+X86::AddrBaseReg, O);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << '*';
printOperand(MI, Op+X86::AddrIndexReg, O);
NeedPlus = true;
}
if (!DispSpec.isImm()) {
if (NeedPlus) O << " + ";
assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
DispSpec.getExpr()->print(O, &MAI);
} else {
int64_t DispVal = DispSpec.getImm();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
if (NeedPlus) {
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
}
O << formatImm(DispVal);
}
}
O << ']';
}
void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
// If this has a segment register, print it.
printOptionalSegReg(MI, Op + 1, O);
O << '[';
printOperand(MI, Op, O);
O << ']';
}
void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
// DI accesses are always ES-based.
O << "es:[";
printOperand(MI, Op, O);
O << ']';
}
void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &DispSpec = MI->getOperand(Op);
// If this has a segment register, print it.
printOptionalSegReg(MI, Op + 1, O);
O << '[';
if (DispSpec.isImm()) {
O << formatImm(DispSpec.getImm());
} else {
assert(DispSpec.isExpr() && "non-immediate displacement?");
DispSpec.getExpr()->print(O, &MAI);
}
O << ']';
}
void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
raw_ostream &O) {
if (MI->getOperand(Op).isExpr())
return MI->getOperand(Op).getExpr()->print(O, &MAI);
O << formatImm(MI->getOperand(Op).getImm() & 0xff);
}
void X86IntelInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &OS) {
const MCOperand &Op = MI->getOperand(OpNo);
unsigned Reg = Op.getReg();
// Override the default printing to print st(0) instead st.
if (Reg == X86::ST0)
OS << "st(0)";
else
printRegName(OS, Reg);
}