blob: 3d5f9bc54731eedcc6feba18d68492636358a049 [file] [log] [blame]
//===-- RISCVInstrInfoV.td - RISC-V 'V' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file describes the RISC-V instructions from the standard 'V' Vector
/// extension, version 0.10.
/// This version is still experimental as the 'V' extension hasn't been
/// ratified yet.
///
//===----------------------------------------------------------------------===//
include "RISCVInstrFormatsV.td"
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
def VTypeIAsmOperand : AsmOperandClass {
let Name = "VTypeI";
let ParserMethod = "parseVTypeI";
let DiagnosticType = "InvalidVTypeI";
}
def VTypeIOp : Operand<XLenVT> {
let ParserMatchClass = VTypeIAsmOperand;
let PrintMethod = "printVTypeI";
let DecoderMethod = "decodeUImmOperand<11>";
}
def VMaskAsmOperand : AsmOperandClass {
let Name = "RVVMaskRegOpOperand";
let RenderMethod = "addRegOperands";
let PredicateMethod = "isV0Reg";
let ParserMethod = "parseMaskReg";
let IsOptional = 1;
let DefaultMethod = "defaultMaskRegOp";
let DiagnosticType = "InvalidVMaskRegister";
}
def VMaskOp : RegisterOperand<VMV0> {
let ParserMatchClass = VMaskAsmOperand;
let PrintMethod = "printVMaskReg";
let EncoderMethod = "getVMaskReg";
let DecoderMethod = "decodeVMaskReg";
}
def simm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<5>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<5>;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeSImmOperand<5>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isInt<5>(Imm);
return MCOp.isBareSymbolRef();
}];
}
def SImm5Plus1AsmOperand : AsmOperandClass {
let Name = "SImm5Plus1";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidSImm5Plus1";
}
def simm5_plus1 : Operand<XLenVT>, ImmLeaf<XLenVT,
[{return (isInt<5>(Imm) && Imm != -16) || Imm == 16;}]> {
let ParserMatchClass = SImm5Plus1AsmOperand;
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return (isInt<5>(Imm) && Imm != -16) || Imm == 16;
return MCOp.isBareSymbolRef();
}];
}
//===----------------------------------------------------------------------===//
// Scheduling definitions.
//===----------------------------------------------------------------------===//
class VMVRSched<int n>: Sched <[!cast<SchedReadWrite>("WriteVMov" # n # "V"),
!cast<SchedReadWrite>("ReadVMov" # n # "V")]>;
class VLESched<int n> : Sched <[!cast<SchedReadWrite>("WriteVLDE" # n),
ReadVLDX, ReadVMask]>;
class VSESched<int n> : Sched <[!cast<SchedReadWrite>("WriteVSTE" # n),
!cast<SchedReadWrite>("ReadVSTE" # n # "V"),
ReadVSTX, ReadVMask]>;
class VLSSched<int n> : Sched <[!cast<SchedReadWrite>("WriteVLDS" # n),
ReadVLDX, ReadVLDSX, ReadVMask]>;
class VSSSched<int n> : Sched <[!cast<SchedReadWrite>("WriteVSTS" # n),
!cast<SchedReadWrite>("ReadVSTS" # n # "V"),
ReadVSTX, ReadVSTSX, ReadVMask]>;
class VLXSched<int n, string o> :
Sched <[!cast<SchedReadWrite>("WriteVLD" # o # "X" # n),
ReadVLDX, !cast<SchedReadWrite>("ReadVLD" # o # "XV"), ReadVMask]>;
class VSXSched<int n, string o> :
Sched <[!cast<SchedReadWrite>("WriteVST" # o # "X" # n),
!cast<SchedReadWrite>("ReadVST" # o # "X" # n),
ReadVSTX, !cast<SchedReadWrite>("ReadVST" # o # "XV"), ReadVMask]>;
class VLFSched<int n> : Sched <[!cast<SchedReadWrite>("WriteVLDFF" # n),
ReadVLDX, ReadVMask]>;
//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
// unit-stride load vd, (rs1), vm
class VUnitStrideLoad<RISCVWidth width, string opcodestr>
: RVInstVLU<0b000, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
let vm = 1, RVVConstraint = NoConstraint in {
// unit-stride whole register load vl<nf>r.v vd, (rs1)
class VWholeLoad<bits<3> nf, RISCVWidth width, string opcodestr, RegisterClass VRC>
: RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideWholeReg,
width.Value{2-0}, (outs VRC:$vd), (ins GPR:$rs1),
opcodestr, "$vd, (${rs1})"> {
let Uses = [];
}
// unit-stride mask load vd, (rs1)
class VUnitStrideLoadMask<string opcodestr>
: RVInstVLU<0b000, LSWidth8.Value{3}, LUMOPUnitStrideMask, LSWidth8.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1), opcodestr, "$vd, (${rs1})">;
} // vm = 1, RVVConstraint = NoConstraint
// unit-stride fault-only-first load vd, (rs1), vm
class VUnitStrideLoadFF<RISCVWidth width, string opcodestr>
: RVInstVLU<0b000, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
// strided load vd, (rs1), rs2, vm
class VStridedLoad<RISCVWidth width, string opcodestr>
: RVInstVLS<0b000, width.Value{3}, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
"$vd, (${rs1}), $rs2$vm">;
// indexed load vd, (rs1), vs2, vm
class VIndexedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
: RVInstVLX<0b000, width.Value{3}, mop, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
"$vd, (${rs1}), $vs2$vm">;
// unit-stride segment load vd, (rs1), vm
class VUnitStrideSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
: RVInstVLU<nf, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
// segment fault-only-first load vd, (rs1), vm
class VUnitStrideSegmentLoadFF<bits<3> nf, RISCVWidth width, string opcodestr>
: RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
// strided segment load vd, (rs1), rs2, vm
class VStridedSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
: RVInstVLS<nf, width.Value{3}, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
"$vd, (${rs1}), $rs2$vm">;
// indexed segment load vd, (rs1), vs2, vm
class VIndexedSegmentLoad<bits<3> nf, RISCVMOP mop, RISCVWidth width,
string opcodestr>
: RVInstVLX<nf, width.Value{3}, mop, width.Value{2-0},
(outs VR:$vd),
(ins GPR:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
"$vd, (${rs1}), $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 1, mayStore = 0
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
// unit-stride store vd, vs3, (rs1), vm
class VUnitStrideStore<RISCVWidth width, string opcodestr>
: RVInstVSU<0b000, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
(outs), (ins VR:$vs3, GPR:$rs1, VMaskOp:$vm), opcodestr,
"$vs3, (${rs1})$vm">;
let vm = 1 in {
// vs<nf>r.v vd, (rs1)
class VWholeStore<bits<3> nf, string opcodestr, RegisterClass VRC>
: RVInstVSU<nf, 0, SUMOPUnitStrideWholeReg,
0b000, (outs), (ins VRC:$vs3, GPR:$rs1),
opcodestr, "$vs3, (${rs1})"> {
let Uses = [];
}
// unit-stride mask store vd, vs3, (rs1)
class VUnitStrideStoreMask<string opcodestr>
: RVInstVSU<0b000, LSWidth8.Value{3}, SUMOPUnitStrideMask, LSWidth8.Value{2-0},
(outs), (ins VR:$vs3, GPR:$rs1), opcodestr,
"$vs3, (${rs1})">;
} // vm = 1
// strided store vd, vs3, (rs1), rs2, vm
class VStridedStore<RISCVWidth width, string opcodestr>
: RVInstVSS<0b000, width.Value{3}, width.Value{2-0}, (outs),
(ins VR:$vs3, GPR:$rs1, GPR:$rs2, VMaskOp:$vm),
opcodestr, "$vs3, (${rs1}), $rs2$vm">;
// indexed store vd, vs3, (rs1), vs2, vm
class VIndexedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
: RVInstVSX<0b000, width.Value{3}, mop, width.Value{2-0}, (outs),
(ins VR:$vs3, GPR:$rs1, VR:$vs2, VMaskOp:$vm),
opcodestr, "$vs3, (${rs1}), $vs2$vm">;
// segment store vd, vs3, (rs1), vm
class VUnitStrideSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
: RVInstVSU<nf, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
(outs), (ins VR:$vs3, GPR:$rs1, VMaskOp:$vm), opcodestr,
"$vs3, (${rs1})$vm">;
// segment store vd, vs3, (rs1), rs2, vm
class VStridedSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
: RVInstVSS<nf, width.Value{3}, width.Value{2-0}, (outs),
(ins VR:$vs3, GPR:$rs1, GPR:$rs2, VMaskOp:$vm),
opcodestr, "$vs3, (${rs1}), $rs2$vm">;
// segment store vd, vs3, (rs1), vs2, vm
class VIndexedSegmentStore<bits<3> nf, RISCVMOP mop, RISCVWidth width,
string opcodestr>
: RVInstVSX<nf, width.Value{3}, mop, width.Value{2-0}, (outs),
(ins VR:$vs3, GPR:$rs1, VR:$vs2, VMaskOp:$vm),
opcodestr, "$vs3, (${rs1}), $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 1
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// op vd, vs2, vs1, vm
class VALUVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVV<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, VR:$vs1, VMaskOp:$vm),
opcodestr, "$vd, $vs2, $vs1$vm">;
// op vd, vs2, vs1, v0 (without mask, use v0 as carry input)
class VALUmVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVV<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, VR:$vs1, VMV0:$v0),
opcodestr, "$vd, $vs2, $vs1, v0"> {
let vm = 0;
}
// op vd, vs1, vs2, vm (reverse the order of vs1 and vs2)
class VALUrVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVV<funct6, opv, (outs VR:$vd),
(ins VR:$vs1, VR:$vs2, VMaskOp:$vm),
opcodestr, "$vd, $vs1, $vs2$vm">;
// op vd, vs2, vs1
class VALUVVNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVV<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, VR:$vs1),
opcodestr, "$vd, $vs2, $vs1"> {
let vm = 1;
}
// op vd, vs2, rs1, vm
class VALUVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVX<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
opcodestr, "$vd, $vs2, $rs1$vm">;
// op vd, vs2, rs1, v0 (without mask, use v0 as carry input)
class VALUmVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVX<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, GPR:$rs1, VMV0:$v0),
opcodestr, "$vd, $vs2, $rs1, v0"> {
let vm = 0;
}
// op vd, rs1, vs2, vm (reverse the order of rs1 and vs2)
class VALUrVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVX<funct6, opv, (outs VR:$vd),
(ins GPR:$rs1, VR:$vs2, VMaskOp:$vm),
opcodestr, "$vd, $rs1, $vs2$vm">;
// op vd, vs1, vs2
class VALUVXNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVX<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, GPR:$rs1),
opcodestr, "$vd, $vs2, $rs1"> {
let vm = 1;
}
// op vd, vs2, imm, vm
class VALUVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
: RVInstIVI<funct6, (outs VR:$vd),
(ins VR:$vs2, optype:$imm, VMaskOp:$vm),
opcodestr, "$vd, $vs2, $imm$vm">;
// op vd, vs2, imm, v0 (without mask, use v0 as carry input)
class VALUmVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
: RVInstIVI<funct6, (outs VR:$vd),
(ins VR:$vs2, optype:$imm, VMV0:$v0),
opcodestr, "$vd, $vs2, $imm, v0"> {
let vm = 0;
}
// op vd, vs2, imm, vm
class VALUVINoVm<bits<6> funct6, string opcodestr, Operand optype = simm5>
: RVInstIVI<funct6, (outs VR:$vd),
(ins VR:$vs2, optype:$imm),
opcodestr, "$vd, $vs2, $imm"> {
let vm = 1;
}
// op vd, vs2, rs1, vm (Float)
class VALUVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVX<funct6, opv, (outs VR:$vd),
(ins VR:$vs2, FPR32:$rs1, VMaskOp:$vm),
opcodestr, "$vd, $vs2, $rs1$vm">;
// op vd, rs1, vs2, vm (Float) (with mask, reverse the order of rs1 and vs2)
class VALUrVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
: RVInstVX<funct6, opv, (outs VR:$vd),
(ins FPR32:$rs1, VR:$vs2, VMaskOp:$vm),
opcodestr, "$vd, $rs1, $vs2$vm">;
// op vd, vs2, vm (use vs1 as instruction encoding)
class VALUVs2<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
: RVInstV<funct6, vs1, opv, (outs VR:$vd),
(ins VR:$vs2, VMaskOp:$vm),
opcodestr, "$vd, $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
let hasSideEffects = 0, mayLoad = 1, mayStore = 1 in {
// vamo vd, (rs1), vs2, vd, vm
class VAMOWd<RISCVAMOOP amoop, RISCVWidth width, string opcodestr>
: RVInstVAMO<amoop, width.Value{2-0}, (outs VR:$vd_wd),
(ins GPR:$rs1, VR:$vs2, VR:$vd, VMaskOp:$vm),
opcodestr, "$vd_wd, (${rs1}), $vs2, $vd$vm"> {
let Constraints = "$vd_wd = $vd";
let wd = 1;
bits<5> vd;
let Inst{11-7} = vd;
}
// vamo x0, (rs1), vs2, vs3, vm
class VAMONoWd<RISCVAMOOP amoop, RISCVWidth width, string opcodestr>
: RVInstVAMO<amoop, width.Value{2-0}, (outs),
(ins GPR:$rs1, VR:$vs2, VR:$vs3, VMaskOp:$vm),
opcodestr, "x0, (${rs1}), $vs2, $vs3$vm"> {
bits<5> vs3;
let Inst{11-7} = vs3;
}
} // hasSideEffects = 0, mayLoad = 1, mayStore = 1
//===----------------------------------------------------------------------===//
// Combination of instruction classes.
// Use these multiclasses to define instructions more easily.
//===----------------------------------------------------------------------===//
multiclass VALU_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIALUV, ReadVIALUV, ReadVIALUV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIALUX, ReadVIALUV, ReadVIALUX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVIALUI, ReadVIALUV, ReadVMask]>;
}
multiclass VALU_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIALUV, ReadVIALUV, ReadVIALUV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIALUX, ReadVIALUV, ReadVIALUX, ReadVMask]>;
}
multiclass VALU_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIALUV, ReadVIALUV, ReadVIALUX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVIALUI, ReadVIALUV, ReadVMask]>;
}
multiclass VALU_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIWALUV, ReadVIWALUV, ReadVIWALUV, ReadVMask]>;
def X : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIWALUX, ReadVIWALUV, ReadVIWALUX, ReadVMask]>;
}
multiclass VMAC_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUrVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIMulAddV, ReadVIMulAddV, ReadVIMulAddV, ReadVMask]>;
def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIMulAddX, ReadVIMulAddV, ReadVIMulAddX, ReadVMask]>;
}
multiclass VWMAC_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUrVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIWMulAddV, ReadVIWMulAddV, ReadVIWMulAddV, ReadVMask]>;
def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIWMulAddX, ReadVIWMulAddV, ReadVIWMulAddX, ReadVMask]>;
}
multiclass VWMAC_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIWMulAddX, ReadVIWMulAddV, ReadVIWMulAddX, ReadVMask]>;
}
multiclass VALU_MV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
Sched<[WriteVExtV, ReadVExtV, ReadVMask]>;
}
multiclass VALUm_IV_V_X_I<string opcodestr, bits<6> funct6> {
def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV, ReadVMask]>;
def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX, ReadVMask]>;
def IM : VALUmVI<funct6, opcodestr # ".vim">,
Sched<[WriteVICALUI, ReadVIALUCV, ReadVMask]>;
}
multiclass VMRG_IV_V_X_I<string opcodestr, bits<6> funct6> {
def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
Sched<[WriteVIMergeV, ReadVIMergeV, ReadVIMergeV, ReadVMask]>;
def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
Sched<[WriteVIMergeX, ReadVIMergeV, ReadVIMergeX, ReadVMask]>;
def IM : VALUmVI<funct6, opcodestr # ".vim">,
Sched<[WriteVIMergeI, ReadVIMergeV, ReadVMask]>;
}
multiclass VALUm_IV_V_X<string opcodestr, bits<6> funct6> {
def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV, ReadVMask]>;
def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX, ReadVMask]>;
}
multiclass VALUNoVm_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5> {
def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">,
Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV]>;
def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">,
Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX]>;
def I : VALUVINoVm<funct6, opcodestr # ".vi", optype>,
Sched<[WriteVICALUI, ReadVIALUCV]>;
}
multiclass VALUNoVm_IV_V_X<string opcodestr, bits<6> funct6> {
def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">,
Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV]>;
def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">,
Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX]>;
}
multiclass VALU_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFALUV, ReadVFALUV, ReadVFALUV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFALUF, ReadVFALUV, ReadVFALUF, ReadVMask]>;
}
multiclass VALU_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFALUF, ReadVFALUV, ReadVFALUF, ReadVMask]>;
}
multiclass VWALU_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFWALUV, ReadVFWALUV, ReadVFWALUV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFWALUF, ReadVFWALUV, ReadVFWALUF, ReadVMask]>;
}
multiclass VMUL_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFMulV, ReadVFMulV, ReadVFMulV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFMulF, ReadVFMulV, ReadVFMulF, ReadVMask]>;
}
multiclass VDIV_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFDivV, ReadVFDivV, ReadVFDivV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFDivF, ReadVFDivV, ReadVFDivF, ReadVMask]>;
}
multiclass VRDIV_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFDivF, ReadVFDivV, ReadVFDivF, ReadVMask]>;
}
multiclass VWMUL_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFWMulV, ReadVFWMulV, ReadVFWMulV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFWMulF, ReadVFWMulV, ReadVFWMulF, ReadVMask]>;
}
multiclass VMAC_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUrVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFMulAddV, ReadVFMulAddV, ReadVFMulAddV, ReadVMask]>;
def F : VALUrVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFMulAddF, ReadVFMulAddV, ReadVFMulAddF, ReadVMask]>;
}
multiclass VWMAC_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUrVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFWMulAddV, ReadVFWMulAddV, ReadVFWMulAddV, ReadVMask]>;
def F : VALUrVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFWMulAddF, ReadVFWMulAddV, ReadVFWMulAddF, ReadVMask]>;
}
multiclass VSQR_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFSqrtV, ReadVFSqrtV, ReadVMask]>;
}
multiclass VRCP_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFRecpV, ReadVFRecpV, ReadVMask]>;
}
multiclass VCMP_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFCmpV, ReadVFCmpV, ReadVFCmpV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFCmpF, ReadVFCmpV, ReadVFCmpF, ReadVMask]>;
}
multiclass VCMP_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFCmpF, ReadVFCmpV, ReadVFCmpF, ReadVMask]>;
}
multiclass VSGNJ_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
Sched<[WriteVFSgnjV, ReadVFSgnjV, ReadVFSgnjV, ReadVMask]>;
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFSgnjF, ReadVFSgnjV, ReadVFSgnjF, ReadVMask]>;
}
multiclass VCLS_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFClassV, ReadVFClassV, ReadVMask]>;
}
multiclass VCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFCvtIToFV, ReadVFCvtIToFV, ReadVMask]>;
}
multiclass VCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFCvtFToIV, ReadVFCvtFToIV, ReadVMask]>;
}
multiclass VWCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFWCvtIToFV, ReadVFWCvtIToFV, ReadVMask]>;
}
multiclass VWCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFWCvtFToIV, ReadVFWCvtFToIV, ReadVMask]>;
}
multiclass VWCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFWCvtFToFV, ReadVFWCvtFToFV, ReadVMask]>;
}
multiclass VNCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFNCvtIToFV, ReadVFNCvtIToFV, ReadVMask]>;
}
multiclass VNCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFNCvtFToIV, ReadVFNCvtFToIV, ReadVMask]>;
}
multiclass VNCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
Sched<[WriteVFNCvtFToFV, ReadVFNCvtFToFV, ReadVMask]>;
}
multiclass VRED_MV_V<string opcodestr, bits<6> funct6> {
def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">,
Sched<[WriteVIRedV, ReadVIRedV, ReadVIRedV0, ReadVMask]>;
}
multiclass VWRED_IV_V<string opcodestr, bits<6> funct6> {
def _VS : VALUVV<funct6, OPIVV, opcodestr # ".vs">,
Sched<[WriteVIWRedV, ReadVIWRedV, ReadVIWRedV0, ReadVMask]>;
}
multiclass VRED_FV_V<string opcodestr, bits<6> funct6> {
def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
Sched<[WriteVFRedV, ReadVFRedV, ReadVFRedV0, ReadVMask]>;
}
multiclass VREDO_FV_V<string opcodestr, bits<6> funct6> {
def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
Sched<[WriteVFRedOV, ReadVFRedOV, ReadVFRedOV0, ReadVMask]>;
}
multiclass VWRED_FV_V<string opcodestr, bits<6> funct6> {
def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
Sched<[WriteVFWRedV, ReadVFWRedV, ReadVFWRedV0, ReadVMask]>;
}
multiclass VWREDO_FV_V<string opcodestr, bits<6> funct6> {
def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
Sched<[WriteVFWRedOV, ReadVFWRedOV, ReadVFWRedOV0, ReadVMask]>;
}
multiclass VMALU_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
def M : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">,
Sched<[WriteVMALUV, ReadVMALUV, ReadVMALUV]>;
}
multiclass VMSFS_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
Sched<[WriteVMSFSV, ReadVMSFSV, ReadVMask]>;
}
multiclass VMIOT_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
Sched<[WriteVMIotV, ReadVMIotV, ReadVMask]>;
}
multiclass VSHT_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVShiftV, ReadVShiftV, ReadVShiftV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVShiftX, ReadVShiftV, ReadVShiftX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVShiftI, ReadVShiftV, ReadVMask]>;
}
multiclass VNSHT_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVNShiftV, ReadVNShiftV, ReadVNShiftV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVNShiftX, ReadVNShiftV, ReadVNShiftX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVNShiftI, ReadVNShiftV, ReadVMask]>;
}
multiclass VCMP_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVICmpV, ReadVICmpV, ReadVICmpV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVICmpX, ReadVICmpV, ReadVICmpX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVICmpI, ReadVICmpV, ReadVMask]>;
}
multiclass VCMP_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVICmpV, ReadVICmpV, ReadVICmpX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVICmpI, ReadVICmpV, ReadVMask]>;
}
multiclass VCMP_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVICmpV, ReadVICmpV, ReadVICmpV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVICmpX, ReadVICmpV, ReadVICmpX, ReadVMask]>;
}
multiclass VMUL_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIMulV, ReadVIMulV, ReadVIMulV, ReadVMask]>;
def X : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIMulX, ReadVIMulV, ReadVIMulX, ReadVMask]>;
}
multiclass VWMUL_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIWMulV, ReadVIWMulV, ReadVIWMulV, ReadVMask]>;
def X : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIWMulX, ReadVIWMulV, ReadVIWMulX, ReadVMask]>;
}
multiclass VDIV_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVIDivV, ReadVIDivV, ReadVIDivV, ReadVMask]>;
def X : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVIDivX, ReadVIDivV, ReadVIDivX, ReadVMask]>;
}
multiclass VSALU_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVSALUV, ReadVSALUV, ReadVSALUV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVSALUX, ReadVSALUV, ReadVSALUX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVSALUI, ReadVSALUV, ReadVMask]>;
}
multiclass VSALU_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVSALUV, ReadVSALUV, ReadVSALUV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVSALUX, ReadVSALUV, ReadVSALUX, ReadVMask]>;
}
multiclass VAALU_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
Sched<[WriteVAALUV, ReadVAALUV, ReadVAALUV, ReadVMask]>;
def X : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVAALUX, ReadVAALUV, ReadVAALUX, ReadVMask]>;
}
multiclass VSMUL_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVSMulV, ReadVSMulV, ReadVSMulV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVSMulX, ReadVSMulV, ReadVSMulX, ReadVMask]>;
}
multiclass VSSHF_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVSShiftV, ReadVSShiftV, ReadVSShiftV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVSShiftX, ReadVSShiftV, ReadVSShiftX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVSShiftI, ReadVSShiftV, ReadVMask]>;
}
multiclass VNCLP_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVNClipV, ReadVNClipV, ReadVNClipV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVNClipX, ReadVNClipV, ReadVNClipX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVNClipI, ReadVNClipV, ReadVMask]>;
}
multiclass VSLD_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVISlideX, ReadVISlideV, ReadVISlideX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVISlideI, ReadVISlideV, ReadVMask]>;
}
multiclass VSLD1_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
def X : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
Sched<[WriteVISlide1X, ReadVISlideV, ReadVISlideX, ReadVMask]>;
}
multiclass VSLD1_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
Sched<[WriteVFSlide1F, ReadVFSlideV, ReadVFSlideF, ReadVMask]>;
}
multiclass VGTR_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
def V : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
Sched<[WriteVGatherV, ReadVGatherV, ReadVGatherV, ReadVMask]>;
def X : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
Sched<[WriteVGatherX, ReadVGatherV, ReadVGatherX, ReadVMask]>;
def I : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
Sched<[WriteVGatherI, ReadVGatherV, ReadVMask]>;
}
multiclass VCPR_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
def M : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">,
Sched<[WriteVCompressV, ReadVCompressV, ReadVCompressV]>;
}
multiclass VAMO<RISCVAMOOP amoop, RISCVWidth width, string opcodestr> {
def _WD : VAMOWd<amoop, width, opcodestr>;
def _UNWD : VAMONoWd<amoop, width, opcodestr>;
}
multiclass VWholeLoadN<bits<3> nf, string opcodestr, RegisterClass VRC> {
foreach l = [8, 16, 32, 64] in {
defvar w = !cast<RISCVWidth>("LSWidth" # l);
defvar s = !cast<SchedWrite>("WriteVLD" # !add(nf, 1) # "R" # l);
def E # l # _V : VWholeLoad<nf, w, opcodestr # "e" # l # ".v", VRC>,
Sched<[s, ReadVLDX]>;
}
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def VSETVLI : RVInstSetVLi<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei),
"vsetvli", "$rd, $rs1, $vtypei">;
def VSETIVLI : RVInstSetiVLi<(outs GPR:$rd), (ins uimm5:$uimm, VTypeIOp:$vtypei),
"vsetivli", "$rd, $uimm, $vtypei">;
def VSETVL : RVInstSetVL<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
"vsetvl", "$rd, $rs1, $rs2">;
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
foreach eew = [8, 16, 32, 64] in {
defvar w = !cast<RISCVWidth>("LSWidth" # eew);
// Vector Unit-Stride Instructions
def VLE#eew#_V : VUnitStrideLoad<w, "vle"#eew#".v">, VLESched<eew>;
def VSE#eew#_V : VUnitStrideStore<w, "vse"#eew#".v">, VSESched<eew>;
// Vector Unit-Stride Fault-only-First Loads
def VLE#eew#FF_V : VUnitStrideLoadFF<w, "vle"#eew#"ff.v">, VLFSched<eew>;
// Vector Strided Instructions
def VLSE#eew#_V : VStridedLoad<w, "vlse"#eew#".v">, VLSSched<eew>;
def VSSE#eew#_V : VStridedStore<w, "vsse"#eew#".v">, VSSSched<eew>;
// Vector Indexed Instructions
def VLUXEI#eew#_V :
VIndexedLoad<MOPLDIndexedUnord, w, "vluxei"#eew#".v">, VLXSched<eew, "U">;
def VLOXEI#eew#_V :
VIndexedLoad<MOPLDIndexedOrder, w, "vloxei"#eew#".v">, VLXSched<eew, "O">;
def VSUXEI#eew#_V :
VIndexedStore<MOPSTIndexedUnord, w, "vsuxei"#eew#".v">, VSXSched<eew, "U">;
def VSOXEI#eew#_V :
VIndexedStore<MOPSTIndexedOrder, w, "vsoxei"#eew#".v">, VSXSched<eew, "O">;
}
def VLM_V : VUnitStrideLoadMask<"vlm.v">,
Sched<[WriteVLDM, ReadVLDX]>;
def VSM_V : VUnitStrideStoreMask<"vsm.v">,
Sched<[WriteVSTM, ReadVSTM, ReadVSTX]>;
def : InstAlias<"vle1.v $vd, (${rs1})",
(VLM_V VR:$vd, GPR:$rs1), 0>;
def : InstAlias<"vse1.v $vs3, (${rs1})",
(VSM_V VR:$vs3, GPR:$rs1), 0>;
defm VL1R : VWholeLoadN<0, "vl1r", VR>;
defm VL2R : VWholeLoadN<1, "vl2r", VRM2>;
defm VL4R : VWholeLoadN<3, "vl4r", VRM4>;
defm VL8R : VWholeLoadN<7, "vl8r", VRM8>;
def : InstAlias<"vl1r.v $vd, (${rs1})", (VL1RE8_V VR:$vd, GPR:$rs1)>;
def : InstAlias<"vl2r.v $vd, (${rs1})", (VL2RE8_V VRM2:$vd, GPR:$rs1)>;
def : InstAlias<"vl4r.v $vd, (${rs1})", (VL4RE8_V VRM4:$vd, GPR:$rs1)>;
def : InstAlias<"vl8r.v $vd, (${rs1})", (VL8RE8_V VRM8:$vd, GPR:$rs1)>;
def VS1R_V : VWholeStore<0, "vs1r.v", VR>,
Sched<[WriteVST1R, ReadVST1R, ReadVSTX]>;
def VS2R_V : VWholeStore<1, "vs2r.v", VRM2>,
Sched<[WriteVST2R, ReadVST2R, ReadVSTX]>;
def VS4R_V : VWholeStore<3, "vs4r.v", VRM4>,
Sched<[WriteVST4R, ReadVST4R, ReadVSTX]>;
def VS8R_V : VWholeStore<7, "vs8r.v", VRM8>,
Sched<[WriteVST8R, ReadVST8R, ReadVSTX]>;
// Vector Single-Width Integer Add and Subtract
defm VADD_V : VALU_IV_V_X_I<"vadd", 0b000000>;
defm VSUB_V : VALU_IV_V_X<"vsub", 0b000010>;
defm VRSUB_V : VALU_IV_X_I<"vrsub", 0b000011>;
def : InstAlias<"vneg.v $vd, $vs$vm", (VRSUB_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
// Vector Widening Integer Add/Subtract
// Refer to 11.2 Widening Vector Arithmetic Instructions
// The destination vector register group cannot overlap a source vector
// register group of a different element width (including the mask register
// if masked), otherwise an illegal instruction exception is raised.
let Constraints = "@earlyclobber $vd" in {
let RVVConstraint = WidenV in {
defm VWADDU_V : VALU_MV_V_X<"vwaddu", 0b110000>;
defm VWSUBU_V : VALU_MV_V_X<"vwsubu", 0b110010>;
defm VWADD_V : VALU_MV_V_X<"vwadd", 0b110001>;
defm VWSUB_V : VALU_MV_V_X<"vwsub", 0b110011>;
} // RVVConstraint = WidenV
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
let RVVConstraint = WidenW in {
defm VWADDU_W : VALU_MV_V_X<"vwaddu", 0b110100, "w">;
defm VWSUBU_W : VALU_MV_V_X<"vwsubu", 0b110110, "w">;
defm VWADD_W : VALU_MV_V_X<"vwadd", 0b110101, "w">;
defm VWSUB_W : VALU_MV_V_X<"vwsub", 0b110111, "w">;
} // RVVConstraint = WidenW
} // Constraints = "@earlyclobber $vd"
def : InstAlias<"vwcvt.x.x.v $vd, $vs$vm",
(VWADD_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
def : InstAlias<"vwcvtu.x.x.v $vd, $vs$vm",
(VWADDU_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
// Vector Integer Extension
defm VZEXT_VF8 : VALU_MV_VS2<"vzext.vf8", 0b010010, 0b00010>;
defm VSEXT_VF8 : VALU_MV_VS2<"vsext.vf8", 0b010010, 0b00011>;
defm VZEXT_VF4 : VALU_MV_VS2<"vzext.vf4", 0b010010, 0b00100>;
defm VSEXT_VF4 : VALU_MV_VS2<"vsext.vf4", 0b010010, 0b00101>;
defm VZEXT_VF2 : VALU_MV_VS2<"vzext.vf2", 0b010010, 0b00110>;
defm VSEXT_VF2 : VALU_MV_VS2<"vsext.vf2", 0b010010, 0b00111>;
// Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
defm VADC_V : VALUm_IV_V_X_I<"vadc", 0b010000>;
let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
defm VMADC_V : VALUm_IV_V_X_I<"vmadc", 0b010001>;
defm VMADC_V : VALUNoVm_IV_V_X_I<"vmadc", 0b010001>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
defm VSBC_V : VALUm_IV_V_X<"vsbc", 0b010010>;
let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
defm VMSBC_V : VALUm_IV_V_X<"vmsbc", 0b010011>;
defm VMSBC_V : VALUNoVm_IV_V_X<"vmsbc", 0b010011>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
// Vector Bitwise Logical Instructions
defm VAND_V : VALU_IV_V_X_I<"vand", 0b001001>;
defm VOR_V : VALU_IV_V_X_I<"vor", 0b001010>;
defm VXOR_V : VALU_IV_V_X_I<"vxor", 0b001011>;
def : InstAlias<"vnot.v $vd, $vs$vm",
(VXOR_VI VR:$vd, VR:$vs, -1, VMaskOp:$vm)>;
// Vector Single-Width Bit Shift Instructions
defm VSLL_V : VSHT_IV_V_X_I<"vsll", 0b100101, uimm5>;
defm VSRL_V : VSHT_IV_V_X_I<"vsrl", 0b101000, uimm5>;
defm VSRA_V : VSHT_IV_V_X_I<"vsra", 0b101001, uimm5>;
// Vector Narrowing Integer Right Shift Instructions
// Refer to 11.3. Narrowing Vector Arithmetic Instructions
// The destination vector register group cannot overlap the first source
// vector register group (specified by vs2). The destination vector register
// group cannot overlap the mask register if used, unless LMUL=1.
let Constraints = "@earlyclobber $vd" in {
defm VNSRL_W : VNSHT_IV_V_X_I<"vnsrl", 0b101100, uimm5, "w">;
defm VNSRA_W : VNSHT_IV_V_X_I<"vnsra", 0b101101, uimm5, "w">;
} // Constraints = "@earlyclobber $vd"
def : InstAlias<"vncvt.x.x.w $vd, $vs$vm",
(VNSRL_WX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
// Vector Integer Comparison Instructions
let RVVConstraint = NoConstraint in {
defm VMSEQ_V : VCMP_IV_V_X_I<"vmseq", 0b011000>;
defm VMSNE_V : VCMP_IV_V_X_I<"vmsne", 0b011001>;
defm VMSLTU_V : VCMP_IV_V_X<"vmsltu", 0b011010>;
defm VMSLT_V : VCMP_IV_V_X<"vmslt", 0b011011>;
defm VMSLEU_V : VCMP_IV_V_X_I<"vmsleu", 0b011100>;
defm VMSLE_V : VCMP_IV_V_X_I<"vmsle", 0b011101>;
defm VMSGTU_V : VCMP_IV_X_I<"vmsgtu", 0b011110>;
defm VMSGT_V : VCMP_IV_X_I<"vmsgt", 0b011111>;
} // RVVConstraint = NoConstraint
def : InstAlias<"vmsgtu.vv $vd, $va, $vb$vm",
(VMSLTU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsgt.vv $vd, $va, $vb$vm",
(VMSLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsgeu.vv $vd, $va, $vb$vm",
(VMSLEU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsge.vv $vd, $va, $vb$vm",
(VMSLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
mayStore = 0 in {
// For unsigned comparisons we need to special case 0 immediate to maintain
// the always true/false semantics we would invert if we just decremented the
// immediate like we do for signed. To match the GNU assembler we will use
// vmseq/vmsne.vv with the same register for both operands which we can't do
// from an InstAlias.
def PseudoVMSGEU_VI : Pseudo<(outs VR:$vd),
(ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
[], "vmsgeu.vi", "$vd, $vs2, $imm$vm">;
def PseudoVMSLTU_VI : Pseudo<(outs VR:$vd),
(ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
[], "vmsltu.vi", "$vd, $vs2, $imm$vm">;
// Handle signed with pseudos as well for more consistency in the
// implementation.
def PseudoVMSGE_VI : Pseudo<(outs VR:$vd),
(ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
[], "vmsge.vi", "$vd, $vs2, $imm$vm">;
def PseudoVMSLT_VI : Pseudo<(outs VR:$vd),
(ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
[], "vmslt.vi", "$vd, $vs2, $imm$vm">;
}
let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
mayStore = 0 in {
def PseudoVMSGEU_VX : Pseudo<(outs VR:$vd),
(ins VR:$vs2, GPR:$rs1),
[], "vmsgeu.vx", "$vd, $vs2, $rs1">;
def PseudoVMSGE_VX : Pseudo<(outs VR:$vd),
(ins VR:$vs2, GPR:$rs1),
[], "vmsge.vx", "$vd, $vs2, $rs1">;
def PseudoVMSGEU_VX_M : Pseudo<(outs VRNoV0:$vd),
(ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
[], "vmsgeu.vx", "$vd, $vs2, $rs1$vm">;
def PseudoVMSGE_VX_M : Pseudo<(outs VRNoV0:$vd),
(ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
[], "vmsge.vx", "$vd, $vs2, $rs1$vm">;
def PseudoVMSGEU_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
(ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
[], "vmsgeu.vx", "$vd, $vs2, $rs1$vm, $scratch">;
def PseudoVMSGE_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
(ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
[], "vmsge.vx", "$vd, $vs2, $rs1$vm, $scratch">;
}
// Vector Integer Min/Max Instructions
defm VMINU_V : VCMP_IV_V_X<"vminu", 0b000100>;
defm VMIN_V : VCMP_IV_V_X<"vmin", 0b000101>;
defm VMAXU_V : VCMP_IV_V_X<"vmaxu", 0b000110>;
defm VMAX_V : VCMP_IV_V_X<"vmax", 0b000111>;
// Vector Single-Width Integer Multiply Instructions
defm VMUL_V : VMUL_MV_V_X<"vmul", 0b100101>;
defm VMULH_V : VMUL_MV_V_X<"vmulh", 0b100111>;
defm VMULHU_V : VMUL_MV_V_X<"vmulhu", 0b100100>;
defm VMULHSU_V : VMUL_MV_V_X<"vmulhsu", 0b100110>;
// Vector Integer Divide Instructions
defm VDIVU_V : VDIV_MV_V_X<"vdivu", 0b100000>;
defm VDIV_V : VDIV_MV_V_X<"vdiv", 0b100001>;
defm VREMU_V : VDIV_MV_V_X<"vremu", 0b100010>;
defm VREM_V : VDIV_MV_V_X<"vrem", 0b100011>;
// Vector Widening Integer Multiply Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VWMUL_V : VWMUL_MV_V_X<"vwmul", 0b111011>;
defm VWMULU_V : VWMUL_MV_V_X<"vwmulu", 0b111000>;
defm VWMULSU_V : VWMUL_MV_V_X<"vwmulsu", 0b111010>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
// Vector Single-Width Integer Multiply-Add Instructions
defm VMACC_V : VMAC_MV_V_X<"vmacc", 0b101101>;
defm VNMSAC_V : VMAC_MV_V_X<"vnmsac", 0b101111>;
defm VMADD_V : VMAC_MV_V_X<"vmadd", 0b101001>;
defm VNMSUB_V : VMAC_MV_V_X<"vnmsub", 0b101011>;
// Vector Widening Integer Multiply-Add Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VWMACCU_V : VWMAC_MV_V_X<"vwmaccu", 0b111100>;
defm VWMACC_V : VWMAC_MV_V_X<"vwmacc", 0b111101>;
defm VWMACCSU_V : VWMAC_MV_V_X<"vwmaccsu", 0b111111>;
defm VWMACCUS_V : VWMAC_MV_X<"vwmaccus", 0b111110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
// Vector Integer Merge Instructions
defm VMERGE_V : VMRG_IV_V_X_I<"vmerge", 0b010111>;
// Vector Integer Move Instructions
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vs2 = 0, vm = 1,
RVVConstraint = NoConstraint in {
// op vd, vs1
def VMV_V_V : RVInstVV<0b010111, OPIVV, (outs VR:$vd),
(ins VR:$vs1), "vmv.v.v", "$vd, $vs1">,
Sched<[WriteVIMovV, ReadVIMovV]>;
// op vd, rs1
def VMV_V_X : RVInstVX<0b010111, OPIVX, (outs VR:$vd),
(ins GPR:$rs1), "vmv.v.x", "$vd, $rs1">,
Sched<[WriteVIMovX, ReadVIMovX]>;
// op vd, imm
def VMV_V_I : RVInstIVI<0b010111, (outs VR:$vd),
(ins simm5:$imm), "vmv.v.i", "$vd, $imm">,
Sched<[WriteVIMovI]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
// Vector Fixed-Point Arithmetic Instructions
defm VSADDU_V : VSALU_IV_V_X_I<"vsaddu", 0b100000>;
defm VSADD_V : VSALU_IV_V_X_I<"vsadd", 0b100001>;
defm VSSUBU_V : VSALU_IV_V_X<"vssubu", 0b100010>;
defm VSSUB_V : VSALU_IV_V_X<"vssub", 0b100011>;
// Vector Single-Width Averaging Add and Subtract
defm VAADDU_V : VAALU_MV_V_X<"vaaddu", 0b001000>;
defm VAADD_V : VAALU_MV_V_X<"vaadd", 0b001001>;
defm VASUBU_V : VAALU_MV_V_X<"vasubu", 0b001010>;
defm VASUB_V : VAALU_MV_V_X<"vasub", 0b001011>;
// Vector Single-Width Fractional Multiply with Rounding and Saturation
defm VSMUL_V : VSMUL_IV_V_X<"vsmul", 0b100111>;
// Vector Single-Width Scaling Shift Instructions
defm VSSRL_V : VSSHF_IV_V_X_I<"vssrl", 0b101010, uimm5>;
defm VSSRA_V : VSSHF_IV_V_X_I<"vssra", 0b101011, uimm5>;
// Vector Narrowing Fixed-Point Clip Instructions
let Constraints = "@earlyclobber $vd" in {
defm VNCLIPU_W : VNCLP_IV_V_X_I<"vnclipu", 0b101110, uimm5, "w">;
defm VNCLIP_W : VNCLP_IV_V_X_I<"vnclip", 0b101111, uimm5, "w">;
} // Constraints = "@earlyclobber $vd"
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
// Vector Single-Width Floating-Point Add/Subtract Instructions
defm VFADD_V : VALU_FV_V_F<"vfadd", 0b000000>;
defm VFSUB_V : VALU_FV_V_F<"vfsub", 0b000010>;
defm VFRSUB_V : VALU_FV_F<"vfrsub", 0b100111>;
// Vector Widening Floating-Point Add/Subtract Instructions
let Constraints = "@earlyclobber $vd" in {
let RVVConstraint = WidenV in {
defm VFWADD_V : VWALU_FV_V_F<"vfwadd", 0b110000>;
defm VFWSUB_V : VWALU_FV_V_F<"vfwsub", 0b110010>;
} // RVVConstraint = WidenV
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
let RVVConstraint = WidenW in {
defm VFWADD_W : VWALU_FV_V_F<"vfwadd", 0b110100, "w">;
defm VFWSUB_W : VWALU_FV_V_F<"vfwsub", 0b110110, "w">;
} // RVVConstraint = WidenW
} // Constraints = "@earlyclobber $vd"
// Vector Single-Width Floating-Point Multiply/Divide Instructions
defm VFMUL_V : VMUL_FV_V_F<"vfmul", 0b100100>;
defm VFDIV_V : VDIV_FV_V_F<"vfdiv", 0b100000>;
defm VFRDIV_V : VRDIV_FV_F<"vfrdiv", 0b100001>;
// Vector Widening Floating-Point Multiply
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VFWMUL_V : VWMUL_FV_V_F<"vfwmul", 0b111000>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
// Vector Single-Width Floating-Point Fused Multiply-Add Instructions
defm VFMACC_V : VMAC_FV_V_F<"vfmacc", 0b101100>;
defm VFNMACC_V : VMAC_FV_V_F<"vfnmacc", 0b101101>;
defm VFMSAC_V : VMAC_FV_V_F<"vfmsac", 0b101110>;
defm VFNMSAC_V : VMAC_FV_V_F<"vfnmsac", 0b101111>;
defm VFMADD_V : VMAC_FV_V_F<"vfmadd", 0b101000>;
defm VFNMADD_V : VMAC_FV_V_F<"vfnmadd", 0b101001>;
defm VFMSUB_V : VMAC_FV_V_F<"vfmsub", 0b101010>;
defm VFNMSUB_V : VMAC_FV_V_F<"vfnmsub", 0b101011>;
// Vector Widening Floating-Point Fused Multiply-Add Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VFWMACC_V : VWMAC_FV_V_F<"vfwmacc", 0b111100>;
defm VFWNMACC_V : VWMAC_FV_V_F<"vfwnmacc", 0b111101>;
defm VFWMSAC_V : VWMAC_FV_V_F<"vfwmsac", 0b111110>;
defm VFWNMSAC_V : VWMAC_FV_V_F<"vfwnmsac", 0b111111>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
// Vector Floating-Point Square-Root Instruction
defm VFSQRT_V : VSQR_FV_VS2<"vfsqrt.v", 0b010011, 0b00000>;
defm VFRSQRT7_V : VRCP_FV_VS2<"vfrsqrt7.v", 0b010011, 0b00100>;
defm VFREC7_V : VRCP_FV_VS2<"vfrec7.v", 0b010011, 0b00101>;
// Vector Floating-Point MIN/MAX Instructions
defm VFMIN_V : VCMP_FV_V_F<"vfmin", 0b000100>;
defm VFMAX_V : VCMP_FV_V_F<"vfmax", 0b000110>;
// Vector Floating-Point Sign-Injection Instructions
defm VFSGNJ_V : VSGNJ_FV_V_F<"vfsgnj", 0b001000>;
defm VFSGNJN_V : VSGNJ_FV_V_F<"vfsgnjn", 0b001001>;
defm VFSGNJX_V : VSGNJ_FV_V_F<"vfsgnjx", 0b001010>;
def : InstAlias<"vfneg.v $vd, $vs$vm",
(VFSGNJN_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
def : InstAlias<"vfabs.v $vd, $vs$vm",
(VFSGNJX_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
// Vector Floating-Point Compare Instructions
let RVVConstraint = NoConstraint in {
defm VMFEQ_V : VCMP_FV_V_F<"vmfeq", 0b011000>;
defm VMFNE_V : VCMP_FV_V_F<"vmfne", 0b011100>;
defm VMFLT_V : VCMP_FV_V_F<"vmflt", 0b011011>;
defm VMFLE_V : VCMP_FV_V_F<"vmfle", 0b011001>;
defm VMFGT_V : VCMP_FV_F<"vmfgt", 0b011101>;
defm VMFGE_V : VCMP_FV_F<"vmfge", 0b011111>;
} // RVVConstraint = NoConstraint
def : InstAlias<"vmfgt.vv $vd, $va, $vb$vm",
(VMFLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmfge.vv $vd, $va, $vb$vm",
(VMFLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
// Vector Floating-Point Classify Instruction
defm VFCLASS_V : VCLS_FV_VS2<"vfclass.v", 0b010011, 0b10000>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// Vector Floating-Point Merge Instruction
let vm = 0 in
def VFMERGE_VFM : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
(ins VR:$vs2, FPR32:$rs1, VMV0:$v0),
"vfmerge.vfm", "$vd, $vs2, $rs1, v0">,
Sched<[WriteVFMergeV, ReadVFMergeV, ReadVFMergeF, ReadVMask]>;
// Vector Floating-Point Move Instruction
let RVVConstraint = NoConstraint in
let vm = 1, vs2 = 0 in
def VFMV_V_F : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
(ins FPR32:$rs1), "vfmv.v.f", "$vd, $rs1">,
Sched<[WriteVFMovV, ReadVFMovF]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
// Single-Width Floating-Point/Integer Type-Convert Instructions
defm VFCVT_XU_F_V : VCVTI_FV_VS2<"vfcvt.xu.f.v", 0b010010, 0b00000>;
defm VFCVT_X_F_V : VCVTI_FV_VS2<"vfcvt.x.f.v", 0b010010, 0b00001>;
defm VFCVT_RTZ_XU_F_V : VCVTI_FV_VS2<"vfcvt.rtz.xu.f.v", 0b010010, 0b00110>;
defm VFCVT_RTZ_X_F_V : VCVTI_FV_VS2<"vfcvt.rtz.x.f.v", 0b010010, 0b00111>;
defm VFCVT_F_XU_V : VCVTF_IV_VS2<"vfcvt.f.xu.v", 0b010010, 0b00010>;
defm VFCVT_F_X_V : VCVTF_IV_VS2<"vfcvt.f.x.v", 0b010010, 0b00011>;
// Widening Floating-Point/Integer Type-Convert Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt in {
defm VFWCVT_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.xu.f.v", 0b010010, 0b01000>;
defm VFWCVT_X_F_V : VWCVTI_FV_VS2<"vfwcvt.x.f.v", 0b010010, 0b01001>;
defm VFWCVT_RTZ_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.xu.f.v", 0b010010, 0b01110>;
defm VFWCVT_RTZ_X_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.x.f.v", 0b010010, 0b01111>;
defm VFWCVT_F_XU_V : VWCVTF_IV_VS2<"vfwcvt.f.xu.v", 0b010010, 0b01010>;
defm VFWCVT_F_X_V : VWCVTF_IV_VS2<"vfwcvt.f.x.v", 0b010010, 0b01011>;
defm VFWCVT_F_F_V : VWCVTF_FV_VS2<"vfwcvt.f.f.v", 0b010010, 0b01100>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt
// Narrowing Floating-Point/Integer Type-Convert Instructions
let Constraints = "@earlyclobber $vd" in {
defm VFNCVT_XU_F_W : VNCVTI_FV_VS2<"vfncvt.xu.f.w", 0b010010, 0b10000>;
defm VFNCVT_X_F_W : VNCVTI_FV_VS2<"vfncvt.x.f.w", 0b010010, 0b10001>;
defm VFNCVT_RTZ_XU_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.xu.f.w", 0b010010, 0b10110>;
defm VFNCVT_RTZ_X_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.x.f.w", 0b010010, 0b10111>;
defm VFNCVT_F_XU_W : VNCVTF_IV_VS2<"vfncvt.f.xu.w", 0b010010, 0b10010>;
defm VFNCVT_F_X_W : VNCVTF_IV_VS2<"vfncvt.f.x.w", 0b010010, 0b10011>;
defm VFNCVT_F_F_W : VNCVTF_FV_VS2<"vfncvt.f.f.w", 0b010010, 0b10100>;
defm VFNCVT_ROD_F_F_W : VNCVTF_FV_VS2<"vfncvt.rod.f.f.w", 0b010010, 0b10101>;
} // Constraints = "@earlyclobber $vd"
} // Predicates = [HasStdExtV, HasStdExtF]
let Predicates = [HasStdExtV] in {
// Vector Single-Width Integer Reduction Instructions
let RVVConstraint = NoConstraint in {
defm VREDSUM : VRED_MV_V<"vredsum", 0b000000>;
defm VREDMAXU : VRED_MV_V<"vredmaxu", 0b000110>;
defm VREDMAX : VRED_MV_V<"vredmax", 0b000111>;
defm VREDMINU : VRED_MV_V<"vredminu", 0b000100>;
defm VREDMIN : VRED_MV_V<"vredmin", 0b000101>;
defm VREDAND : VRED_MV_V<"vredand", 0b000001>;
defm VREDOR : VRED_MV_V<"vredor", 0b000010>;
defm VREDXOR : VRED_MV_V<"vredxor", 0b000011>;
} // RVVConstraint = NoConstraint
// Vector Widening Integer Reduction Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
defm VWREDSUMU : VWRED_IV_V<"vwredsumu", 0b110000>;
defm VWREDSUM : VWRED_IV_V<"vwredsum", 0b110001>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
// Vector Single-Width Floating-Point Reduction Instructions
let RVVConstraint = NoConstraint in {
defm VFREDOSUM : VREDO_FV_V<"vfredosum", 0b000011>;
defm VFREDUSUM : VRED_FV_V<"vfredusum", 0b000001>;
defm VFREDMAX : VRED_FV_V<"vfredmax", 0b000111>;
defm VFREDMIN : VRED_FV_V<"vfredmin", 0b000101>;
} // RVVConstraint = NoConstraint
def : InstAlias<"vfredsum.vs $vd, $vs2, $vs1$vm",
(VFREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
// Vector Widening Floating-Point Reduction Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
defm VFWREDOSUM : VWREDO_FV_V<"vfwredosum", 0b110011>;
defm VFWREDUSUM : VWRED_FV_V<"vfwredusum", 0b110001>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
def : InstAlias<"vfwredsum.vs $vd, $vs2, $vs1$vm",
(VFWREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
} // Predicates = [HasStdExtV, HasStdExtF]
let Predicates = [HasStdExtV] in {
// Vector Mask-Register Logical Instructions
let RVVConstraint = NoConstraint in {
defm VMAND_M : VMALU_MV_Mask<"vmand", 0b011001, "m">;
defm VMNAND_M : VMALU_MV_Mask<"vmnand", 0b011101, "m">;
defm VMANDN_M : VMALU_MV_Mask<"vmandn", 0b011000, "m">;
defm VMXOR_M : VMALU_MV_Mask<"vmxor", 0b011011, "m">;
defm VMOR_M : VMALU_MV_Mask<"vmor", 0b011010, "m">;
defm VMNOR_M : VMALU_MV_Mask<"vmnor", 0b011110, "m">;
defm VMORN_M : VMALU_MV_Mask<"vmorn", 0b011100, "m">;
defm VMXNOR_M : VMALU_MV_Mask<"vmxnor", 0b011111, "m">;
}
def : InstAlias<"vmmv.m $vd, $vs",
(VMAND_MM VR:$vd, VR:$vs, VR:$vs)>;
def : InstAlias<"vmclr.m $vd",
(VMXOR_MM VR:$vd, VR:$vd, VR:$vd)>;
def : InstAlias<"vmset.m $vd",
(VMXNOR_MM VR:$vd, VR:$vd, VR:$vd)>;
def : InstAlias<"vmnot.m $vd, $vs",
(VMNAND_MM VR:$vd, VR:$vs, VR:$vs)>;
def : InstAlias<"vmandnot.mm $vd, $vs2, $vs1",
(VMANDN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
def : InstAlias<"vmornot.mm $vd, $vs2, $vs1",
(VMORN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
RVVConstraint = NoConstraint in {
// Vector mask population count vcpop
def VCPOP_M : RVInstV<0b010000, 0b10000, OPMVV, (outs GPR:$vd),
(ins VR:$vs2, VMaskOp:$vm),
"vcpop.m", "$vd, $vs2$vm">,
Sched<[WriteVMPopV, ReadVMPopV, ReadVMask]>;
// vfirst find-first-set mask bit
def VFIRST_M : RVInstV<0b010000, 0b10001, OPMVV, (outs GPR:$vd),
(ins VR:$vs2, VMaskOp:$vm),
"vfirst.m", "$vd, $vs2$vm">,
Sched<[WriteVMFFSV, ReadVMFFSV, ReadVMask]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
def : InstAlias<"vpopc.m $vd, $vs2$vm",
(VCPOP_M GPR:$vd, VR:$vs2, VMaskOp:$vm), 0>;
let Constraints = "@earlyclobber $vd", RVVConstraint = Iota in {
// vmsbf.m set-before-first mask bit
defm VMSBF_M : VMSFS_MV_V<"vmsbf.m", 0b010100, 0b00001>;
// vmsif.m set-including-first mask bit
defm VMSIF_M : VMSFS_MV_V<"vmsif.m", 0b010100, 0b00011>;
// vmsof.m set-only-first mask bit
defm VMSOF_M : VMSFS_MV_V<"vmsof.m", 0b010100, 0b00010>;
// Vector Iota Instruction
defm VIOTA_M : VMIOT_MV_V<"viota.m", 0b010100, 0b10000>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Iota
// Vector Element Index Instruction
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
let vs2 = 0 in
def VID_V : RVInstV<0b010100, 0b10001, OPMVV, (outs VR:$vd),
(ins VMaskOp:$vm), "vid.v", "$vd$vm">,
Sched<[WriteVMIdxV, ReadVMask]>;
// Integer Scalar Move Instructions
let vm = 1, RVVConstraint = NoConstraint in {
def VMV_X_S : RVInstV<0b010000, 0b00000, OPMVV, (outs GPR:$vd),
(ins VR:$vs2), "vmv.x.s", "$vd, $vs2">,
Sched<[WriteVIMovVX, ReadVIMovVX]>;
let Constraints = "$vd = $vd_wb" in
def VMV_S_X : RVInstV2<0b010000, 0b00000, OPMVX, (outs VR:$vd_wb),
(ins VR:$vd, GPR:$rs1), "vmv.s.x", "$vd, $rs1">,
Sched<[WriteVIMovXV, ReadVIMovXV, ReadVIMovXX]>;
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1,
RVVConstraint = NoConstraint in {
// Floating-Point Scalar Move Instructions
def VFMV_F_S : RVInstV<0b010000, 0b00000, OPFVV, (outs FPR32:$vd),
(ins VR:$vs2), "vfmv.f.s", "$vd, $vs2">,
Sched<[WriteVFMovVF, ReadVFMovVF]>;
let Constraints = "$vd = $vd_wb" in
def VFMV_S_F : RVInstV2<0b010000, 0b00000, OPFVF, (outs VR:$vd_wb),
(ins VR:$vd, FPR32:$rs1), "vfmv.s.f", "$vd, $rs1">,
Sched<[WriteVFMovFV, ReadVFMovFV, ReadVFMovFX]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1
} // Predicates = [HasStdExtV, HasStdExtF]
let Predicates = [HasStdExtV] in {
// Vector Slide Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
defm VSLIDEUP_V : VSLD_IV_X_I<"vslideup", 0b001110, uimm5>;
defm VSLIDE1UP_V : VSLD1_MV_X<"vslide1up", 0b001110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
defm VSLIDEDOWN_V : VSLD_IV_X_I<"vslidedown", 0b001111, uimm5>;
defm VSLIDE1DOWN_V : VSLD1_MV_X<"vslide1down", 0b001111>;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
defm VFSLIDE1UP_V : VSLD1_FV_F<"vfslide1up", 0b001110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
defm VFSLIDE1DOWN_V : VSLD1_FV_F<"vfslide1down", 0b001111>;
} // Predicates = [HasStdExtV, HasStdExtF]
let Predicates = [HasStdExtV] in {
// Vector Register Gather Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather in {
defm VRGATHER_V : VGTR_IV_V_X_I<"vrgather", 0b001100, uimm5>;
def VRGATHEREI16_VV : VALUVV<0b001110, OPIVV, "vrgatherei16.vv">,
Sched<[WriteVGatherV, ReadVGatherV, ReadVGatherV]>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather
// Vector Compress Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress in {
defm VCOMPRESS_V : VCPR_MV_Mask<"vcompress", 0b010111>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress
let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
RVVConstraint = NoConstraint in {
foreach n = [1, 2, 4, 8] in {
def VMV#n#R_V : RVInstV<0b100111, !add(n, -1), OPIVI, (outs VR:$vd),
(ins VR:$vs2), "vmv" # n # "r.v", "$vd, $vs2">,
VMVRSched<n> {
let Uses = [];
let vm = 1;
}
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtZvlsseg] in {
foreach nf=2-8 in {
foreach eew = [8, 16, 32, 64] in {
defvar w = !cast<RISCVWidth>("LSWidth"#eew);
def VLSEG#nf#E#eew#_V :
VUnitStrideSegmentLoad<!add(nf, -1), w, "vlseg"#nf#"e"#eew#".v">;
def VLSEG#nf#E#eew#FF_V :
VUnitStrideSegmentLoadFF<!add(nf, -1), w, "vlseg"#nf#"e"#eew#"ff.v">;
def VSSEG#nf#E#eew#_V :
VUnitStrideSegmentStore<!add(nf, -1), w, "vsseg"#nf#"e"#eew#".v">;
// Vector Strided Instructions
def VLSSEG#nf#E#eew#_V :
VStridedSegmentLoad<!add(nf, -1), w, "vlsseg"#nf#"e"#eew#".v">;
def VSSSEG#nf#E#eew#_V :
VStridedSegmentStore<!add(nf, -1), w, "vssseg"#nf#"e"#eew#".v">;
// Vector Indexed Instructions
def VLUXSEG#nf#EI#eew#_V :
VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, w,
"vluxseg"#nf#"ei"#eew#".v">;
def VLOXSEG#nf#EI#eew#_V :
VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, w,
"vloxseg"#nf#"ei"#eew#".v">;
def VSUXSEG#nf#EI#eew#_V :
VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, w,
"vsuxseg"#nf#"ei"#eew#".v">;
def VSOXSEG#nf#EI#eew#_V :
VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, w,
"vsoxseg"#nf#"ei"#eew#".v">;
}
}
} // Predicates = [HasStdExtZvlsseg]
let Predicates = [HasStdExtZvamo, HasStdExtA] in {
foreach eew = [8, 16, 32] in {
defvar w = !cast<RISCVWidth>("LSWidth"#eew);
defm VAMOSWAPEI#eew : VAMO<AMOOPVamoSwap, w, "vamoswapei"#eew#".v">;
defm VAMOADDEI#eew : VAMO<AMOOPVamoAdd, w, "vamoaddei"#eew#".v">;
defm VAMOXOREI#eew : VAMO<AMOOPVamoXor, w, "vamoxorei"#eew#".v">;
defm VAMOANDEI#eew : VAMO<AMOOPVamoAnd, w, "vamoandei"#eew#".v">;
defm VAMOOREI#eew : VAMO<AMOOPVamoOr, w, "vamoorei"#eew#".v">;
defm VAMOMINEI#eew : VAMO<AMOOPVamoMin, w, "vamominei"#eew#".v">;
defm VAMOMAXEI#eew : VAMO<AMOOPVamoMax, w, "vamomaxei"#eew#".v">;
defm VAMOMINUEI#eew : VAMO<AMOOPVamoMinu, w, "vamominuei"#eew#".v">;
defm VAMOMAXUEI#eew : VAMO<AMOOPVamoMaxu, w, "vamomaxuei"#eew#".v">;
}
} // Predicates = [HasStdExtZvamo, HasStdExtA]
let Predicates = [HasStdExtZvamo, HasStdExtA, IsRV64] in {
defm VAMOSWAPEI64 : VAMO<AMOOPVamoSwap, LSWidth64, "vamoswapei64.v">;
defm VAMOADDEI64 : VAMO<AMOOPVamoAdd, LSWidth64, "vamoaddei64.v">;
defm VAMOXOREI64 : VAMO<AMOOPVamoXor, LSWidth64, "vamoxorei64.v">;
defm VAMOANDEI64 : VAMO<AMOOPVamoAnd, LSWidth64, "vamoandei64.v">;
defm VAMOOREI64 : VAMO<AMOOPVamoOr, LSWidth64, "vamoorei64.v">;
defm VAMOMINEI64 : VAMO<AMOOPVamoMin, LSWidth64, "vamominei64.v">;
defm VAMOMAXEI64 : VAMO<AMOOPVamoMax, LSWidth64, "vamomaxei64.v">;
defm VAMOMINUEI64 : VAMO<AMOOPVamoMinu, LSWidth64, "vamominuei64.v">;
defm VAMOMAXUEI64 : VAMO<AMOOPVamoMaxu, LSWidth64, "vamomaxuei64.v">;
} // Predicates = [HasStdExtZvamo, HasStdExtA, IsRV64]
include "RISCVInstrInfoVPseudos.td"