blob: f5d491938050466d39b3cf969d32094485c1a4d7 [file] [log] [blame]
//===-- RISCVFrameLowering.cpp - RISCV Frame Information ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "RISCVFrameLowering.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"
using namespace llvm;
// For now we use x18, a.k.a s2, as pointer to shadow call stack.
// User should explicitly set -ffixed-x18 and not use x18 in their asm.
static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
if (!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
Register RAReg = STI.getRegisterInfo()->getRARegister();
// Do not save RA to the SCS if it's not saved to the regular stack,
// i.e. RA is not at risk of being overwritten.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (std::none_of(CSI.begin(), CSI.end(),
[&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
Register SCSPReg = RISCVABI::getSCSPReg();
auto &Ctx = MF.getFunction().getContext();
if (!STI.isRegisterReservedByUser(SCSPReg)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "x18 not reserved by user for Shadow Call Stack."});
return;
}
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useSaveRestoreLibCalls(MF)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Shadow Call Stack cannot be combined with Save/Restore LibCalls."});
return;
}
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
int64_t SlotSize = STI.getXLen() / 8;
// Store return address to shadow call stack
// s[w|d] ra, 0(s2)
// addi s2, s2, [4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RAReg)
.addReg(SCSPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
}
static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
if (!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
Register RAReg = STI.getRegisterInfo()->getRARegister();
// See emitSCSPrologue() above.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (std::none_of(CSI.begin(), CSI.end(),
[&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
Register SCSPReg = RISCVABI::getSCSPReg();
auto &Ctx = MF.getFunction().getContext();
if (!STI.isRegisterReservedByUser(SCSPReg)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "x18 not reserved by user for Shadow Call Stack."});
return;
}
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useSaveRestoreLibCalls(MF)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Shadow Call Stack cannot be combined with Save/Restore LibCalls."});
return;
}
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
int64_t SlotSize = STI.getXLen() / 8;
// Load return address from shadow call stack
// l[w|d] ra, -[4|8](s2)
// addi s2, s2, -[4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW))
.addReg(RAReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
}
// Get the ID of the libcall used for spilling and restoring callee saved
// registers. The ID is representative of the number of registers saved or
// restored by the libcall, except it is zero-indexed - ID 0 corresponds to a
// single register.
static int getLibCallID(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF))
return -1;
Register MaxReg = RISCV::NoRegister;
for (auto &CS : CSI)
// RISCVRegisterInfo::hasReservedSpillSlot assigns negative frame indexes to
// registers which can be saved by libcall.
if (CS.getFrameIdx() < 0)
MaxReg = std::max(MaxReg.id(), CS.getReg().id());
if (MaxReg == RISCV::NoRegister)
return -1;
switch (MaxReg) {
default:
llvm_unreachable("Something has gone wrong!");
case /*s11*/ RISCV::X27: return 12;
case /*s10*/ RISCV::X26: return 11;
case /*s9*/ RISCV::X25: return 10;
case /*s8*/ RISCV::X24: return 9;
case /*s7*/ RISCV::X23: return 8;
case /*s6*/ RISCV::X22: return 7;
case /*s5*/ RISCV::X21: return 6;
case /*s4*/ RISCV::X20: return 5;
case /*s3*/ RISCV::X19: return 4;
case /*s2*/ RISCV::X18: return 3;
case /*s1*/ RISCV::X9: return 2;
case /*s0*/ RISCV::X8: return 1;
case /*ra*/ RISCV::X1: return 0;
}
}
// Get the name of the libcall used for spilling callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getSpillLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const SpillLibCalls[] = {
"__riscv_save_0",
"__riscv_save_1",
"__riscv_save_2",
"__riscv_save_3",
"__riscv_save_4",
"__riscv_save_5",
"__riscv_save_6",
"__riscv_save_7",
"__riscv_save_8",
"__riscv_save_9",
"__riscv_save_10",
"__riscv_save_11",
"__riscv_save_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return SpillLibCalls[LibCallID];
}
// Get the name of the libcall used for restoring callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getRestoreLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const RestoreLibCalls[] = {
"__riscv_restore_0",
"__riscv_restore_1",
"__riscv_restore_2",
"__riscv_restore_3",
"__riscv_restore_4",
"__riscv_restore_5",
"__riscv_restore_6",
"__riscv_restore_7",
"__riscv_restore_8",
"__riscv_restore_9",
"__riscv_restore_10",
"__riscv_restore_11",
"__riscv_restore_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return RestoreLibCalls[LibCallID];
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if frame pointer elimination is
// disabled, if it needs dynamic stack realignment, if the function has
// variable sized allocas, or if the frame address is taken.
bool RISCVFrameLowering::hasFP(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
// If we do not reserve stack space for outgoing arguments in prologue,
// we will adjust the stack pointer before call instruction. After the
// adjustment, we can not use SP to access the stack objects for the
// arguments. Instead, use BP to access these stack objects.
return (MFI.hasVarSizedObjects() ||
(!hasReservedCallFrame(MF) && MFI.getMaxCallFrameSize() != 0)) &&
TRI->hasStackRealignment(MF);
}
// Determines the size of the frame and maximum call frame size.
void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Get the number of bytes to allocate from the FrameInfo.
uint64_t FrameSize = MFI.getStackSize();
// Get the alignment.
Align StackAlign = getStackAlign();
// Make sure the frame is aligned.
FrameSize = alignTo(FrameSize, StackAlign);
// Update frame info.
MFI.setStackSize(FrameSize);
}
void RISCVFrameLowering::adjustReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, Register DestReg,
Register SrcReg, int64_t Val,
MachineInstr::MIFlag Flag) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (DestReg == SrcReg && Val == 0)
return;
if (isInt<12>(Val)) {
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(SrcReg)
.addImm(Val)
.setMIFlag(Flag);
} else {
unsigned Opc = RISCV::ADD;
bool isSub = Val < 0;
if (isSub) {
Val = -Val;
Opc = RISCV::SUB;
}
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
TII->movImm(MBB, MBBI, DL, ScratchReg, Val, Flag);
BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
.addReg(SrcReg)
.addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
}
}
// Returns the register used to hold the frame pointer.
static Register getFPReg(const RISCVSubtarget &STI) { return RISCV::X8; }
// Returns the register used to hold the stack pointer.
static Register getSPReg(const RISCVSubtarget &STI) { return RISCV::X2; }
static SmallVector<CalleeSavedInfo, 8>
getNonLibcallCSI(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> NonLibcallCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default)
NonLibcallCSI.push_back(CS);
}
return NonLibcallCSI;
}
void RISCVFrameLowering::adjustStackForRVV(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, int64_t Amount,
MachineInstr::MIFlag Flag) const {
assert(Amount != 0 && "Did not need to adjust stack pointer for RVV.");
const RISCVInstrInfo *TII = STI.getInstrInfo();
Register SPReg = getSPReg(STI);
unsigned Opc = RISCV::ADD;
if (Amount < 0) {
Amount = -Amount;
Opc = RISCV::SUB;
}
// 1. Multiply the number of v-slots to the length of registers
Register FactorRegister =
TII->getVLENFactoredAmount(MF, MBB, MBBI, DL, Amount, Flag);
// 2. SP = SP - RVV stack size
BuildMI(MBB, MBBI, DL, TII->get(Opc), SPReg)
.addReg(SPReg)
.addReg(FactorRegister, RegState::Kill)
.setMIFlag(Flag);
}
void RISCVFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
Register FPReg = getFPReg(STI);
Register SPReg = getSPReg(STI);
Register BPReg = RISCVABI::getBPReg();
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Emit prologue for shadow call stack.
emitSCSPrologue(MF, MBB, MBBI, DL);
// Since spillCalleeSavedRegisters may have inserted a libcall, skip past
// any instructions marked as FrameSetup
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
++MBBI;
// Determine the correct frame layout
determineFrameLayout(MF);
// If libcalls are used to spill and restore callee-saved registers, the frame
// has two sections; the opaque section managed by the libcalls, and the
// section managed by MachineFrameInfo which can also hold callee saved
// registers in fixed stack slots, both of which have negative frame indices.
// This gets even more complicated when incoming arguments are passed via the
// stack, as these too have negative frame indices. An example is detailed
// below:
//
// | incoming arg | <- FI[-3]
// | libcallspill |
// | calleespill | <- FI[-2]
// | calleespill | <- FI[-1]
// | this_frame | <- FI[0]
//
// For negative frame indices, the offset from the frame pointer will differ
// depending on which of these groups the frame index applies to.
// The following calculates the correct offset knowing the number of callee
// saved registers spilt by the two methods.
if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) {
// Calculate the size of the frame managed by the libcall. The libcalls are
// implemented such that the stack will always be 16 byte aligned.
unsigned LibCallFrameSize = alignTo((STI.getXLen() / 8) * LibCallRegs, 16);
RVFI->setLibCallStackSize(LibCallFrameSize);
}
// FIXME (note copied from Lanai): This appears to be overallocating. Needs
// investigation. Get the number of bytes to allocate from the FrameInfo.
uint64_t StackSize = MFI.getStackSize() + RVFI->getRVVPadding();
uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Early exit if there is no need to allocate on the stack
if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0)
return;
// If the stack pointer has been marked as reserved, then produce an error if
// the frame requires stack allocation
if (STI.isRegisterReservedByUser(SPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Stack pointer required, but has been reserved."});
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
// Split the SP adjustment to reduce the offsets of callee saved spill.
if (FirstSPAdjustAmount) {
StackSize = FirstSPAdjustAmount;
RealStackSize = FirstSPAdjustAmount;
}
// Allocate space on the stack if necessary.
adjustReg(MBB, MBBI, DL, SPReg, SPReg, -StackSize, MachineInstr::FrameSetup);
// Emit ".cfi_def_cfa_offset RealStackSize"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
const auto &CSI = MFI.getCalleeSavedInfo();
// The frame pointer is callee-saved, and code has been generated for us to
// save it to the stack. We need to skip over the storing of callee-saved
// registers as the frame pointer must be modified after it has been saved
// to the stack, not before.
// FIXME: assumes exactly one instruction is used to save each callee-saved
// register.
std::advance(MBBI, getNonLibcallCSI(MF, CSI).size());
// Iterate over list of callee-saved registers and emit .cfi_offset
// directives.
for (const auto &Entry : CSI) {
int FrameIdx = Entry.getFrameIdx();
int64_t Offset;
// Offsets for objects with fixed locations (IE: those saved by libcall) are
// simply calculated from the frame index.
if (FrameIdx < 0)
Offset = FrameIdx * (int64_t) STI.getXLen() / 8;
else
Offset = MFI.getObjectOffset(Entry.getFrameIdx()) -
RVFI->getLibCallStackSize();
Register Reg = Entry.getReg();
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, RI->getDwarfRegNum(Reg, true), Offset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
// Generate new FP.
if (hasFP(MF)) {
if (STI.isRegisterReservedByUser(FPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Frame pointer required, but has been reserved."});
adjustReg(MBB, MBBI, DL, FPReg, SPReg,
RealStackSize - RVFI->getVarArgsSaveSize(),
MachineInstr::FrameSetup);
// Emit ".cfi_def_cfa $fp, RVFI->getVarArgsSaveSize()"
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
nullptr, RI->getDwarfRegNum(FPReg, true), RVFI->getVarArgsSaveSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
// Emit the second SP adjustment after saving callee saved registers.
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount = MFI.getStackSize() - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
adjustReg(MBB, MBBI, DL, SPReg, SPReg, -SecondSPAdjustAmount,
MachineInstr::FrameSetup);
// If we are using a frame-pointer, and thus emitted ".cfi_def_cfa fp, 0",
// don't emit an sp-based .cfi_def_cfa_offset
if (!hasFP(MF)) {
// Emit ".cfi_def_cfa_offset StackSize"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
}
if (RVVStackSize)
adjustStackForRVV(MF, MBB, MBBI, DL, -RVVStackSize,
MachineInstr::FrameSetup);
if (hasFP(MF)) {
// Realign Stack
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
if (RI->hasStackRealignment(MF)) {
Align MaxAlignment = MFI.getMaxAlign();
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (isInt<12>(-(int)MaxAlignment.value())) {
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg)
.addReg(SPReg)
.addImm(-(int)MaxAlignment.value())
.setMIFlag(MachineInstr::FrameSetup);
} else {
unsigned ShiftAmount = Log2(MaxAlignment);
Register VR =
MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR)
.addReg(SPReg)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg)
.addReg(VR)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
}
// FP will be used to restore the frame in the epilogue, so we need
// another base register BP to record SP after re-alignment. SP will
// track the current stack after allocating variable sized objects.
if (hasBP(MF)) {
// move BP, SP
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg)
.addReg(SPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
void RISCVFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
Register FPReg = getFPReg(STI);
Register SPReg = getSPReg(STI);
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Get the insert location for the epilogue. If there were no terminators in
// the block, get the last instruction.
MachineBasicBlock::iterator MBBI = MBB.end();
DebugLoc DL;
if (!MBB.empty()) {
MBBI = MBB.getFirstTerminator();
if (MBBI == MBB.end())
MBBI = MBB.getLastNonDebugInstr();
DL = MBBI->getDebugLoc();
// If this is not a terminator, the actual insert location should be after the
// last instruction.
if (!MBBI->isTerminator())
MBBI = std::next(MBBI);
// If callee-saved registers are saved via libcall, place stack adjustment
// before this call.
while (MBBI != MBB.begin() &&
std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy))
--MBBI;
}
const auto &CSI = getNonLibcallCSI(MF, MFI.getCalleeSavedInfo());
// Skip to before the restores of callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
auto LastFrameDestroy = MBBI;
if (!CSI.empty())
LastFrameDestroy = std::prev(MBBI, CSI.size());
uint64_t StackSize = MFI.getStackSize() + RVFI->getRVVPadding();
uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize();
uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Restore the stack pointer using the value of the frame pointer. Only
// necessary if the stack pointer was modified, meaning the stack size is
// unknown.
if (RI->hasStackRealignment(MF) || MFI.hasVarSizedObjects()) {
assert(hasFP(MF) && "frame pointer should not have been eliminated");
adjustReg(MBB, LastFrameDestroy, DL, SPReg, FPReg, -FPOffset,
MachineInstr::FrameDestroy);
} else {
if (RVVStackSize)
adjustStackForRVV(MF, MBB, LastFrameDestroy, DL, RVVStackSize,
MachineInstr::FrameDestroy);
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount = MFI.getStackSize() - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
adjustReg(MBB, LastFrameDestroy, DL, SPReg, SPReg, SecondSPAdjustAmount,
MachineInstr::FrameDestroy);
}
if (FirstSPAdjustAmount)
StackSize = FirstSPAdjustAmount;
// Deallocate stack
adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackSize, MachineInstr::FrameDestroy);
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
}
StackOffset
RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Callee-saved registers should be referenced relative to the stack
// pointer (positive offset), otherwise use the frame pointer (negative
// offset).
const auto &CSI = getNonLibcallCSI(MF, MFI.getCalleeSavedInfo());
int MinCSFI = 0;
int MaxCSFI = -1;
StackOffset Offset;
auto StackID = MFI.getStackID(FI);
assert((StackID == TargetStackID::Default ||
StackID == TargetStackID::ScalableVector) &&
"Unexpected stack ID for the frame object.");
if (StackID == TargetStackID::Default) {
Offset =
StackOffset::getFixed(MFI.getObjectOffset(FI) - getOffsetOfLocalArea() +
MFI.getOffsetAdjustment());
} else if (StackID == TargetStackID::ScalableVector) {
Offset = StackOffset::getScalable(MFI.getObjectOffset(FI));
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
if (FI >= MinCSFI && FI <= MaxCSFI) {
FrameReg = RISCV::X2;
if (FirstSPAdjustAmount)
Offset += StackOffset::getFixed(FirstSPAdjustAmount);
else
Offset +=
StackOffset::getFixed(MFI.getStackSize() + RVFI->getRVVPadding());
} else if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
// If the stack was realigned, the frame pointer is set in order to allow
// SP to be restored, so we need another base register to record the stack
// after realignment.
if (hasBP(MF)) {
FrameReg = RISCVABI::getBPReg();
// |--------------------------| -- <-- FP
// | callee-saved registers | | <----.
// |--------------------------| -- |
// | realignment (the size of | | |
// | this area is not counted | | |
// | in MFI.getStackSize()) | | |
// |--------------------------| -- |
// | Padding after RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |-- MFI.getStackSize()
// | RVV objects | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | Padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP
// | VarSize objects | |
// |--------------------------| -- <-- SP
} else {
FrameReg = RISCV::X2;
// |--------------------------| -- <-- FP
// | callee-saved registers | | <----.
// |--------------------------| -- |
// | realignment (the size of | | |
// | this area is not counted | | |
// | in MFI.getStackSize()) | | |
// |--------------------------| -- |
// | Padding after RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |-- MFI.getStackSize()
// | RVV objects | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | Padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- SP
}
// The total amount of padding surrounding RVV objects is described by
// RVV->getRVVPadding() and it can be zero. It allows us to align the RVV
// objects to 8 bytes.
if (MFI.getStackID(FI) == TargetStackID::Default) {
Offset += StackOffset::getFixed(MFI.getStackSize());
if (FI < 0)
Offset += StackOffset::getFixed(RVFI->getLibCallStackSize());
} else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
Offset += StackOffset::get(
alignTo(MFI.getStackSize() - RVFI->getCalleeSavedStackSize(), 8),
RVFI->getRVVStackSize());
}
} else {
FrameReg = RI->getFrameRegister(MF);
if (hasFP(MF)) {
Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize());
if (FI >= 0)
Offset -= StackOffset::getFixed(RVFI->getLibCallStackSize());
// When using FP to access scalable vector objects, we need to minus
// the frame size.
//
// |--------------------------| -- <-- FP
// | callee-saved registers | |
// |--------------------------| | MFI.getStackSize()
// | scalar local variables | |
// |--------------------------| -- (Offset of RVV objects is from here.)
// | RVV objects |
// |--------------------------|
// | VarSize objects |
// |--------------------------| <-- SP
if (MFI.getStackID(FI) == TargetStackID::ScalableVector)
Offset -= StackOffset::getFixed(MFI.getStackSize());
} else {
// When using SP to access frame objects, we need to add RVV stack size.
//
// |--------------------------| -- <-- FP
// | callee-saved registers | | <----.
// |--------------------------| -- |
// | Padding after RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |-- MFI.getStackSize()
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | Padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- SP
//
// The total amount of padding surrounding RVV objects is described by
// RVV->getRVVPadding() and it can be zero. It allows us to align the RVV
// objects to 8 bytes.
if (MFI.getStackID(FI) == TargetStackID::Default) {
if (MFI.isFixedObjectIndex(FI)) {
Offset +=
StackOffset::get(MFI.getStackSize() + RVFI->getRVVPadding() +
RVFI->getLibCallStackSize(),
RVFI->getRVVStackSize());
} else {
Offset += StackOffset::getFixed(MFI.getStackSize());
}
} else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
Offset += StackOffset::get(
alignTo(MFI.getStackSize() - RVFI->getCalleeSavedStackSize(), 8),
RVFI->getRVVStackSize());
}
}
}
return Offset;
}
void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Unconditionally spill RA and FP only if the function uses a frame
// pointer.
if (hasFP(MF)) {
SavedRegs.set(RISCV::X1);
SavedRegs.set(RISCV::X8);
}
// Mark BP as used if function has dedicated base pointer.
if (hasBP(MF))
SavedRegs.set(RISCVABI::getBPReg());
// If interrupt is enabled and there are calls in the handler,
// unconditionally save all Caller-saved registers and
// all FP registers, regardless whether they are used.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (MF.getFunction().hasFnAttribute("interrupt") && MFI.hasCalls()) {
static const MCPhysReg CSRegs[] = { RISCV::X1, /* ra */
RISCV::X5, RISCV::X6, RISCV::X7, /* t0-t2 */
RISCV::X10, RISCV::X11, /* a0-a1, a2-a7 */
RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17,
RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31, 0 /* t3-t6 */
};
for (unsigned i = 0; CSRegs[i]; ++i)
SavedRegs.set(CSRegs[i]);
if (MF.getSubtarget<RISCVSubtarget>().hasStdExtF()) {
// If interrupt is enabled, this list contains all FP registers.
const MCPhysReg * Regs = MF.getRegInfo().getCalleeSavedRegs();
for (unsigned i = 0; Regs[i]; ++i)
if (RISCV::FPR16RegClass.contains(Regs[i]) ||
RISCV::FPR32RegClass.contains(Regs[i]) ||
RISCV::FPR64RegClass.contains(Regs[i]))
SavedRegs.set(Regs[i]);
}
}
}
int64_t
RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFrameInfo &MFI) const {
int64_t Offset = 0;
// Create a buffer of RVV objects to allocate.
SmallVector<int, 8> ObjectsToAllocate;
for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
unsigned StackID = MFI.getStackID(I);
if (StackID != TargetStackID::ScalableVector)
continue;
if (MFI.isDeadObjectIndex(I))
continue;
ObjectsToAllocate.push_back(I);
}
// Allocate all RVV locals and spills
for (int FI : ObjectsToAllocate) {
// ObjectSize in bytes.
int64_t ObjectSize = MFI.getObjectSize(FI);
// If the data type is the fractional vector type, reserve one vector
// register for it.
if (ObjectSize < 8)
ObjectSize = 8;
// Currently, all scalable vector types are aligned to 8 bytes.
Offset = alignTo(Offset + ObjectSize, 8);
MFI.setObjectOffset(FI, -Offset);
}
return Offset;
}
static bool hasRVVSpillWithFIs(MachineFunction &MF, const RISCVInstrInfo &TII) {
if (!MF.getSubtarget<RISCVSubtarget>().hasVInstructions())
return false;
return any_of(MF, [&TII](const MachineBasicBlock &MBB) {
return any_of(MBB, [&TII](const MachineInstr &MI) {
return TII.isRVVSpill(MI, /*CheckFIs*/ true);
});
});
}
void RISCVFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
const RISCVRegisterInfo *RegInfo =
MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
int64_t RVVStackSize = assignRVVStackObjectOffsets(MFI);
RVFI->setRVVStackSize(RVVStackSize);
const RISCVInstrInfo &TII = *MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
// estimateStackSize has been observed to under-estimate the final stack
// size, so give ourselves wiggle-room by checking for stack size
// representable an 11-bit signed field rather than 12-bits.
// FIXME: It may be possible to craft a function with a small stack that
// still needs an emergency spill slot for branch relaxation. This case
// would currently be missed.
// RVV loads & stores have no capacity to hold the immediate address offsets
// so we must always reserve an emergency spill slot if the MachineFunction
// contains any RVV spills.
if (!isInt<11>(MFI.estimateStackSize(MF)) || hasRVVSpillWithFIs(MF, TII)) {
int RegScavFI = MFI.CreateStackObject(RegInfo->getSpillSize(*RC),
RegInfo->getSpillAlign(*RC), false);
RS->addScavengingFrameIndex(RegScavFI);
// For RVV, scalable stack offsets require up to two scratch registers to
// compute the final offset. Reserve an additional emergency spill slot.
if (RVVStackSize != 0) {
int RVVRegScavFI = MFI.CreateStackObject(
RegInfo->getSpillSize(*RC), RegInfo->getSpillAlign(*RC), false);
RS->addScavengingFrameIndex(RVVRegScavFI);
}
}
if (MFI.getCalleeSavedInfo().empty() || RVFI->useSaveRestoreLibCalls(MF)) {
RVFI->setCalleeSavedStackSize(0);
return;
}
unsigned Size = 0;
for (const auto &Info : MFI.getCalleeSavedInfo()) {
int FrameIdx = Info.getFrameIdx();
if (MFI.getStackID(FrameIdx) != TargetStackID::Default)
continue;
Size += MFI.getObjectSize(FrameIdx);
}
RVFI->setCalleeSavedStackSize(Size);
// Padding required to keep the RVV stack aligned to 8 bytes
// within the main stack. We only need this when not using FP.
if (RVVStackSize && !hasFP(MF) && Size % 8 != 0) {
// Because we add the padding to the size of the stack, adding
// getStackAlign() will keep it aligned.
RVFI->setRVVPadding(getStackAlign().value());
}
}
static bool hasRVVFrameObject(const MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I)
if (MFI.getStackID(I) == TargetStackID::ScalableVector)
return true;
return false;
}
// Not preserve stack space within prologue for outgoing variables when the
// function contains variable size objects or there are vector objects accessed
// by the frame pointer.
// Let eliminateCallFramePseudoInstr preserve stack space for it.
bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects() &&
!(hasFP(MF) && hasRVVFrameObject(MF));
}
// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
Register SPReg = RISCV::X2;
DebugLoc DL = MI->getDebugLoc();
if (!hasReservedCallFrame(MF)) {
// If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
// ADJCALLSTACKUP must be converted to instructions manipulating the stack
// pointer. This is necessary when there is a variable length stack
// allocation (e.g. alloca), which means it's not possible to allocate
// space for outgoing arguments from within the function prologue.
int64_t Amount = MI->getOperand(0).getImm();
if (Amount != 0) {
// Ensure the stack remains aligned after adjustment.
Amount = alignSPAdjust(Amount);
if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN)
Amount = -Amount;
adjustReg(MBB, MI, DL, SPReg, SPReg, Amount, MachineInstr::NoFlags);
}
}
return MBB.erase(MI);
}
// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store.
// add sp,sp,-2032
// sw ra,2028(sp)
// sw s0,2024(sp)
// sw s1,2020(sp)
// sw s3,2012(sp)
// sw s4,2008(sp)
// add sp,sp,-64
uint64_t
RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
uint64_t StackSize = MFI.getStackSize();
// Disable SplitSPAdjust if save-restore libcall used. The callee saved
// registers will be pushed by the save-restore libcalls, so we don't have to
// split the SP adjustment in this case.
if (RVFI->getLibCallStackSize())
return 0;
// Return the FirstSPAdjustAmount if the StackSize can not fit in signed
// 12-bit and there exists a callee saved register need to be pushed.
if (!isInt<12>(StackSize) && (CSI.size() > 0)) {
// FirstSPAdjustAmount is choosed as (2048 - StackAlign)
// because 2048 will cause sp = sp + 2048 in epilogue split into
// multi-instructions. The offset smaller than 2048 can fit in signle
// load/store instruction and we have to stick with the stack alignment.
// 2048 is 16-byte alignment. The stack alignment for RV32 and RV64 is 16,
// for RV32E is 4. So (2048 - StackAlign) will satisfy the stack alignment.
return 2048 - getStackAlign().value();
}
return 0;
}
bool RISCVFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
const char *SpillLibCall = getSpillLibCallName(*MF, CSI);
if (SpillLibCall) {
// Add spill libcall via non-callee-saved register t0.
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5)
.addExternalSymbol(SpillLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameSetup);
// Add registers spilled in libcall as liveins.
for (auto &CS : CSI)
MBB.addLiveIn(CS.getReg());
}
// Manually spill values not spilled by libcall.
const auto &NonLibcallCSI = getNonLibcallCSI(*MF, CSI);
for (auto &CS : NonLibcallCSI) {
// Insert the spill to the stack frame.
Register Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg), CS.getFrameIdx(),
RC, TRI);
}
return true;
}
bool RISCVFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
// Manually restore values not restored by libcall.
// Keep the same order as in the prologue. There is no need to reverse the
// order in the epilogue. In addition, the return address will be restored
// first in the epilogue. It increases the opportunity to avoid the
// load-to-use data hazard between loading RA and return by RA.
// loadRegFromStackSlot can insert multiple instructions.
const auto &NonLibcallCSI = getNonLibcallCSI(*MF, CSI);
for (auto &CS : NonLibcallCSI) {
Register Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI);
assert(MI != MBB.begin() && "loadRegFromStackSlot didn't insert any code!");
}
const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI);
if (RestoreLibCall) {
// Add restore libcall via tail call.
MachineBasicBlock::iterator NewMI =
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL))
.addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameDestroy);
// Remove trailing returns, since the terminator is now a tail call to the
// restore function.
if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) {
NewMI->copyImplicitOps(*MF, *MI);
MI->eraseFromParent();
}
}
return true;
}
bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// Keep the conventional code flow when not optimizing.
if (MF.getFunction().hasOptNone())
return false;
return true;
}
bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const MachineFunction *MF = MBB.getParent();
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Inserting a call to a __riscv_save libcall requires the use of the register
// t0 (X5) to hold the return address. Therefore if this register is already
// used we can't insert the call.
RegScavenger RS;
RS.enterBasicBlock(*TmpMBB);
return !RS.isRegUsed(RISCV::X5);
}
bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
const MachineFunction *MF = MBB.getParent();
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Using the __riscv_restore libcalls to restore CSRs requires a tail call.
// This means if we still need to continue executing code within this function
// the restore cannot take place in this basic block.
if (MBB.succ_size() > 1)
return false;
MachineBasicBlock *SuccMBB =
MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin();
// Doing a tail call should be safe if there are no successors, because either
// we have a returning block or the end of the block is unreachable, so the
// restore will be eliminated regardless.
if (!SuccMBB)
return true;
// The successor can only contain a return, since we would effectively be
// replacing the successor with our own tail return at the end of our block.
return SuccMBB->isReturnBlock() && SuccMBB->size() == 1;
}
bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const {
switch (ID) {
case TargetStackID::Default:
case TargetStackID::ScalableVector:
return true;
case TargetStackID::NoAlloc:
case TargetStackID::SGPRSpill:
case TargetStackID::WasmLocal:
return false;
}
llvm_unreachable("Invalid TargetStackID::Value");
}
TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const {
return TargetStackID::ScalableVector;
}