blob: fa12fe1da4488b9deba71ea9860b1323c159ef5c [file] [log] [blame]
//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCChecker.h"
#include "MCTargetDesc/HexagonMCExpr.h"
#include "MCTargetDesc/HexagonMCShuffler.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <limits>
using namespace llvm;
bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
return Register != Hexagon::NoRegister;
}
Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
MCInst const &Inst)
: MCII(MCII), BundleCurrent(Inst.begin() +
HexagonMCInstrInfo::bundleInstructionsOffset),
BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
MCInst const &Inst, std::nullptr_t)
: MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
if (DuplexCurrent != DuplexEnd) {
++DuplexCurrent;
if (DuplexCurrent == DuplexEnd) {
DuplexCurrent = BundleEnd;
DuplexEnd = BundleEnd;
++BundleCurrent;
}
return *this;
}
++BundleCurrent;
if (BundleCurrent != BundleEnd) {
MCInst const &Inst = *BundleCurrent->getInst();
if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
DuplexCurrent = Inst.begin();
DuplexEnd = Inst.end();
}
}
return *this;
}
MCInst const &Hexagon::PacketIterator::operator*() const {
if (DuplexCurrent != DuplexEnd)
return *DuplexCurrent->getInst();
return *BundleCurrent->getInst();
}
bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
}
void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
MCContext &Context) {
MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
}
void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isBundle(MCB));
MCOperand const &exOp =
MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
// Create the extender.
MCInst *XMCI =
new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
XMCI->setLoc(MCI.getLoc());
MCB.addOperand(MCOperand::createInst(XMCI));
}
iterator_range<Hexagon::PacketIterator>
HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
MCInst const &MCI) {
assert(isBundle(MCI));
return make_range(Hexagon::PacketIterator(MCII, MCI),
Hexagon::PacketIterator(MCII, MCI, nullptr));
}
iterator_range<MCInst::const_iterator>
HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
assert(isBundle(MCI));
return drop_begin(MCI, bundleInstructionsOffset);
}
size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
if (HexagonMCInstrInfo::isBundle(MCI))
return (MCI.size() - bundleInstructionsOffset);
else
return (1);
}
namespace {
bool canonicalizePacketImpl(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
MCContext &Context, MCInst &MCB,
HexagonMCChecker *Check) {
// Check the bundle for errors.
bool CheckOk = Check ? Check->check(false) : true;
if (!CheckOk)
return false;
// Examine the packet and convert pairs of instructions to compound
// instructions when possible.
if (!HexagonDisableCompound)
HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB);
HexagonMCShuffle(Context, false, MCII, STI, MCB);
// Examine the packet and convert pairs of instructions to duplex
// instructions when possible.
if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) {
SmallVector<DuplexCandidate, 8> possibleDuplexes;
possibleDuplexes =
HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB);
HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
}
// Examines packet and pad the packet, if needed, when an
// end-loop is in the bundle.
HexagonMCInstrInfo::padEndloop(MCB, Context);
// If compounding and duplexing didn't reduce the size below
// 4 or less we have a packet that is too big.
if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
if (Check)
Check->reportError("invalid instruction packet: out of slots");
return false;
}
// Check the bundle for errors.
CheckOk = Check ? Check->check(true) : true;
if (!CheckOk)
return false;
HexagonMCShuffle(Context, true, MCII, STI, MCB);
return true;
}
} // namespace
bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCContext &Context, MCInst &MCB,
HexagonMCChecker *Check,
bool AttemptCompatibility) {
auto ArchSTI = Hexagon_MC::getArchSubtarget(&STI);
if (!AttemptCompatibility || ArchSTI == nullptr)
return canonicalizePacketImpl(MCII, STI, Context, MCB, Check);
const MCRegisterInfo *RI = Context.getRegisterInfo();
HexagonMCChecker DefaultCheck(Context, MCII, STI, MCB, *RI, false);
HexagonMCChecker *BaseCheck = (Check == nullptr) ? &DefaultCheck : Check;
HexagonMCChecker PerfCheck(*BaseCheck, STI, false);
if (canonicalizePacketImpl(MCII, STI, Context, MCB, &PerfCheck))
return true;
HexagonMCChecker ArchCheck(*BaseCheck, *ArchSTI, true);
return canonicalizePacketImpl(MCII, *ArchSTI, Context, MCB, &ArchCheck);
}
MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
MCInst const &Inst,
MCOperand const &MO) {
assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
HexagonMCInstrInfo::isExtended(MCII, Inst));
MCInst XMI;
XMI.setOpcode(Hexagon::A4_ext);
if (MO.isImm())
XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
else if (MO.isExpr())
XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
else
llvm_unreachable("invalid extendable operand");
return XMI;
}
MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
MCInst const &inst0,
MCInst const &inst1) {
assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
MCInst *duplexInst = new (Context) MCInst;
duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
duplexInst->addOperand(MCOperand::createInst(SubInst0));
duplexInst->addOperand(MCOperand::createInst(SubInst1));
return duplexInst;
}
MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
size_t Index) {
assert(Index <= bundleSize(MCB));
if (Index == 0)
return nullptr;
MCInst const *Inst =
MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
if (isImmext(*Inst))
return Inst;
return nullptr;
}
void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI) {
if (isConstExtended(MCII, MCI))
addConstExtender(Context, MCII, MCB, MCI);
}
unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S));
}
unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
HexagonII::AddrModeMask);
}
MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
MCInst const &MCI) {
return MCII.get(MCI.getOpcode());
}
unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
using namespace Hexagon;
switch (Reg) {
default:
llvm_unreachable("unknown duplex register");
// Rs Rss
case R0:
case D0:
return 0;
case R1:
case D1:
return 1;
case R2:
case D2:
return 2;
case R3:
case D3:
return 3;
case R4:
case D8:
return 4;
case R5:
case D9:
return 5;
case R6:
case D10:
return 6;
case R7:
case D11:
return 7;
case R16:
return 8;
case R17:
return 9;
case R18:
return 10;
case R19:
return 11;
case R20:
return 12;
case R21:
return 13;
case R22:
return 14;
case R23:
return 15;
}
}
MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
const auto &HExpr = cast<HexagonMCExpr>(Expr);
assert(HExpr.getExpr());
return *HExpr.getExpr();
}
unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
MCOperand const &
HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
MCOperand const &MO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
(MO.isImm() || MO.isExpr()));
return (MO);
}
unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
}
unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
}
/// Return the maximum value of an extendable operand.
int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
}
/// Return the minimum value of an extendable operand.
int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
return 0;
}
StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
MCInst const &MCI) {
return MCII.getName(MCI.getOpcode());
}
unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
}
MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
// VTMP doesn't actually exist in the encodings for these 184
// 3 instructions so go ahead and create it here.
static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP);
return (MCO);
} else {
unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
}
/// Return the new value or the newly produced value.
unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
}
MCOperand const &
HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
/// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}
/// Return the resources used by this instruction
unsigned HexagonMCInstrInfo::getCVIResources(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
int Size = II[SchedClass].LastStage - II[SchedClass].FirstStage;
// HVX resources used are currenty located at the second to last stage.
// This could also be done with a linear search of the stages looking for:
// CVI_ALL, CVI_MPY01, CVI_XLSHF, CVI_MPY0, CVI_MPY1, CVI_SHIFT, CVI_XLANE,
// CVI_ZW
unsigned Stage = II[SchedClass].LastStage - 1;
if (Size < 2)
return 0;
return ((Stage + HexagonStages)->getUnits());
}
/// Return the slots this instruction can execute out of
unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
}
/// Return the slots this instruction consumes in addition to
/// the slot(s) it can execute out of
unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
unsigned Slots = 0;
// FirstStage are slots that this instruction can execute in.
// FirstStage+1 are slots that are also consumed by this instruction.
// For example: vmemu can only execute in slot 0 but also consumes slot 1.
for (unsigned Stage = II[SchedClass].FirstStage + 1;
Stage < II[SchedClass].LastStage; ++Stage) {
unsigned Units = (Stage + HexagonStages)->getUnits();
if (Units > HexagonGetLastSlot())
break;
// fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
Slots |= Units;
}
// if 0 is returned, then no additional slots are consumed by this inst.
return Slots;
}
bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
if (!HexagonMCInstrInfo::isBundle(MCI))
return false;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst()))
return true;
}
return false;
}
bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
return extenderForIndex(MCB, Index) != nullptr;
}
bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
if (!HexagonMCInstrInfo::isBundle(MCI))
return false;
for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
if (isImmext(*I.getInst()))
return true;
}
return false;
}
/// Return whether the insn produces a value.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
/// Return whether the insn produces a second value.
bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
}
MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
assert(isBundle(MCB));
assert(Index < HEXAGON_PRESHUFFLE_PACKET_SIZE);
return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
}
/// Return where the instruction is an accumulator.
bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
}
bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
auto Result = Hexagon::BUNDLE == MCI.getOpcode();
assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
return Result;
}
bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::isExtended(MCII, MCI))
return true;
if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
return false;
MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
if (isa<HexagonMCExpr>(MO.getExpr()) &&
HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
return true;
// Branch insns are handled as necessary by relaxation.
if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
return false;
// Otherwise loop instructions and other CR insts are handled by relaxation
else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
(MCI.getOpcode() != Hexagon::C4_addipc))
return false;
assert(!MO.isImm());
if (isa<HexagonMCExpr>(MO.getExpr()) &&
HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
return false;
int64_t Value;
if (!MO.getExpr()->evaluateAsAbsolute(Value))
return true;
int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
return (MinValue > Value || Value > MaxValue);
}
bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
!HexagonMCInstrInfo::isPrefix(MCII, MCI);
}
bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
}
bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
}
bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
}
bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
MCInst const &MCI) {
return (getType(MCII, MCI) == HexagonII::TypeCJ);
}
bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
}
bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
(Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
}
bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
}
bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}
bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
}
bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t V = getType(MCII, MCI);
return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
}
bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
return MCI.getOpcode() == Hexagon::A4_ext;
}
bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & innerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
}
bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
}
/// Return whether the insn expects newly produced value.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
bool HexagonMCInstrInfo::isNewValueStore(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
}
/// Return whether the operand is extendable.
bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
MCInst const &MCI, unsigned short O) {
return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
}
bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & outerLoopMask) != 0;
}
bool HexagonMCInstrInfo::IsVecRegPair(unsigned VecReg) {
return (VecReg >= Hexagon::W0 && VecReg <= Hexagon::W15) ||
(VecReg >= Hexagon::WR0 && VecReg <= Hexagon::WR15);
}
bool HexagonMCInstrInfo::IsReverseVecRegPair(unsigned VecReg) {
return (VecReg >= Hexagon::WR0 && VecReg <= Hexagon::WR15);
}
bool HexagonMCInstrInfo::IsVecRegSingle(unsigned VecReg) {
return (VecReg >= Hexagon::V0 && VecReg <= Hexagon::V31);
}
std::pair<unsigned, unsigned>
HexagonMCInstrInfo::GetVecRegPairIndices(unsigned VecRegPair) {
assert(IsVecRegPair(VecRegPair) &&
"VecRegPair must be a vector register pair");
const bool IsRev = IsReverseVecRegPair(VecRegPair);
const unsigned PairIndex =
2 * (IsRev ? VecRegPair - Hexagon::WR0 : VecRegPair - Hexagon::W0);
return IsRev ? std::make_pair(PairIndex, PairIndex + 1)
: std::make_pair(PairIndex + 1, PairIndex);
}
bool HexagonMCInstrInfo::IsSingleConsumerRefPairProducer(unsigned Producer,
unsigned Consumer) {
if (IsVecRegPair(Producer) && IsVecRegSingle(Consumer)) {
const unsigned ProdPairIndex = IsReverseVecRegPair(Producer)
? Producer - Hexagon::WR0
: Producer - Hexagon::W0;
const unsigned ConsumerSingleIndex = (Consumer - Hexagon::V0) >> 1;
return ConsumerSingleIndex == ProdPairIndex;
}
return false;
}
bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
}
bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
}
/// Return whether the insn is newly predicated.
bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (
!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
}
bool HexagonMCInstrInfo::isPredReg(MCRegisterInfo const &MRI, unsigned Reg) {
auto &PredRegClass = MRI.getRegClass(Hexagon::PredRegsRegClassID);
return PredRegClass.contains(Reg);
}
bool HexagonMCInstrInfo::isPredRegister(MCInstrInfo const &MCII,
MCInst const &Inst, unsigned I) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
return Inst.getOperand(I).isReg() &&
Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID;
}
/// Return whether the insn can be packaged only with A and X-type insns.
bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
}
/// Return whether the insn can be packaged only with an A-type insn in slot #1.
bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::RestrictSlot1AOKPos) &
HexagonII::RestrictSlot1AOKMask);
}
bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::RestrictNoSlot1StorePos) &
HexagonII::RestrictNoSlot1StoreMask);
}
/// Return whether the insn is solo, i.e., cannot be in a packet.
bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
assert(isBundle(MCI));
auto Flags = MCI.getOperand(0).getImm();
return (Flags & memReorderDisabledMask) != 0;
}
bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
switch (MCI.getOpcode()) {
default:
return false;
case Hexagon::SA1_addi:
case Hexagon::SA1_addrx:
case Hexagon::SA1_addsp:
case Hexagon::SA1_and1:
case Hexagon::SA1_clrf:
case Hexagon::SA1_clrfnew:
case Hexagon::SA1_clrt:
case Hexagon::SA1_clrtnew:
case Hexagon::SA1_cmpeqi:
case Hexagon::SA1_combine0i:
case Hexagon::SA1_combine1i:
case Hexagon::SA1_combine2i:
case Hexagon::SA1_combine3i:
case Hexagon::SA1_combinerz:
case Hexagon::SA1_combinezr:
case Hexagon::SA1_dec:
case Hexagon::SA1_inc:
case Hexagon::SA1_seti:
case Hexagon::SA1_setin1:
case Hexagon::SA1_sxtb:
case Hexagon::SA1_sxth:
case Hexagon::SA1_tfr:
case Hexagon::SA1_zxtb:
case Hexagon::SA1_zxth:
case Hexagon::SL1_loadri_io:
case Hexagon::SL1_loadrub_io:
case Hexagon::SL2_deallocframe:
case Hexagon::SL2_jumpr31:
case Hexagon::SL2_jumpr31_f:
case Hexagon::SL2_jumpr31_fnew:
case Hexagon::SL2_jumpr31_t:
case Hexagon::SL2_jumpr31_tnew:
case Hexagon::SL2_loadrb_io:
case Hexagon::SL2_loadrd_sp:
case Hexagon::SL2_loadrh_io:
case Hexagon::SL2_loadri_sp:
case Hexagon::SL2_loadruh_io:
case Hexagon::SL2_return:
case Hexagon::SL2_return_f:
case Hexagon::SL2_return_fnew:
case Hexagon::SL2_return_t:
case Hexagon::SL2_return_tnew:
case Hexagon::SS1_storeb_io:
case Hexagon::SS1_storew_io:
case Hexagon::SS2_allocframe:
case Hexagon::SS2_storebi0:
case Hexagon::SS2_storebi1:
case Hexagon::SS2_stored_sp:
case Hexagon::SS2_storeh_io:
case Hexagon::SS2_storew_sp:
case Hexagon::SS2_storewi0:
case Hexagon::SS2_storewi1:
return true;
}
}
bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::isCVIPos) & HexagonII::isCVIMask;
}
int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
<< 8;
if (MCI.size() <= Index)
return Sentinal;
MCOperand const &MCO = MCI.getOperand(Index);
if (!MCO.isExpr())
return Sentinal;
int64_t Value;
if (!MCO.getExpr()->evaluateAsAbsolute(Value))
return Sentinal;
return Value;
}
void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
HExpr.setMustExtend(Val);
}
bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
return HExpr.mustExtend();
}
void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
HExpr.setMustNotExtend(Val);
}
bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
return HExpr.mustNotExtend();
}
void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
HexagonMCExpr &HExpr =
const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr));
HExpr.setS27_2_reloc(Val);
}
bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr);
if (!HExpr)
return false;
return HExpr->s27_2_reloc();
}
unsigned HexagonMCInstrInfo::packetSizeSlots(MCSubtargetInfo const &STI) {
const bool IsTiny = STI.getFeatureBits()[Hexagon::ProcTinyCore];
return IsTiny ? (HEXAGON_PACKET_SIZE - 1) : HEXAGON_PACKET_SIZE;
}
unsigned HexagonMCInstrInfo::packetSize(StringRef CPU) {
return llvm::StringSwitch<unsigned>(CPU)
.Case("hexagonv67t", 3)
.Default(4);
}
void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
MCInst Nop;
Nop.setOpcode(Hexagon::A2_nop);
assert(isBundle(MCB));
while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
((HexagonMCInstrInfo::isOuterLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
}
HexagonMCInstrInfo::PredicateInfo
HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
if (!isPredicated(MCII, MCI))
return {0, 0, false};
MCInstrDesc const &Desc = getDesc(MCII, MCI);
for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID)
return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)};
return {0, 0, false};
}
bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
}
/// return true if instruction has hasTmpDst attribute.
bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask;
}
bool HexagonMCInstrInfo::requiresSlot(MCSubtargetInfo const &STI,
MCInst const &MCI) {
const unsigned OpCode = MCI.getOpcode();
const bool IsTiny = STI.getFeatureBits() [Hexagon::ProcTinyCore];
const bool NoSlotReqd = Hexagon::A4_ext == OpCode ||
(IsTiny && Hexagon::A2_nop == OpCode) ||
(IsTiny && Hexagon::J4_hintjumpr == OpCode);
return !NoSlotReqd;
}
unsigned HexagonMCInstrInfo::slotsConsumed(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
unsigned slotsUsed = 0;
for (auto HMI : bundleInstructions(MCI)) {
MCInst const &MCI = *HMI.getInst();
if (!requiresSlot(STI, MCI))
continue;
if (isDuplex(MCII, MCI))
slotsUsed += 2;
else
++slotsUsed;
}
return slotsUsed;
}
void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
DuplexCandidate Candidate) {
assert(Candidate.packetIndexI < MCB.size());
assert(Candidate.packetIndexJ < MCB.size());
assert(isBundle(MCB));
MCInst *Duplex =
deriveDuplex(Context, Candidate.iClass,
*MCB.getOperand(Candidate.packetIndexJ).getInst(),
*MCB.getOperand(Candidate.packetIndexI).getInst());
assert(Duplex != nullptr);
MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
MCB.erase(MCB.begin() + Candidate.packetIndexJ);
}
void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | innerLoopMask);
}
void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | memReorderDisabledMask);
assert(isMemReorderDisabled(MCI));
}
void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | outerLoopMask);
}
unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
unsigned Producer,
unsigned Producer2) {
// If we're a single vector consumer of a double producer, set subreg bit
// based on if we're accessing the lower or upper register component
if (IsVecRegPair(Producer) && IsVecRegSingle(Consumer))
return (Consumer - Hexagon::V0) & 0x1;
if (Producer2 != Hexagon::NoRegister)
return Consumer == Producer;
return 0;
}