blob: 8236e6672247b9c9f6e2d0a0d6f45bccd9b45d39 [file] [log] [blame]
//===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// Defines an instruction selector for the AMDGPU target.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUISelDAGToDAG.h"
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/R600MCTargetDesc.h"
#include "R600RegisterInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/InitializePasses.h"
#ifdef EXPENSIVE_CHECKS
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#endif
#define DEBUG_TYPE "isel"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
namespace {
static SDValue stripBitcast(SDValue Val) {
return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
}
// Figure out if this is really an extract of the high 16-bits of a dword.
static bool isExtractHiElt(SDValue In, SDValue &Out) {
In = stripBitcast(In);
if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
if (!Idx->isOne())
return false;
Out = In.getOperand(0);
return true;
}
}
if (In.getOpcode() != ISD::TRUNCATE)
return false;
SDValue Srl = In.getOperand(0);
if (Srl.getOpcode() == ISD::SRL) {
if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
if (ShiftAmt->getZExtValue() == 16) {
Out = stripBitcast(Srl.getOperand(0));
return true;
}
}
}
return false;
}
// Look through operations that obscure just looking at the low 16-bits of the
// same register.
static SDValue stripExtractLoElt(SDValue In) {
if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
if (Idx->isZero() && In.getValueSizeInBits() <= 32)
return In.getOperand(0);
}
}
if (In.getOpcode() == ISD::TRUNCATE) {
SDValue Src = In.getOperand(0);
if (Src.getValueType().getSizeInBits() == 32)
return stripBitcast(Src);
}
return In;
}
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
"AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
#ifdef EXPENSIVE_CHECKS
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
#endif
INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
"AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
/// This pass converts a legalized DAG into a AMDGPU-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
CodeGenOpt::Level OptLevel) {
return new AMDGPUDAGToDAGISel(TM, OptLevel);
}
AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(
TargetMachine *TM /*= nullptr*/,
CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/)
: SelectionDAGISel(*TM, OptLevel) {
EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
}
bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
#ifdef EXPENSIVE_CHECKS
DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
for (auto &L : LI->getLoopsInPreorder()) {
assert(L->isLCSSAForm(DT));
}
#endif
Subtarget = &MF.getSubtarget<GCNSubtarget>();
Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
return SelectionDAGISel::runOnMachineFunction(MF);
}
bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const {
// XXX - only need to list legal operations.
switch (Opc) {
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FCANONICALIZE:
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::FABS:
// Fabs is lowered to a bit operation, but it's an and which will clear the
// high bits anyway.
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FPOWI:
case ISD::FPOW:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FROUND:
case ISD::FFLOOR:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case AMDGPUISD::FRACT:
case AMDGPUISD::CLAMP:
case AMDGPUISD::COS_HW:
case AMDGPUISD::SIN_HW:
case AMDGPUISD::FMIN3:
case AMDGPUISD::FMAX3:
case AMDGPUISD::FMED3:
case AMDGPUISD::FMAD_FTZ:
case AMDGPUISD::RCP:
case AMDGPUISD::RSQ:
case AMDGPUISD::RCP_IFLAG:
case AMDGPUISD::LDEXP:
// On gfx10, all 16-bit instructions preserve the high bits.
return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9;
case ISD::FP_ROUND:
// We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the
// high bits on gfx9.
// TODO: If we had the source node we could see if the source was fma/mad
return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
case ISD::FMA:
case ISD::FMAD:
case AMDGPUISD::DIV_FIXUP:
return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
default:
// fcopysign, select and others may be lowered to 32-bit bit operations
// which don't zero the high bits.
return false;
}
}
void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AMDGPUArgumentUsageInfo>();
AU.addRequired<LegacyDivergenceAnalysis>();
#ifdef EXPENSIVE_CHECKS
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
#endif
SelectionDAGISel::getAnalysisUsage(AU);
}
bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
assert(Subtarget->d16PreservesUnusedBits());
MVT VT = N->getValueType(0).getSimpleVT();
if (VT != MVT::v2i16 && VT != MVT::v2f16)
return false;
SDValue Lo = N->getOperand(0);
SDValue Hi = N->getOperand(1);
LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
// build_vector lo, (load ptr) -> load_d16_hi ptr, lo
// build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
// build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
// Need to check for possible indirect dependencies on the other half of the
// vector to avoid introducing a cycle.
if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
SDValue Ops[] = {
LdHi->getChain(), LdHi->getBasePtr(), TiedIn
};
unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
if (LdHi->getMemoryVT() == MVT::i8) {
LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
} else {
assert(LdHi->getMemoryVT() == MVT::i16);
}
SDValue NewLoadHi =
CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
Ops, LdHi->getMemoryVT(),
LdHi->getMemOperand());
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
return true;
}
// build_vector (load ptr), hi -> load_d16_lo ptr, hi
// build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
// build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
if (LdLo && Lo.hasOneUse()) {
SDValue TiedIn = getHi16Elt(Hi);
if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
return false;
SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
if (LdLo->getMemoryVT() == MVT::i8) {
LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
} else {
assert(LdLo->getMemoryVT() == MVT::i16);
}
TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
SDValue Ops[] = {
LdLo->getChain(), LdLo->getBasePtr(), TiedIn
};
SDValue NewLoadLo =
CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
Ops, LdLo->getMemoryVT(),
LdLo->getMemOperand());
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
return true;
}
return false;
}
void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
if (!Subtarget->d16PreservesUnusedBits())
return;
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty())
continue;
switch (N->getOpcode()) {
case ISD::BUILD_VECTOR:
MadeChange |= matchLoadD16FromBuildVector(N);
break;
default:
break;
}
}
if (MadeChange) {
CurDAG->RemoveDeadNodes();
LLVM_DEBUG(dbgs() << "After PreProcess:\n";
CurDAG->dump(););
}
}
bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
if (TM.Options.NoNaNsFPMath)
return true;
// TODO: Move into isKnownNeverNaN
if (N->getFlags().hasNoNaNs())
return true;
return CurDAG->isKnownNeverNaN(N);
}
bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
bool Negated) const {
if (N->isUndef())
return true;
const SIInstrInfo *TII = Subtarget->getInstrInfo();
if (Negated) {
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
return TII->isInlineConstant(-C->getAPIntValue());
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
} else {
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
return TII->isInlineConstant(C->getAPIntValue());
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
}
return false;
}
/// Determine the register class for \p OpNo
/// \returns The register class of the virtual register that will be used for
/// the given operand number \OpNo or NULL if the register class cannot be
/// determined.
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
unsigned OpNo) const {
if (!N->isMachineOpcode()) {
if (N->getOpcode() == ISD::CopyToReg) {
Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
if (Reg.isVirtual()) {
MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
return MRI.getRegClass(Reg);
}
const SIRegisterInfo *TRI
= static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
return TRI->getPhysRegClass(Reg);
}
return nullptr;
}
switch (N->getMachineOpcode()) {
default: {
const MCInstrDesc &Desc =
Subtarget->getInstrInfo()->get(N->getMachineOpcode());
unsigned OpIdx = Desc.getNumDefs() + OpNo;
if (OpIdx >= Desc.getNumOperands())
return nullptr;
int RegClass = Desc.OpInfo[OpIdx].RegClass;
if (RegClass == -1)
return nullptr;
return Subtarget->getRegisterInfo()->getRegClass(RegClass);
}
case AMDGPU::REG_SEQUENCE: {
unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
const TargetRegisterClass *SuperRC =
Subtarget->getRegisterInfo()->getRegClass(RCID);
SDValue SubRegOp = N->getOperand(OpNo + 1);
unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
SubRegIdx);
}
}
}
SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
SDValue Glue) const {
SmallVector <SDValue, 8> Ops;
Ops.push_back(NewChain); // Replace the chain.
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(N->getOperand(i));
Ops.push_back(Glue);
return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
}
SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
return glueCopyToOp(N, M0, M0.getValue(1));
}
SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
if (AS == AMDGPUAS::LOCAL_ADDRESS) {
if (Subtarget->ldsRequiresM0Init())
return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
} else if (AS == AMDGPUAS::REGION_ADDRESS) {
MachineFunction &MF = CurDAG->getMachineFunction();
unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
return
glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
}
return N;
}
MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
EVT VT) const {
SDNode *Lo = CurDAG->getMachineNode(
AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
SDNode *Hi =
CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
const SDValue Ops[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
}
void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDLoc DL(N);
SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
if (NumVectorElts == 1) {
CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
RegClass);
return;
}
assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
"supported yet");
// 32 = Max Num Vector Elements
// 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
// 1 = Vector Register Class
SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
Triple::amdgcn;
RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
bool IsRegSeq = true;
unsigned NOps = N->getNumOperands();
for (unsigned i = 0; i < NOps; i++) {
// XXX: Why is this here?
if (isa<RegisterSDNode>(N->getOperand(i))) {
IsRegSeq = false;
break;
}
unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
: R600RegisterInfo::getSubRegFromChannel(i);
RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
}
if (NOps != NumVectorElts) {
// Fill in the missing undef elements if this was a scalar_to_vector.
assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
DL, EltVT);
for (unsigned i = NOps; i < NumVectorElts; ++i) {
unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
: R600RegisterInfo::getSubRegFromChannel(i);
RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
RegSeqArgs[1 + (2 * i) + 1] =
CurDAG->getTargetConstant(Sub, DL, MVT::i32);
}
}
if (!IsRegSeq)
SelectCode(N);
CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
}
void AMDGPUDAGToDAGISel::Select(SDNode *N) {
unsigned int Opc = N->getOpcode();
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return; // Already selected.
}
// isa<MemSDNode> almost works but is slightly too permissive for some DS
// intrinsics.
if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
(Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
Opc == ISD::ATOMIC_LOAD_FADD ||
Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
N = glueCopyToM0LDSInit(N);
SelectCode(N);
return;
}
switch (Opc) {
default:
break;
// We are selecting i64 ADD here instead of custom lower it during
// DAG legalization, so we can fold some i64 ADDs used for address
// calculation into the LOAD and STORE instructions.
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: {
if (N->getValueType(0) != MVT::i64)
break;
SelectADD_SUB_I64(N);
return;
}
case ISD::ADDCARRY:
case ISD::SUBCARRY:
if (N->getValueType(0) != MVT::i32)
break;
SelectAddcSubb(N);
return;
case ISD::UADDO:
case ISD::USUBO: {
SelectUADDO_USUBO(N);
return;
}
case AMDGPUISD::FMUL_W_CHAIN: {
SelectFMUL_W_CHAIN(N);
return;
}
case AMDGPUISD::FMA_W_CHAIN: {
SelectFMA_W_CHAIN(N);
return;
}
case ISD::SCALAR_TO_VECTOR:
case ISD::BUILD_VECTOR: {
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
if (VT.getScalarSizeInBits() == 16) {
if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
ReplaceNode(N, Packed);
return;
}
}
break;
}
assert(VT.getVectorElementType().bitsEq(MVT::i32));
unsigned RegClassID =
SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
SelectBuildVector(N, RegClassID);
return;
}
case ISD::BUILD_PAIR: {
SDValue RC, SubReg0, SubReg1;
SDLoc DL(N);
if (N->getValueType(0) == MVT::i128) {
RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
} else if (N->getValueType(0) == MVT::i64) {
RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
} else {
llvm_unreachable("Unhandled value type for BUILD_PAIR");
}
const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
N->getOperand(1), SubReg1 };
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
N->getValueType(0), Ops));
return;
}
case ISD::Constant:
case ISD::ConstantFP: {
if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
break;
uint64_t Imm;
if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
else {
ConstantSDNode *C = cast<ConstantSDNode>(N);
Imm = C->getZExtValue();
}
SDLoc DL(N);
ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
return;
}
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
// There is a scalar version available, but unlike the vector version which
// has a separate operand for the offset and width, the scalar version packs
// the width and offset into a single operand. Try to move to the scalar
// version if the offsets are constant, so that we can try to keep extended
// loads of kernel arguments in SGPRs.
// TODO: Technically we could try to pattern match scalar bitshifts of
// dynamic values, but it's probably not useful.
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Offset)
break;
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!Width)
break;
bool Signed = Opc == AMDGPUISD::BFE_I32;
uint32_t OffsetVal = Offset->getZExtValue();
uint32_t WidthVal = Width->getZExtValue();
ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal,
WidthVal));
return;
}
case AMDGPUISD::DIV_SCALE: {
SelectDIV_SCALE(N);
return;
}
case AMDGPUISD::MAD_I64_I32:
case AMDGPUISD::MAD_U64_U32: {
SelectMAD_64_32(N);
return;
}
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
return SelectMUL_LOHI(N);
case ISD::CopyToReg: {
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
break;
}
case ISD::AND:
case ISD::SRL:
case ISD::SRA:
case ISD::SIGN_EXTEND_INREG:
if (N->getValueType(0) != MVT::i32)
break;
SelectS_BFE(N);
return;
case ISD::BRCOND:
SelectBRCOND(N);
return;
case ISD::FMAD:
case ISD::FMA:
SelectFMAD_FMA(N);
return;
case AMDGPUISD::ATOMIC_CMP_SWAP:
SelectATOMIC_CMP_SWAP(N);
return;
case AMDGPUISD::CVT_PKRTZ_F16_F32:
case AMDGPUISD::CVT_PKNORM_I16_F32:
case AMDGPUISD::CVT_PKNORM_U16_F32:
case AMDGPUISD::CVT_PK_U16_U32:
case AMDGPUISD::CVT_PK_I16_I32: {
// Hack around using a legal type if f16 is illegal.
if (N->getValueType(0) == MVT::i32) {
MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
{ N->getOperand(0), N->getOperand(1) });
SelectCode(N);
return;
}
break;
}
case ISD::INTRINSIC_W_CHAIN: {
SelectINTRINSIC_W_CHAIN(N);
return;
}
case ISD::INTRINSIC_WO_CHAIN: {
SelectINTRINSIC_WO_CHAIN(N);
return;
}
case ISD::INTRINSIC_VOID: {
SelectINTRINSIC_VOID(N);
return;
}
}
SelectCode(N);
}
bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
const Instruction *Term = BB->getTerminator();
return Term->getMetadata("amdgpu.uniform") ||
Term->getMetadata("structurizecfg.uniform");
}
bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N,
unsigned ShAmtBits) const {
assert(N->getOpcode() == ISD::AND);
const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
if (RHS.countTrailingOnes() >= ShAmtBits)
return true;
const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero;
return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits;
}
static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
SDValue &N0, SDValue &N1) {
if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
// As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
// (i64 (bitcast (v2i32 (build_vector
// (or (extract_vector_elt V, 0), OFFSET),
// (extract_vector_elt V, 1)))))
SDValue Lo = Addr.getOperand(0).getOperand(0);
if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
SDValue BaseLo = Lo.getOperand(0);
SDValue BaseHi = Addr.getOperand(0).getOperand(1);
// Check that split base (Lo and Hi) are extracted from the same one.
if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
// Lo is statically extracted from index 0.
isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
BaseLo.getConstantOperandVal(1) == 0 &&
// Hi is statically extracted from index 0.
isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
BaseHi.getConstantOperandVal(1) == 1) {
N0 = BaseLo.getOperand(0).getOperand(0);
N1 = Lo.getOperand(1);
return true;
}
}
}
return false;
}
bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
SDValue &RHS) const {
if (CurDAG->isBaseWithConstantOffset(Addr)) {
LHS = Addr.getOperand(0);
RHS = Addr.getOperand(1);
return true;
}
if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) {
assert(LHS && RHS && isa<ConstantSDNode>(RHS));
return true;
}
return false;
}
StringRef AMDGPUDAGToDAGISel::getPassName() const {
return "AMDGPU DAG->DAG Pattern Instruction Selection";
}
//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//
bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
SDValue &Offset) {
return false;
}
bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *C;
SDLoc DL(Addr);
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
}
return true;
}
SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
const SDLoc &DL) const {
SDNode *Mov = CurDAG->getMachineNode(
AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getTargetConstant(Val, DL, MVT::i32));
return SDValue(Mov, 0);
}
// FIXME: Should only handle addcarry/subcarry
void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
unsigned Opcode = N->getOpcode();
bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
bool ProduceCarry =
ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, LHS, Sub0);
SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, LHS, Sub1);
SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, RHS, Sub0);
SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, RHS, Sub1);
SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
static const unsigned OpcMap[2][2][2] = {
{{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
{AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
{{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
{AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
SDNode *AddLo;
if (!ConsumeCarry) {
SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
} else {
SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
}
SDValue AddHiArgs[] = {
SDValue(Hi0, 0),
SDValue(Hi1, 0),
SDValue(AddLo, 1)
};
SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
SDValue RegSequenceArgs[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
SDValue(AddLo,0),
Sub0,
SDValue(AddHi,0),
Sub1,
};
SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::i64, RegSequenceArgs);
if (ProduceCarry) {
// Replace the carry-use
ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
}
// Replace the remaining uses.
ReplaceNode(N, RegSequence);
}
void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue CI = N->getOperand(2);
if (N->isDivergent()) {
unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
: AMDGPU::V_SUBB_U32_e64;
CurDAG->SelectNodeTo(
N, Opc, N->getVTList(),
{LHS, RHS, CI,
CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
} else {
unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
: AMDGPU::S_SUB_CO_PSEUDO;
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
}
}
void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
// The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
// carry out despite the _i32 name. These were renamed in VI to _U32.
// FIXME: We should probably rename the opcodes here.
bool IsAdd = N->getOpcode() == ISD::UADDO;
bool IsVALU = N->isDivergent();
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
++UI)
if (UI.getUse().getResNo() == 1) {
if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
(!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
IsVALU = true;
break;
}
}
if (IsVALU) {
unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
CurDAG->SelectNodeTo(
N, Opc, N->getVTList(),
{N->getOperand(0), N->getOperand(1),
CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
} else {
unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
: AMDGPU::S_USUBO_PSEUDO;
CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
{N->getOperand(0), N->getOperand(1)});
}
}
void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
SDLoc SL(N);
// src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
SDValue Ops[10];
SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
Ops[8] = N->getOperand(0);
Ops[9] = N->getOperand(4);
// If there are no source modifiers, prefer fmac over fma because it can use
// the smaller VOP2 encoding.
bool UseFMAC = Subtarget->hasDLInsts() &&
cast<ConstantSDNode>(Ops[0])->isZero() &&
cast<ConstantSDNode>(Ops[2])->isZero() &&
cast<ConstantSDNode>(Ops[4])->isZero();
unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64;
CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops);
}
void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
SDLoc SL(N);
// src0_modifiers, src0, src1_modifiers, src1, clamp, omod
SDValue Ops[8];
SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
Ops[6] = N->getOperand(0);
Ops[7] = N->getOperand(3);
CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
}
// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
SDLoc SL(N);
EVT VT = N->getValueType(0);
assert(VT == MVT::f32 || VT == MVT::f64);
unsigned Opc
= (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64;
// src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
// omod
SDValue Ops[8];
SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]);
SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]);
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}
// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
SDLoc SL(N);
bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
Clamp };
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}
// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) {
SDLoc SL(N);
bool Signed = N->getOpcode() == ISD::SMUL_LOHI;
unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64);
SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp};
SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops);
if (!SDValue(N, 0).use_empty()) {
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32);
SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
MVT::i32, SDValue(Mad, 0), Sub0);
ReplaceUses(SDValue(N, 0), SDValue(Lo, 0));
}
if (!SDValue(N, 1).use_empty()) {
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32);
SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
MVT::i32, SDValue(Mad, 0), Sub1);
ReplaceUses(SDValue(N, 1), SDValue(Hi, 0));
}
CurDAG->RemoveDeadNode(N);
}
bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const {
if (!isUInt<16>(Offset))
return false;
if (!Base || Subtarget->hasUsableDSOffset() ||
Subtarget->unsafeDSOffsetFoldingEnabled())
return true;
// On Southern Islands instruction with a negative base value and an offset
// don't seem to work.
return CurDAG->SignBitIsZero(Base);
}
bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
SDLoc DL(Addr);
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (isDSOffsetLegal(N0, C1->getSExtValue())) {
// (add n0, c0)
Base = N0;
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
return true;
}
} else if (Addr.getOpcode() == ISD::SUB) {
// sub C, x -> add (sub 0, x), C
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
int64_t ByteOffset = C->getSExtValue();
if (isDSOffsetLegal(SDValue(), ByteOffset)) {
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
// XXX - This is kind of hacky. Create a dummy sub node so we can check
// the known bits in isDSOffsetLegal. We need to emit the selected node
// here, so this is thrown away.
SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
Zero, Addr.getOperand(1));
if (isDSOffsetLegal(Sub, ByteOffset)) {
SmallVector<SDValue, 3> Opnds;
Opnds.push_back(Zero);
Opnds.push_back(Addr.getOperand(1));
// FIXME: Select to VOP3 version for with-carry.
unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
if (Subtarget->hasAddNoCarry()) {
SubOp = AMDGPU::V_SUB_U32_e64;
Opnds.push_back(
CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
}
MachineSDNode *MachineSub =
CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
Base = SDValue(MachineSub, 0);
Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
return true;
}
}
}
} else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
// If we have a constant address, prefer to put the constant into the
// offset. This can save moves to load the constant address since multiple
// operations can share the zero base address register, and enables merging
// into read2 / write2 instructions.
SDLoc DL(Addr);
if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) {
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
DL, MVT::i32, Zero);
Base = SDValue(MovZero, 0);
Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
return true;
}
}
// default case
Base = Addr;
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0,
unsigned Offset1,
unsigned Size) const {
if (Offset0 % Size != 0 || Offset1 % Size != 0)
return false;
if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size))
return false;
if (!Base || Subtarget->hasUsableDSOffset() ||
Subtarget->unsafeDSOffsetFoldingEnabled())
return true;
// On Southern Islands instruction with a negative base value and an offset
// don't seem to work.
return CurDAG->SignBitIsZero(Base);
}
// TODO: If offset is too big, put low 16-bit into offset.
bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
SDValue &Offset0,
SDValue &Offset1) const {
return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4);
}
bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
SDValue &Offset0,
SDValue &Offset1) const {
return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8);
}
bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
SDValue &Offset0, SDValue &Offset1,
unsigned Size) const {
SDLoc DL(Addr);
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
unsigned OffsetValue0 = C1->getZExtValue();
unsigned OffsetValue1 = OffsetValue0 + Size;
// (add n0, c0)
if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) {
Base = N0;
Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
return true;
}
} else if (Addr.getOpcode() == ISD::SUB) {
// sub C, x -> add (sub 0, x), C
if (const ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
unsigned OffsetValue0 = C->getZExtValue();
unsigned OffsetValue1 = OffsetValue0 + Size;
if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
SDLoc DL(Addr);
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
// XXX - This is kind of hacky. Create a dummy sub node so we can check
// the known bits in isDSOffsetLegal. We need to emit the selected node
// here, so this is thrown away.
SDValue Sub =
CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) {
SmallVector<SDValue, 3> Opnds;
Opnds.push_back(Zero);
Opnds.push_back(Addr.getOperand(1));
unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
if (Subtarget->hasAddNoCarry()) {
SubOp = AMDGPU::V_SUB_U32_e64;
Opnds.push_back(
CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
}
MachineSDNode *MachineSub = CurDAG->getMachineNode(
SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds);
Base = SDValue(MachineSub, 0);
Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
return true;
}
}
}
} else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
unsigned OffsetValue0 = CAddr->getZExtValue();
unsigned OffsetValue1 = OffsetValue0 + Size;
if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
MachineSDNode *MovZero =
CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
Base = SDValue(MovZero, 0);
Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
return true;
}
}
// default case
Base = Addr;
Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr,
SDValue &SOffset, SDValue &Offset,
SDValue &Offen, SDValue &Idxen,
SDValue &Addr64) const {
// Subtarget prefers to use flat instruction
// FIXME: This should be a pattern predicate and not reach here
if (Subtarget->useFlatForGlobal())
return false;
SDLoc DL(Addr);
Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
ConstantSDNode *C1 = nullptr;
SDValue N0 = Addr;
if (CurDAG->isBaseWithConstantOffset(Addr)) {
C1 = cast<ConstantSDNode>(Addr.getOperand(1));
if (isUInt<32>(C1->getZExtValue()))
N0 = Addr.getOperand(0);
else
C1 = nullptr;
}
if (N0.getOpcode() == ISD::ADD) {
// (add N2, N3) -> addr64, or
// (add (add N2, N3), C1) -> addr64
SDValue N2 = N0.getOperand(0);
SDValue N3 = N0.getOperand(1);
Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
if (N2->isDivergent()) {
if (N3->isDivergent()) {
// Both N2 and N3 are divergent. Use N0 (the result of the add) as the
// addr64, and construct the resource from a 0 address.
Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
VAddr = N0;
} else {
// N2 is divergent, N3 is not.
Ptr = N3;
VAddr = N2;
}
} else {
// N2 is not divergent.
Ptr = N2;
VAddr = N3;
}
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
} else if (N0->isDivergent()) {
// N0 is divergent. Use it as the addr64, and construct the resource from a
// 0 address.
Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
VAddr = N0;
Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
} else {
// N0 -> offset, or
// (N0 + C1) -> offset
VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
Ptr = N0;
}
if (!C1) {
// No offset.
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
return true;
}
if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
// Legal offset for instruction.
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
return true;
}
// Illegal offset, store it in soffset.
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
SOffset =
SDValue(CurDAG->getMachineNode(
AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
0);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr, SDValue &SOffset,
SDValue &Offset) const {
SDValue Ptr, Offen, Idxen, Addr64;
// addr64 bit was removed for volcanic islands.
// FIXME: This should be a pattern predicate and not reach here
if (!Subtarget->hasAddr64())
return false;
if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
return false;
ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
if (C->getSExtValue()) {
SDLoc DL(Addr);
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
return true;
}
return false;
}
std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
SDLoc DL(N);
auto *FI = dyn_cast<FrameIndexSDNode>(N);
SDValue TFI =
FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N;
// We rebase the base address into an absolute stack address and hence
// use constant 0 for soffset. This value must be retained until
// frame elimination and eliminateFrameIndex will choose the appropriate
// frame register if need be.
return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32));
}
bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
SDValue Addr, SDValue &Rsrc,
SDValue &VAddr, SDValue &SOffset,
SDValue &ImmOffset) const {
SDLoc DL(Addr);
MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
int64_t Imm = CAddr->getSExtValue();
const int64_t NullPtr =
AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
// Don't fold null pointer.
if (Imm != NullPtr) {
SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
MachineSDNode *MovHighBits = CurDAG->getMachineNode(
AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
VAddr = SDValue(MovHighBits, 0);
SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
return true;
}
}
if (CurDAG->isBaseWithConstantOffset(Addr)) {
// (add n0, c1)
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
// Offsets in vaddr must be positive if range checking is enabled.
//
// The total computation of vaddr + soffset + offset must not overflow. If
// vaddr is negative, even if offset is 0 the sgpr offset add will end up
// overflowing.
//
// Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
// always perform a range check. If a negative vaddr base index was used,
// this would fail the range check. The overall address computation would
// compute a valid address, but this doesn't happen due to the range
// check. For out-of-bounds MUBUF loads, a 0 is returned.
//
// Therefore it should be safe to fold any VGPR offset on gfx9 into the
// MUBUF vaddr, but not on older subtargets which can only do this if the
// sign bit is known 0.
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
(!Subtarget->privateMemoryResourceIsRangeChecked() ||
CurDAG->SignBitIsZero(N0))) {
std::tie(VAddr, SOffset) = foldFrameIndex(N0);
ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
return true;
}
}
// (node)
std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
return true;
}
static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) {
if (Val.getOpcode() != ISD::CopyFromReg)
return false;
auto RC =
TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg());
return RC && TRI.isSGPRClass(RC);
}
bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
SDValue Addr,
SDValue &SRsrc,
SDValue &SOffset,
SDValue &Offset) const {
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
SDLoc DL(Addr);
// CopyFromReg <sgpr>
if (IsCopyFromSGPR(*TRI, Addr)) {
SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
SOffset = Addr;
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
return true;
}
ConstantSDNode *CAddr;
if (Addr.getOpcode() == ISD::ADD) {
// Add (CopyFromReg <sgpr>) <constant>
CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
return false;
if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0)))
return false;
SOffset = Addr.getOperand(0);
} else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) &&
SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) {
// <constant>
SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
} else {
return false;
}
SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
SDValue &SOffset, SDValue &Offset
) const {
SDValue Ptr, VAddr, Offen, Idxen, Addr64;
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
return false;
if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
!cast<ConstantSDNode>(Idxen)->getSExtValue() &&
!cast<ConstantSDNode>(Addr64)->getSExtValue()) {
uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
APInt::getAllOnes(32).getZExtValue(); // Size
SDLoc DL(Addr);
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
return true;
}
return false;
}
// Find a load or store from corresponding pattern root.
// Roots may be build_vector, bitconvert or their combinations.
static MemSDNode* findMemSDNode(SDNode *N) {
N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
return MN;
assert(isa<BuildVectorSDNode>(N));
for (SDValue V : N->op_values())
if (MemSDNode *MN =
dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
return MN;
llvm_unreachable("cannot find MemSDNode in the pattern!");
}
bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr,
SDValue &VAddr, SDValue &Offset,
uint64_t FlatVariant) const {
int64_t OffsetVal = 0;
unsigned AS = findMemSDNode(N)->getAddressSpace();
bool CanHaveFlatSegmentOffsetBug =
Subtarget->hasFlatSegmentOffsetBug() &&
FlatVariant == SIInstrFlags::FLAT &&
(AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS);
if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) {
SDValue N0, N1;
if (isBaseWithConstantOffset64(Addr, N0, N1)) {
int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
const SIInstrInfo *TII = Subtarget->getInstrInfo();
if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) {
Addr = N0;
OffsetVal = COffsetVal;
} else {
// If the offset doesn't fit, put the low bits into the offset field and
// add the rest.
//
// For a FLAT instruction the hardware decides whether to access
// global/scratch/shared memory based on the high bits of vaddr,
// ignoring the offset field, so we have to ensure that when we add
// remainder to vaddr it still points into the same underlying object.
// The easiest way to do that is to make sure that we split the offset
// into two pieces that are both >= 0 or both <= 0.
SDLoc DL(N);
uint64_t RemainderOffset;
std::tie(OffsetVal, RemainderOffset) =
TII->splitFlatOffset(COffsetVal, AS, FlatVariant);
SDValue AddOffsetLo =
getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
if (Addr.getValueType().getSizeInBits() == 32) {
SmallVector<SDValue, 3> Opnds;
Opnds.push_back(N0);
Opnds.push_back(AddOffsetLo);
unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32;
if (Subtarget->hasAddNoCarry()) {
AddOp = AMDGPU::V_ADD_U32_e64;
Opnds.push_back(Clamp);
}
Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0);
} else {
// TODO: Should this try to use a scalar add pseudo if the base address
// is uniform and saddr is usable?
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, N0, Sub0);
SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, N0, Sub1);
SDValue AddOffsetHi =
getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
SDNode *Add =
CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
{AddOffsetLo, SDValue(N0Lo, 0), Clamp});
SDNode *Addc = CurDAG->getMachineNode(
AMDGPU::V_ADDC_U32_e64, DL, VTs,
{AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
SDValue RegSequenceArgs[] = {
CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::i64, RegSequenceArgs),
0);
}
}
}
}
VAddr = Addr;
Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr,
SDValue &VAddr,
SDValue &Offset) const {
return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT);
}
bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr,
SDValue &VAddr,
SDValue &Offset) const {
return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal);
}
bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr,
SDValue &VAddr,
SDValue &Offset) const {
return SelectFlatOffsetImpl(N, Addr, VAddr, Offset,
SIInstrFlags::FlatScratch);
}
// If this matches zero_extend i32:x, return x
static SDValue matchZExtFromI32(SDValue Op) {
if (Op.getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
SDValue ExtSrc = Op.getOperand(0);
return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
}
// Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
SDValue Addr,
SDValue &SAddr,
SDValue &VOffset,
SDValue &Offset) const {
int64_t ImmOffset = 0;
// Match the immediate offset first, which canonically is moved as low as
// possible.
SDValue LHS, RHS;
if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
const SIInstrInfo *TII = Subtarget->getInstrInfo();
if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS,
SIInstrFlags::FlatGlobal)) {
Addr = LHS;
ImmOffset = COffsetVal;
} else if (!LHS->isDivergent()) {
if (COffsetVal > 0) {
SDLoc SL(N);
// saddr + large_offset -> saddr +
// (voffset = large_offset & ~MaxOffset) +
// (large_offset & MaxOffset);
int64_t SplitImmOffset, RemainderOffset;
std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal);
if (isUInt<32>(RemainderOffset)) {
SDNode *VMov = CurDAG->getMachineNode(
AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
VOffset = SDValue(VMov, 0);
SAddr = LHS;
Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
return true;
}
}
// We are adding a 64 bit SGPR and a constant. If constant bus limit
// is 1 we would need to perform 1 or 2 extra moves for each half of
// the constant and it is better to do a scalar add and then issue a
// single VALU instruction to materialize zero. Otherwise it is less
// instructions to perform VALU adds with immediates or inline literals.
unsigned NumLiterals =
!TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) +
!TII->isInlineConstant(APInt(32, COffsetVal >> 32));
if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals)
return false;
}
}
// Match the variable offset.
if (Addr.getOpcode() == ISD::ADD) {
LHS = Addr.getOperand(0);
RHS = Addr.getOperand(1);
if (!LHS->isDivergent()) {
// add (i64 sgpr), (zero_extend (i32 vgpr))
if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
SAddr = LHS;
VOffset = ZextRHS;
}
}
if (!SAddr && !RHS->isDivergent()) {
// add (zero_extend (i32 vgpr)), (i64 sgpr)
if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
SAddr = RHS;
VOffset = ZextLHS;
}
}
if (SAddr) {
Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
return true;
}
}
if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF ||
isa<ConstantSDNode>(Addr))
return false;
// It's cheaper to materialize a single 32-bit zero for vaddr than the two
// moves required to copy a 64-bit SGPR to VGPR.
SAddr = Addr;
SDNode *VMov =
CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32,
CurDAG->getTargetConstant(0, SDLoc(), MVT::i32));
VOffset = SDValue(VMov, 0);
Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
return true;
}
static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) {
if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) {
SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0));
} else if (SAddr.getOpcode() == ISD::ADD &&
isa<FrameIndexSDNode>(SAddr.getOperand(0))) {
// Materialize this into a scalar move for scalar address to avoid
// readfirstlane.
auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0));
SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
FI->getValueType(0));
SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr),
MVT::i32, TFI, SAddr.getOperand(1)),
0);
}
return SAddr;
}
// Match (32-bit SGPR base) + sext(imm offset)
bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr,
SDValue &SAddr,
SDValue &Offset) const {
if (Addr->isDivergent())
return false;
SDLoc DL(Addr);
int64_t COffsetVal = 0;
if (CurDAG->isBaseWithConstantOffset(Addr)) {
COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
SAddr = Addr.getOperand(0);
} else {
SAddr = Addr;
}
SAddr = SelectSAddrFI(CurDAG, SAddr);
const SIInstrInfo *TII = Subtarget->getInstrInfo();
if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS,
SIInstrFlags::FlatScratch)) {
int64_t SplitImmOffset, RemainderOffset;
std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch);
COffsetVal = SplitImmOffset;
SDValue AddOffset =
SAddr.getOpcode() == ISD::TargetFrameIndex
? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL)
: CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32);
SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32,
SAddr, AddOffset),
0);
}
Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
SDValue &Offset, bool &Imm) const {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
if (!C) {
if (ByteOffsetNode.getValueType().isScalarInteger() &&
ByteOffsetNode.getValueType().getSizeInBits() == 32) {
Offset = ByteOffsetNode;
Imm = false;
return true;
}
if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
Offset = ByteOffsetNode.getOperand(0);
Imm = false;
return true;
}
}
return false;
}
SDLoc SL(ByteOffsetNode);
// GFX9 and GFX10 have signed byte immediate offsets.
int64_t ByteOffset = C->getSExtValue();
Optional<int64_t> EncodedOffset =
AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
if (EncodedOffset) {
Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
Imm = true;
return true;
}
// SGPR and literal offsets are unsigned.
if (ByteOffset < 0)
return false;
EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
if (EncodedOffset) {
Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
return true;
}
if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
return false;
SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
Offset = SDValue(
CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
return true;
}
SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
if (Addr.getValueType() != MVT::i32)
return Addr;
// Zero-extend a 32-bit address.
SDLoc SL(Addr);
const MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
unsigned AddrHiVal = Info->get32BitAddressHighBits();
SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
const SDValue Ops[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
Addr,
CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
0),
CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
};
return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
Ops), 0);
}
bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
SDValue &Offset, bool &Imm) const {
SDLoc SL(Addr);
// A 32-bit (address + offset) should not cause unsigned 32-bit integer
// wraparound, because s_load instructions perform the addition in 64 bits.
if ((Addr.getValueType() != MVT::i32 ||
Addr->getFlags().hasNoUnsignedWrap())) {
SDValue N0, N1;
// Extract the base and offset if possible.
if (CurDAG->isBaseWithConstantOffset(Addr) ||
Addr.getOpcode() == ISD::ADD) {
N0 = Addr.getOperand(0);
N1 = Addr.getOperand(1);
} else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
assert(N0 && N1 && isa<ConstantSDNode>(N1));
}
if (N0 && N1) {
if (SelectSMRDOffset(N1, Offset, Imm)) {
SBase = Expand32BitAddress(N0);
return true;
}
}
}
SBase = Expand32BitAddress(Addr);
Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
Imm = true;
return true;
}
bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
SDValue &Offset) const {
bool Imm = false;
return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
}
bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
SDValue &Offset) const {
assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
bool Imm = false;
if (!SelectSMRD(Addr, SBase, Offset, Imm))
return false;
return !Imm && isa<ConstantSDNode>(Offset);
}
bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
SDValue &Offset) const {
bool Imm = false;
return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
!isa<ConstantSDNode>(Offset);
}
bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
SDValue &Offset) const {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
// The immediate offset for S_BUFFER instructions is unsigned.
if (auto Imm =
AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
return true;
}
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
SDValue &Offset) const {
assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
C->getZExtValue())) {
Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
return true;
}
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
SDValue &Base,
SDValue &Offset) const {
SDLoc DL(Index);
if (CurDAG->isBaseWithConstantOffset(Index)) {
SDValue N0 = Index.getOperand(0);
SDValue N1 = Index.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
// (add n0, c0)
// Don't peel off the offset (c0) if doing so could possibly lead
// the base (n0) to be negative.
// (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
(Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
Base = N0;
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
return true;
}
}
if (isa<ConstantSDNode>(Index))
return false;
Base = Index;
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
return true;
}
SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL,
SDValue Val, uint32_t Offset,
uint32_t Width) {
if (Val->isDivergent()) {
unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64;
SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32);
SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32);
return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W);
}
unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
// Transformation function, pack the offset and width of a BFE into
// the format expected by the S_BFE_I32 / S_BFE_U32. In the second
// source, bits [5:0] contain the offset and bits [22:16] the width.
uint32_t PackedVal = Offset | (Width << 16);
SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
}
void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
// "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
// "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
// Predicate: 0 < b <= c < 32
const SDValue &Shl = N->getOperand(0);
ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (B && C) {
uint32_t BVal = B->getZExtValue();
uint32_t CVal = C->getZExtValue();
if (0 < BVal && BVal <= CVal && CVal < 32) {
bool Signed = N->getOpcode() == ISD::SRA;
ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal,
32 - CVal));
return;
}
}
SelectCode(N);
}
void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
switch (N->getOpcode()) {
case ISD::AND:
if (N->getOperand(0).getOpcode() == ISD::SRL) {
// "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
// Predicate: isMask(mask)
const SDValue &Srl = N->getOperand(0);
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Shift && Mask) {
uint32_t ShiftVal = Shift->getZExtValue();
uint32_t MaskVal = Mask->getZExtValue();
if (isMask_32(MaskVal)) {
uint32_t WidthVal = countPopulation(MaskVal);
ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal,
WidthVal));
return;
}
}
}
break;
case ISD::SRL:
if (N->getOperand(0).getOpcode() == ISD::AND) {
// "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
// Predicate: isMask(mask >> b)
const SDValue &And = N->getOperand(0);
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
if (Shift && Mask) {
uint32_t ShiftVal = Shift->getZExtValue();
uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
if (isMask_32(MaskVal)) {
uint32_t WidthVal = countPopulation(MaskVal);
ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal,
WidthVal));
return;
}
}
} else if (N->getOperand(0).getOpcode() == ISD::SHL) {
SelectS_BFEFromShifts(N);
return;
}
break;
case ISD::SRA:
if (N->getOperand(0).getOpcode() == ISD::SHL) {
SelectS_BFEFromShifts(N);
return;
}
break;
case ISD::SIGN_EXTEND_INREG: {
// sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
SDValue Src = N->getOperand(0);
if (Src.getOpcode() != ISD::SRL)
break;
const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
if (!Amt)
break;
unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0),
Amt->getZExtValue(), Width));
return;
}
}
SelectCode(N);
}
bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
assert(N->getOpcode() == ISD::BRCOND);
if (!N->hasOneUse())
return false;
SDValue Cond = N->getOperand(1);
if (Cond.getOpcode() == ISD::CopyToReg)
Cond = Cond.getOperand(2);
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
return false;
MVT VT = Cond.getOperand(0).getSimpleValueType();
if (VT == MVT::i32)
return true;
if (VT == MVT::i64) {
auto ST = static_cast<const GCNSubtarget *>(Subtarget);
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
}
return false;
}
void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
SDValue Cond = N->getOperand(1);
if (Cond.isUndef()) {
CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
N->getOperand(2), N->getOperand(0));
return;
}
const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
const SIRegisterInfo *TRI = ST->getRegisterInfo();
bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
SDLoc SL(N);
if (!UseSCCBr) {
// This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
// analyzed what generates the vcc value, so we do not know whether vcc
// bits for disabled lanes are 0. Thus we need to mask out bits for
// disabled lanes.
//
// For the case that we select S_CBRANCH_SCC1 and it gets
// changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
// SIInstrInfo::moveToVALU which inserts the S_AND).
//
// We could add an analysis of what generates the vcc value here and omit
// the S_AND when is unnecessary. But it would be better to add a separate
// pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
// catches both cases.
Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
: AMDGPU::S_AND_B64,
SL, MVT::i1,
CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
: AMDGPU::EXEC,
MVT::i1),
Cond),
0);
}
SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
N->getOperand(2), // Basic Block
VCC.getValue(0));
}
void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
MVT VT = N->getSimpleValueType(0);
bool IsFMA = N->getOpcode() == ISD::FMA;
if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
!Subtarget->hasFmaMixInsts()) ||
((IsFMA && Subtarget->hasMadMixInsts()) ||
(!IsFMA && Subtarget->hasFmaMixInsts()))) {
SelectCode(N);
return;
}
SDValue Src0 = N->getOperand(0);
SDValue Src1 = N->getOperand(1);
SDValue Src2 = N->getOperand(2);
unsigned Src0Mods, Src1Mods, Src2Mods;
// Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
// using the conversion from f16.
bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
assert((IsFMA || !Mode.allFP32Denormals()) &&
"fmad selected with denormals enabled");
// TODO: We can select this with f32 denormals enabled if all the sources are
// converted from f16 (in which case fmad isn't legal).
if (Sel0 || Sel1 || Sel2) {
// For dummy operands.
SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
SDValue Ops[] = {
CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
Zero, Zero
};
CurDAG->SelectNodeTo(N,
IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
MVT::f32, Ops);
} else {
SelectCode(N);
}
}
// This is here because there isn't a way to use the generated sub0_sub1 as the
// subreg index to EXTRACT_SUBREG in tablegen.
void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
MemSDNode *Mem = cast<MemSDNode>(N);
unsigned AS = Mem->getAddressSpace();
if (AS == AMDGPUAS::FLAT_ADDRESS) {
SelectCode(N);
return;
}
MVT VT = N->getSimpleValueType(0);
bool Is32 = (VT == MVT::i32);
SDLoc SL(N);
MachineSDNode *CmpSwap = nullptr;
if (Subtarget->hasAddr64()) {
SDValue SRsrc, VAddr, SOffset, Offset;
if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) {
unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
SDValue CmpVal = Mem->getOperand(2);
SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32);
// XXX - Do we care about glue operands?
SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol,
Mem->getChain()};
CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
}
}
if (!CmpSwap) {
SDValue SRsrc, SOffset, Offset;
if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) {
unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
SDValue CmpVal = Mem->getOperand(2);
SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32);
SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()};
CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
}
}
if (!CmpSwap) {
SelectCode(N);
return;
}
MachineMemOperand *MMO = Mem->getMemOperand();
CurDAG->setNodeMemRefs(CmpSwap, {MMO});
unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
SDValue Extract
= CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
ReplaceUses(SDValue(N, 0), Extract);
ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
CurDAG->RemoveDeadNode(N);
}
void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
// The address is assumed to be uniform, so if it ends up in a VGPR, it will
// be copied to an SGPR with readfirstlane.
unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
SDValue Chain = N->getOperand(0);
SDValue Ptr = N->getOperand(2);
MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
MachineMemOperand *MMO = M->getMemOperand();
bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
SDValue Offset;
if (CurDAG->isBaseWithConstantOffset(Ptr)) {
SDValue PtrBase = Ptr.getOperand(0);
SDValue PtrOffset = Ptr.getOperand(1);
const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) {
N = glueCopyToM0(N, PtrBase);
Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
}
}
if (!Offset) {
N = glueCopyToM0(N, Ptr);
Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
}
SDValue Ops[] = {
Offset,
CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
Chain,
N->getOperand(N->getNumOperands() - 1) // New glue
};
SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
}
static unsigned gwsIntrinToOpcode(unsigned IntrID) {
switch (IntrID) {
case Intrinsic::amdgcn_ds_gws_init:
return AMDGPU::DS_GWS_INIT;
case Intrinsic::amdgcn_ds_gws_barrier:
return AMDGPU::DS_GWS_BARRIER;
case Intrinsic::amdgcn_ds_gws_sema_v:
return AMDGPU::DS_GWS_SEMA_V;
case Intrinsic::amdgcn_ds_gws_sema_br:
return AMDGPU::DS_GWS_SEMA_BR;
case Intrinsic::amdgcn_ds_gws_sema_p:
return AMDGPU::DS_GWS_SEMA_P;
case Intrinsic::amdgcn_ds_gws_sema_release_all:
return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
default:
llvm_unreachable("not a gws intrinsic");
}
}
void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
!Subtarget->hasGWSSemaReleaseAll()) {
// Let this error.
SelectCode(N);
return;
}
// Chain, intrinsic ID, vsrc, offset
const bool HasVSrc = N->getNumOperands() == 4;
assert(HasVSrc || N->getNumOperands() == 3);
SDLoc SL(N);
SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
int ImmOffset = 0;
MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
MachineMemOperand *MMO = M->getMemOperand();
// Don't worry if the offset ends up in a VGPR. Only one lane will have
// effect, so SIFixSGPRCopies will validly insert readfirstlane.
// The resource id offset is computed as (<isa opaque base> + M0[21:16] +
// offset field) % 64. Some versions of the programming guide omit the m0
// part, or claim it's from offset 0.
if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
// If we have a constant offset, try to use the 0 in m0 as the base.
// TODO: Look into changing the default m0 initialization value. If the
// default -1 only set the low 16-bits, we could leave it as-is and add 1 to
// the immediate offset.
glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
ImmOffset = ConstOffset->getZExtValue();
} else {
if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
ImmOffset = BaseOffset.getConstantOperandVal(1);
BaseOffset = BaseOffset.getOperand(0);
}
// Prefer to do the shift in an SGPR since it should be possible to use m0
// as the result directly. If it's already an SGPR, it will be eliminated
// later.
SDNode *SGPROffset
= CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
BaseOffset);
// Shift to offset in m0
SDNode *M0Base
= CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
SDValue(SGPROffset, 0),
CurDAG->getTargetConstant(16, SL, MVT::i32));
glueCopyToM0(N, SDValue(M0Base, 0));
}
SDValue Chain = N->getOperand(0);
SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
const unsigned Opc = gwsIntrinToOpcode(IntrID);
SmallVector<SDValue, 5> Ops;
if (HasVSrc)
Ops.push_back(N->getOperand(2));
Ops.push_back(OffsetField);
Ops.push_back(Chain);
SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
}
void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
if (Subtarget->getLDSBankCount() != 16) {
// This is a single instruction with a pattern.
SelectCode(N);
return;
}
SDLoc DL(N);
// This requires 2 instructions. It is possible to write a pattern to support
// this, but the generated isel emitter doesn't correctly deal with multiple
// output instructions using the same physical register input. The copy to m0
// is incorrectly placed before the second instruction.
//
// TODO: Match source modifiers.
//
// def : Pat <
// (int_amdgcn_interp_p1_f16
// (VOP3Mods f32:$src0, i32:$src0_modifiers),
// (i32 timm:$attrchan), (i32 timm:$attr),
// (i1 timm:$high), M0),
// (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
// timm:$attrchan, 0,
// (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
// let Predicates = [has16BankLDS];
// }
// 16 bank LDS
SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
N->getOperand(5), SDValue());
SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
SDNode *InterpMov =
CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
N->getOperand(3), // Attr
N->getOperand(2), // Attrchan
ToM0.getValue(1) // In glue
});
SDNode *InterpP1LV =
CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
N->getOperand(1), // Src0
N->getOperand(3), // Attr
N->getOperand(2), // Attrchan
CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
N->getOperand(4), // high
CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
SDValue(InterpMov, 1)
});
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
}
void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntrID) {
case Intrinsic::amdgcn_ds_append:
case Intrinsic::amdgcn_ds_consume: {
if (N->getValueType(0) != MVT::i32)
break;
SelectDSAppendConsume(N, IntrID);
return;
}
}
SelectCode(N);
}
void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Opcode;
switch (IntrID) {
case Intrinsic::amdgcn_wqm:
Opcode = AMDGPU::WQM;
break;
case Intrinsic::amdgcn_softwqm:
Opcode = AMDGPU::SOFT_WQM;
break;
case Intrinsic::amdgcn_wwm:
case Intrinsic::amdgcn_strict_wwm:
Opcode = AMDGPU::STRICT_WWM;
break;
case Intrinsic::amdgcn_strict_wqm:
Opcode = AMDGPU::STRICT_WQM;
break;
case Intrinsic::amdgcn_interp_p1_f16:
SelectInterpP1F16(N);
return;
default:
SelectCode(N);
return;
}
SDValue Src = N->getOperand(1);
CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
}
void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntrID) {
case Intrinsic::amdgcn_ds_gws_init:
case Intrinsic::amdgcn_ds_gws_barrier:
case Intrinsic::amdgcn_ds_gws_sema_v:
case Intrinsic::amdgcn_ds_gws_sema_br:
case Intrinsic::amdgcn_ds_gws_sema_p:
case Intrinsic::amdgcn_ds_gws_sema_release_all:
SelectDS_GWS(N, IntrID);
return;
default:
break;
}
SelectCode(N);
}
bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
unsigned &Mods,
bool AllowAbs) const {
Mods = 0;
Src = In;
if (Src.getOpcode() == ISD::FNEG) {
Mods |= SISrcMods::NEG;
Src = Src.getOperand(0);
}
if (AllowAbs && Src.getOpcode() == ISD::FABS) {
Mods |= SISrcMods::ABS;
Src = Src.getOperand(0);
}
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods;
if (SelectVOP3ModsImpl(In, Src, Mods)) {
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods;
if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) {
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
SelectVOP3Mods(In, Src, SrcMods);
return isNoNanSrc(Src);
}
bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
return false;
Src = In;
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
SDValue &SrcMods, SDValue &Clamp,
SDValue &Omod) const {
SDLoc DL(In);
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
return SelectVOP3Mods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src,
SDValue &SrcMods, SDValue &Clamp,
SDValue &Omod) const {
SDLoc DL(In);
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
return SelectVOP3BMods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
SDValue &Clamp, SDValue &Omod) const {
Src = In;
SDLoc DL(In);
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods = 0;
Src = In;
if (Src.getOpcode() == ISD::FNEG) {
Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
Src = Src.getOperand(0);
}
if (Src.getOpcode() == ISD::BUILD_VECTOR) {
unsigned VecMods = Mods;
SDValue Lo = stripBitcast(Src.getOperand(0));
SDValue Hi = stripBitcast(Src.getOperand(1));
if (Lo.getOpcode() == ISD::FNEG) {
Lo = stripBitcast(Lo.getOperand(0));
Mods ^= SISrcMods::NEG;
}
if (Hi.getOpcode() == ISD::FNEG) {
Hi = stripBitcast(Hi.getOperand(0));
Mods ^= SISrcMods::NEG_HI;
}
if (isExtractHiElt(Lo, Lo))
Mods |= SISrcMods::OP_SEL_0;
if (isExtractHiElt(Hi, Hi))
Mods |= SISrcMods::OP_SEL_1;
unsigned VecSize = Src.getValueSizeInBits();
Lo = stripExtractLoElt(Lo);
Hi = stripExtractLoElt(Hi);
if (Lo.getValueSizeInBits() > VecSize) {
Lo = CurDAG->getTargetExtractSubreg(
(VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
MVT::getIntegerVT(VecSize), Lo);
}
if (Hi.getValueSizeInBits() > VecSize) {
Hi = CurDAG->getTargetExtractSubreg(
(VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
MVT::getIntegerVT(VecSize), Hi);
}
assert(Lo.getValueSizeInBits() <= VecSize &&
Hi.getValueSizeInBits() <= VecSize);
if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
// Really a scalar input. Just select from the low half of the register to
// avoid packing.
if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) {
Src = Lo;
} else {
assert(Lo.getValueSizeInBits() == 32 && VecSize == 64);
SDLoc SL(In);
SDValue Undef = SDValue(
CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL,
Lo.getValueType()), 0);
auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID
: AMDGPU::SReg_64RegClassID;
const SDValue Ops[] = {
CurDAG->getTargetConstant(RC, SL, MVT::i32),
Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) };
Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL,
Src.getValueType(), Ops), 0);
}
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) {
uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF()
.bitcastToAPInt().getZExtValue();
if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) {
Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);;
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
}
Mods = VecMods;
}
// Packed instructions do not have abs modifiers.
Mods |= SISrcMods::OP_SEL_1;
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
Src = In;
// FIXME: Handle op_sel
SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
// FIXME: Handle op_sel
return SelectVOP3Mods(In, Src, SrcMods);
}
// The return value is not whether the match is possible (which it always is),
// but whether or not it a conversion is really used.
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
unsigned &Mods) const {
Mods = 0;
SelectVOP3ModsImpl(In, Src, Mods);
if (Src.getOpcode() == ISD::FP_EXTEND) {
Src = Src.getOperand(0);
assert(Src.getValueType() == MVT::f16);
Src = stripBitcast(Src);
// Be careful about folding modifiers if we already have an abs. fneg is
// applied last, so we don't want to apply an earlier fneg.
if ((Mods & SISrcMods::ABS) == 0) {
unsigned ModsTmp;
SelectVOP3ModsImpl(Src, Src, ModsTmp);
if ((ModsTmp & SISrcMods::NEG) != 0)
Mods ^= SISrcMods::NEG;
if ((ModsTmp & SISrcMods::ABS) != 0)
Mods |= SISrcMods::ABS;
}
// op_sel/op_sel_hi decide the source type and source.
// If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
// If the sources's op_sel is set, it picks the high half of the source
// register.
Mods |= SISrcMods::OP_SEL_1;
if (isExtractHiElt(Src, Src)) {
Mods |= SISrcMods::OP_SEL_0;
// TODO: Should we try to look for neg/abs here?
}
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods = 0;
SelectVOP3PMadMixModsImpl(In, Src, Mods);
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
if (In.isUndef())
return CurDAG->getUNDEF(MVT::i32);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
SDLoc SL(In);
return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
SDLoc SL(In);
return CurDAG->getConstant(
C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
}
SDValue Src;
if (isExtractHiElt(In, Src))
return Src;
return SDValue();
}
bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
const SIRegisterInfo *SIRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
const SIInstrInfo * SII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
unsigned Limit = 0;
bool AllUsesAcceptSReg = true;
for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
Limit < 10 && U != E; ++U, ++Limit) {
const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
// If the register class is unknown, it could be an unknown
// register class that needs to be an SGPR, e.g. an inline asm
// constraint
if (!RC || SIRI->isSGPRClass(RC))
return false;
if (RC != &AMDGPU::VS_32RegClass) {
AllUsesAcceptSReg = false;
SDNode * User = *U;
if (User->isMachineOpcode()) {
unsigned Opc = User->getMachineOpcode();
MCInstrDesc Desc = SII->get(Opc);
if (Desc.isCommutable()) {
unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
if (CommutedRC == &AMDGPU::VS_32RegClass)
AllUsesAcceptSReg = true;
}
}
}
// If "AllUsesAcceptSReg == false" so far we haven't suceeded
// commuting current user. This means have at least one use
// that strictly require VGPR. Thus, we will not attempt to commute
// other user instructions.
if (!AllUsesAcceptSReg)
break;
}
}
return !AllUsesAcceptSReg && (Limit < 10);
}
bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
auto Ld = cast<LoadSDNode>(N);
return Ld->getAlignment() >= 4 &&
(
(
(
Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
&&
!N->isDivergent()
)
||
(
Subtarget->getScalarizeGlobalBehavior() &&
Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
Ld->isSimple() &&
!N->isDivergent() &&
static_cast<const SITargetLowering *>(
getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
)
);
}
void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
const AMDGPUTargetLowering& Lowering =
*static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
bool IsModified = false;
do {
IsModified = false;
// Go over all selected nodes and try to fold them a bit more
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
while (Position != CurDAG->allnodes_end()) {
SDNode *Node = &*Position++;
MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
if (!MachineNode)
continue;
SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
if (ResNode != Node) {
if (ResNode)
ReplaceUses(Node, ResNode);
IsModified = true;
}
}
CurDAG->RemoveDeadNodes();
} while (IsModified);
}