blob: a55729586b8d874c029bfecaffc2f23639c9d911 [file] [log] [blame]
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
namespace {
static cl::opt<bool> WidenLoads(
"amdgpu-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
static cl::opt<bool> Widen16BitOps(
"amdgpu-codegenprepare-widen-16-bit-ops",
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool> UseMul24Intrin(
"amdgpu-codegenprepare-mul24",
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
// Legalize 64-bit division by using the generic IR expansion.
static cl::opt<bool> ExpandDiv64InIR(
"amdgpu-codegenprepare-expand-div64",
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
// and is used for testing the legalizer.
static cl::opt<bool> DisableIDivExpand(
"amdgpu-codegenprepare-disable-idiv-expansion",
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
class AMDGPUCodeGenPrepare : public FunctionPass,
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
const GCNSubtarget *ST = nullptr;
AssumptionCache *AC = nullptr;
DominatorTree *DT = nullptr;
LegacyDivergenceAnalysis *DA = nullptr;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
bool HasUnsafeFPMath = false;
bool HasFP32Denormals = false;
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
/// binary operation \p V.
///
/// \returns Binary operation \p V.
/// \returns \p T's base element bit width.
unsigned getBaseElementBitWidth(const Type *T) const;
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
/// is returned.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
/// false otherwise.
bool needsPromotionToI32(const Type *T) const;
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
/// truncating the result of 32 bit binary operation back to \p I's original
/// type. Division operation is not promoted.
///
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
/// false otherwise.
bool promoteUniformOpToI32(BinaryOperator &I) const;
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
///
/// \returns True.
bool promoteUniformOpToI32(ICmpInst &I) const;
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
/// result of 32 bit 'select' operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformOpToI32(SelectInst &I) const;
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
/// intrinsic.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by zero extending the operand to 32
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
/// shift amount is 32 minus \p I's base element bit width), and truncating
/// the result of the shift operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
/// \returns The minimum number of bits needed to store the value of \Op as an
/// unsigned integer. Truncating to this size and then zero-extending to
/// ScalarSize will not change the value.
unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
/// \returns The minimum number of bits needed to store the value of \Op as a
/// signed integer. Truncating to this size and then sign-extending to
/// ScalarSize will not change the value.
unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
/// SelectionDAG has an issue where an and asserting the bits are known
bool replaceMulWithMul24(BinaryOperator &I) const;
/// Perform same function as equivalently named function in DAGCombiner. Since
/// we expand some divisions here, we need to perform this before obscuring.
bool foldBinOpIntoSelect(BinaryOperator &I) const;
bool divHasSpecialOptimization(BinaryOperator &I,
Value *Num, Value *Den) const;
int getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool Signed) const;
/// Expands 24 bit div or rem.
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const;
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den, unsigned NumBits,
bool IsDiv, bool IsSigned) const;
/// Expands 32 bit div or rem.
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
void expandDivRem64(BinaryOperator &I) const;
/// Widen a scalar load.
///
/// \details \p Widen scalar load for uniform, small type loads from constant
// memory / to a full 32-bits and then truncate the input to allow a scalar
// load instead of a vector load.
//
/// \returns True.
bool canWidenScalarExtLoad(LoadInst &I) const;
public:
static char ID;
AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
bool visitFDiv(BinaryOperator &I);
bool visitXor(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoadInst(LoadInst &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool visitIntrinsicInst(IntrinsicInst &I);
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LegacyDivergenceAnalysis>();
// FIXME: Division expansion needs to preserve the dominator tree.
if (!ExpandDiv64InIR)
AU.setPreservesAll();
}
};
} // end anonymous namespace
unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return T->getIntegerBitWidth();
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}
Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return B.getInt32Ty();
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
}
bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::AShr ||
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
if (!Widen16BitOps)
return false;
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
// TODO: The set of packed operations is more limited, so may want to
// promote some anyway.
if (ST->hasVOP3PInsts())
return false;
return needsPromotionToI32(VT->getElementType());
}
return false;
}
// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
return true;
case Instruction::Mul:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Mul:
return true;
case Instruction::Sub:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
Type *Ty = I.getType();
const DataLayout &DL = Mod->getDataLayout();
int TySize = DL.getTypeSizeInBits(Ty);
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
IntrinsicInst &I) const {
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
"I must be bitreverse intrinsic");
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Function *I32 =
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
Value *LShrOp =
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
Value *TruncRes =
Builder.CreateTrunc(LShrOp, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
unsigned ScalarSize) const {
KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
return ScalarSize - Known.countMinLeadingZeros();
}
unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
unsigned ScalarSize) const {
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC) + 1;
}
static void extractValues(IRBuilder<> &Builder,
SmallVectorImpl<Value *> &Values, Value *V) {
auto *VT = dyn_cast<FixedVectorType>(V->getType());
if (!VT) {
Values.push_back(V);
return;
}
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
Values.push_back(Builder.CreateExtractElement(V, I));
}
static Value *insertValues(IRBuilder<> &Builder,
Type *Ty,
SmallVectorImpl<Value *> &Values) {
if (Values.size() == 1)
return Values[0];
Value *NewVal = UndefValue::get(Ty);
for (int I = 0, E = Values.size(); I != E; ++I)
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
return NewVal;
}
// Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and
// `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the
// width of the original destination.
static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS,
unsigned Size, unsigned NumBits, bool IsSigned) {
if (Size <= 32 || NumBits <= 32) {
Intrinsic::ID ID =
IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
return Builder.CreateIntrinsic(ID, {}, {LHS, RHS});
}
assert(NumBits <= 48);
Intrinsic::ID LoID =
IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
Intrinsic::ID HiID =
IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24;
Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS});
Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS});
IntegerType *I64Ty = Builder.getInt64Ty();
Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty);
Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty);
return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32));
}
bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
if (I.getOpcode() != Instruction::Mul)
return false;
Type *Ty = I.getType();
unsigned Size = Ty->getScalarSizeInBits();
if (Size <= 16 && ST->has16BitInsts())
return false;
// Prefer scalar if this could be s_mul_i32
if (DA->isUniform(&I))
return false;
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
unsigned LHSBits = 0, RHSBits = 0;
bool IsSigned = false;
if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS, Size)) <= 24 &&
(RHSBits = numBitsUnsigned(RHS, Size)) <= 24) {
IsSigned = false;
} else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS, Size)) <= 24 &&
(RHSBits = numBitsSigned(RHS, Size)) <= 24) {
IsSigned = true;
} else
return false;
SmallVector<Value *, 4> LHSVals;
SmallVector<Value *, 4> RHSVals;
SmallVector<Value *, 4> ResultVals;
extractValues(Builder, LHSVals, LHS);
extractValues(Builder, RHSVals, RHS);
IntegerType *I32Ty = Builder.getInt32Ty();
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
Value *LHS, *RHS;
if (IsSigned) {
LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
} else {
LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
}
Value *Result =
getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned);
if (IsSigned) {
ResultVals.push_back(
Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType()));
} else {
ResultVals.push_back(
Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType()));
}
}
Value *NewVal = insertValues(Builder, Ty, ResultVals);
NewVal->takeName(&I);
I.replaceAllUsesWith(NewVal);
I.eraseFromParent();
return true;
}
// Find a select instruction, which may have been casted. This is mostly to deal
// with cases where i16 selects were promoted here to i32.
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
Cast = nullptr;
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
return Sel;
if ((Cast = dyn_cast<CastInst>(V))) {
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
return Sel;
}
return nullptr;
}
bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
int SelOpNo = 0;
CastInst *CastOp;
// TODO: Should probably try to handle some cases with multiple
// users. Duplicating the select may be profitable for division.
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
if (!Sel || !Sel->hasOneUse()) {
SelOpNo = 1;
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
}
if (!Sel || !Sel->hasOneUse())
return false;
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
if (!CBO || !CT || !CF)
return false;
if (CastOp) {
if (!CastOp->hasOneUse())
return false;
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
}
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
// need to handle divisions here.
Constant *FoldedT = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
if (isa<ConstantExpr>(FoldedT))
return false;
Constant *FoldedF = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
if (isa<ConstantExpr>(FoldedF))
return false;
IRBuilder<> Builder(&BO);
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
Builder.setFastMathFlags(FPOp->getFastMathFlags());
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
FoldedT, FoldedF);
NewSelect->takeName(&BO);
BO.replaceAllUsesWith(NewSelect);
BO.eraseFromParent();
if (CastOp)
CastOp->eraseFromParent();
Sel->eraseFromParent();
return true;
}
// Optimize fdiv with rcp:
//
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
bool RcpIsAccurate, IRBuilder<> &Builder,
Module *Mod) {
if (!AllowInaccurateRcp && !RcpIsAccurate)
return nullptr;
Type *Ty = Den->getType();
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
if (AllowInaccurateRcp || RcpIsAccurate) {
if (CLHS->isExactlyValue(1.0)) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals.
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
// insert rsq intrinsic here.
// 1.0 / x -> rcp(x)
return Builder.CreateCall(Decl, { Den });
}
// Same as for 1.0, but expand the sign out of the constant.
if (CLHS->isExactlyValue(-1.0)) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// -1.0 / x -> rcp (fneg x)
Value *FNeg = Builder.CreateFNeg(Den);
return Builder.CreateCall(Decl, { FNeg });
}
}
}
if (AllowInaccurateRcp) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
Value *Recip = Builder.CreateCall(Decl, { Den });
return Builder.CreateFMul(Num, Recip);
}
return nullptr;
}
// optimize with fdiv.fast:
//
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
bool HasDenormals, IRBuilder<> &Builder,
Module *Mod) {
// fdiv.fast can achieve 2.5 ULP accuracy.
if (ReqdAccuracy < 2.5f)
return nullptr;
// Only have fdiv.fast for f32.
Type *Ty = Den->getType();
if (!Ty->isFloatTy())
return nullptr;
bool NumIsOne = false;
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
NumIsOne = true;
}
// fdiv does not support denormals. But 1.0/x is always fine to use it.
if (HasDenormals && !NumIsOne)
return nullptr;
Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
return Builder.CreateCall(Decl, { Num, Den });
}
// Optimizations is performed based on fpmath, fast math flags as well as
// denormals to optimize fdiv with either rcp or fdiv.fast.
//
// With rcp:
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// With fdiv.fast:
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: rcp is the preference in cases that both are legal.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType()->getScalarType();
// The f64 rcp/rsq approximations are pretty inaccurate. We can do an
// expansion around them in codegen.
if (Ty->isDoubleTy())
return false;
// No intrinsic for fdiv16 if target does not support f16.
if (Ty->isHalfTy() && !ST->has16BitInsts())
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
const float ReqdAccuracy = FPOp->getFPAccuracy();
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
FastMathFlags FMF = FPOp->getFastMathFlags();
const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
// rcp_f16 is accurate for !fpmath >= 1.0ulp.
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rcp_f64 is never accurate.
const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
(Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
// Try rcp first.
Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
RcpIsAccurate, Builder, Mod);
if (!NewElt) // Try fdiv.fast.
NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
HasFP32Denormals, Builder, Mod);
if (!NewElt) // Keep the original.
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else { // Scalar FDiv.
// Try rcp first.
NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
Builder, Mod);
if (!NewFDiv) { // Try fdiv.fast.
NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
Builder, Mod);
}
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return !!NewFDiv;
}
bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) {
// Match the Xor instruction, its type and its operands
IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0));
ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1));
if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1)
return visitBinaryOperator(I);
// Check if the Call is an intrinsic instruction to amdgcn_class intrinsic
// has only one use
if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class ||
!IntrinsicCall->hasOneUse())
return visitBinaryOperator(I);
// "Not" the second argument of the intrinsic call
ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1));
if (!Arg)
return visitBinaryOperator(I);
IntrinsicCall->setOperand(
1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff));
I.replaceAllUsesWith(IntrinsicCall);
I.eraseFromParent();
return true;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsBool();
}
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
Value *LHS, Value *RHS) {
Type *I32Ty = Builder.getInt32Ty();
Type *I64Ty = Builder.getInt64Ty();
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
Hi = Builder.CreateTrunc(Hi, I32Ty);
return std::make_pair(Lo, Hi);
}
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
return getMul64(Builder, LHS, RHS).second;
}
/// Figure out how many bits are really needed for this ddivision. \p AtLeast is
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
/// first one is insufficient. Returns -1 on failure.
int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool IsSigned) const {
const DataLayout &DL = Mod->getDataLayout();
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
if (LHSSignBits < AtLeast)
return -1;
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
if (RHSSignBits < AtLeast)
return -1;
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
if (IsSigned)
++DivBits;
return DivBits;
}
// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const {
int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
if (DivBits == -1)
return nullptr;
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
}
Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
unsigned DivBits,
bool IsDiv, bool IsSigned) const {
Type *I32Ty = Builder.getInt32Ty();
Num = Builder.CreateTrunc(Num, I32Ty);
Den = Builder.CreateTrunc(Den, I32Ty);
Type *F32Ty = Builder.getFloatTy();
ConstantInt *One = Builder.getInt32(1);
Value *JQ = One;
if (IsSigned) {
// char|short jq = ia ^ ib;
JQ = Builder.CreateXor(Num, Den);
// jq = jq >> (bitsize - 2)
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
// jq = jq | 0x1
JQ = Builder.CreateOr(JQ, One);
}
// int ia = (int)LHS;
Value *IA = Num;
// int ib, (int)RHS;
Value *IB = Den;
// float fa = (float)ia;
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
: Builder.CreateUIToFP(IA, F32Ty);
// float fb = (float)ib;
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
: Builder.CreateUIToFP(IB,F32Ty);
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
Builder.getFloatTy());
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
Value *FQM = Builder.CreateFMul(FA, RCP);
// fq = trunc(fqm);
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
FQ->copyFastMathFlags(Builder.getFastMathFlags());
// float fqneg = -fq;
Value *FQNeg = Builder.CreateFNeg(FQ);
// float fr = mad(fqneg, fb, fa);
auto FMAD = !ST->hasMadMacF32Insts()
? Intrinsic::fma
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
Value *FR = Builder.CreateIntrinsic(FMAD,
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
// int iq = (int)fq;
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
: Builder.CreateFPToUI(FQ, I32Ty);
// fr = fabs(fr);
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
// fb = fabs(fb);
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
// int cv = fr >= fb;
Value *CV = Builder.CreateFCmpOGE(FR, FB);
// jq = (cv ? jq : 0);
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
// dst = iq + jq;
Value *Div = Builder.CreateAdd(IQ, JQ);
Value *Res = Div;
if (!IsDiv) {
// Rem needs compensation, it's easier to recompute it
Value *Rem = Builder.CreateMul(Div, Den);
Res = Builder.CreateSub(Num, Rem);
}
if (DivBits != 0 && DivBits < 32) {
// Extend in register from the number of bits this divide really is.
if (IsSigned) {
int InRegBits = 32 - DivBits;
Res = Builder.CreateShl(Res, InRegBits);
Res = Builder.CreateAShr(Res, InRegBits);
} else {
ConstantInt *TruncMask
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
Res = Builder.CreateAnd(Res, TruncMask);
}
}
return Res;
}
// Try to recognize special cases the DAG will emit special, better expansions
// than the general expansion we do here.
// TODO: It would be better to just directly handle those optimizations here.
bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
BinaryOperator &I, Value *Num, Value *Den) const {
if (Constant *C = dyn_cast<Constant>(Den)) {
// Arbitrary constants get a better expansion as long as a wider mulhi is
// legal.
if (C->getType()->getScalarSizeInBits() <= 32)
return true;
// TODO: Sdiv check for not exact for some reason.
// If there's no wider mulhi, there's only a better expansion for powers of
// two.
// TODO: Should really know for each vector element.
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
return true;
return false;
}
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (BinOpDen->getOpcode() == Instruction::Shl &&
isa<Constant>(BinOpDen->getOperand(0)) &&
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
0, AC, &I, DT)) {
return true;
}
}
return false;
}
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
// Check whether the sign can be determined statically.
KnownBits Known = computeKnownBits(V, *DL);
if (Known.isNegative())
return Constant::getAllOnesValue(V->getType());
if (Known.isNonNegative())
return Constant::getNullValue(V->getType());
return Builder.CreateAShr(V, Builder.getInt32(31));
}
Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
BinaryOperator &I, Value *X,
Value *Y) const {
Instruction::BinaryOps Opc = I.getOpcode();
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
if (divHasSpecialOptimization(I, X, Y))
return nullptr; // Keep it for later optimization.
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
Type *Ty = X->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
if (Ty->getScalarSizeInBits() < 32) {
if (IsSigned) {
X = Builder.CreateSExt(X, I32Ty);
Y = Builder.CreateSExt(Y, I32Ty);
} else {
X = Builder.CreateZExt(X, I32Ty);
Y = Builder.CreateZExt(Y, I32Ty);
}
}
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
Builder.CreateZExtOrTrunc(Res, Ty);
}
ConstantInt *Zero = Builder.getInt32(0);
ConstantInt *One = Builder.getInt32(1);
Value *Sign = nullptr;
if (IsSigned) {
Value *SignX = getSign32(X, Builder, DL);
Value *SignY = getSign32(Y, Builder, DL);
// Remainder sign is the same as LHS
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
X = Builder.CreateAdd(X, SignX);
Y = Builder.CreateAdd(Y, SignY);
X = Builder.CreateXor(X, SignX);
Y = Builder.CreateXor(Y, SignY);
}
// The algorithm here is based on ideas from "Software Integer Division", Tom
// Rodeheffer, August 2008.
//
// unsigned udiv(unsigned x, unsigned y) {
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
// // that this is a lower bound on inv(y), even if some of the calculations
// // round up.
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
//
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
// // Empirically this is guaranteed to give a "two-y" lower bound on
// // inv(y).
// z += umulh(z, -y * z);
//
// // Quotient/remainder estimate.
// unsigned q = umulh(x, z);
// unsigned r = x - q * y;
//
// // Two rounds of quotient/remainder refinement.
// if (r >= y) {
// ++q;
// r -= y;
// }
// if (r >= y) {
// ++q;
// r -= y;
// }
//
// return q;
// }
// Initial estimate of inv(y).
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
// One round of UNR.
Value *NegY = Builder.CreateSub(Zero, Y);
Value *NegYZ = Builder.CreateMul(NegY, Z);
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
// Quotient/remainder estimate.
Value *Q = getMulHu(Builder, X, Z);
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
// First quotient/remainder refinement.
Value *Cond = Builder.CreateICmpUGE(R, Y);
if (IsDiv)
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
// Second quotient/remainder refinement.
Cond = Builder.CreateICmpUGE(R, Y);
Value *Res;
if (IsDiv)
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
else
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
if (IsSigned) {
Res = Builder.CreateXor(Res, Sign);
Res = Builder.CreateSub(Res, Sign);
}
Res = Builder.CreateTrunc(Res, Ty);
return Res;
}
Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den) const {
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
return nullptr; // Keep it for later optimization.
Instruction::BinaryOps Opc = I.getOpcode();
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
if (NumDivBits == -1)
return nullptr;
Value *Narrowed = nullptr;
if (NumDivBits <= 24) {
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
IsDiv, IsSigned);
} else if (NumDivBits <= 32) {
Narrowed = expandDivRem32(Builder, I, Num, Den);
}
if (Narrowed) {
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
Builder.CreateZExt(Narrowed, Num->getType());
}
return nullptr;
}
void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
Instruction::BinaryOps Opc = I.getOpcode();
// Do the general expansion.
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
expandDivisionUpTo64Bits(&I);
return;
}
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
expandRemainderUpTo64Bits(&I);
return;
}
llvm_unreachable("not a division");
}
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
if (foldBinOpIntoSelect(I))
return true;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
if (UseMul24Intrin && replaceMulWithMul24(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
unsigned ScalarSize = Ty->getScalarSizeInBits();
SmallVector<BinaryOperator *, 8> Div64ToExpand;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
ScalarSize <= 64 &&
!DisableIDivExpand) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
NewDiv = UndefValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt;
if (ScalarSize <= 32) {
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
} else {
// See if this 64-bit division can be shrunk to 32/24-bits before
// producing the general expansion.
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
if (!NewElt) {
// The general 64-bit expansion introduces control flow and doesn't
// return the new value. Just insert a scalar copy and defer
// expanding it.
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
}
}
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
if (ScalarSize <= 32)
NewDiv = expandDivRem32(Builder, I, Num, Den);
else {
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
if (!NewDiv)
Div64ToExpand.push_back(&I);
}
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
if (ExpandDiv64InIR) {
// TODO: We get much worse code in specially handled constant cases.
for (BinaryOperator *Div : Div64ToExpand) {
expandDivRem64(*Div);
Changed = true;
}
}
return Changed;
}
bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
if (!WidenLoads)
return false;
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
canWidenScalarExtLoad(I)) {
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = Builder.getInt32Ty();
Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
WidenLoad->copyMetadata(I);
// If we have range metadata, we need to convert the type, and not make
// assumptions about the high bits.
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Range->getOperand(0));
if (Lower->isNullValue()) {
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
} else {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
// Don't make assumptions about the high bits.
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
};
WidenLoad->setMetadata(LLVMContext::MD_range,
MDNode::get(Mod->getContext(), LowAndHigh));
}
}
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
Type *IntNTy = Builder.getIntNTy(TySize);
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
I.replaceAllUsesWith(ValOrig);
I.eraseFromParent();
return true;
}
return false;
}
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case Intrinsic::bitreverse:
return visitBitreverseIntrinsicInst(I);
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformBitreverseToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
DL = &Mod->getDataLayout();
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
ST = &TM.getSubtarget<GCNSubtarget>(F);
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DA = &getAnalysis<LegacyDivergenceAnalysis>();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
HasUnsafeFPMath = hasUnsafeFPMath(F);
AMDGPU::SIModeRegisterDefaults Mode(F);
HasFP32Denormals = Mode.allFP32Denormals();
bool MadeChange = false;
Function::iterator NextBB;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
BasicBlock *BB = &*FI;
NextBB = std::next(FI);
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
if (Next != E) { // Control flow changed
BasicBlock *NextInstBB = Next->getParent();
if (NextInstBB != BB) {
BB = NextInstBB;
E = BB->end();
FE = F.end();
}
}
}
}
return MadeChange;
}
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
return new AMDGPUCodeGenPrepare();
}