blob: a9b3792e01182e6ef7dbd0544619611d0aec2689 [file] [log] [blame]
//=== AArch64PostLegalizerCombiner.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Post-legalization combines on generic MachineInstrs.
///
/// The combines here must preserve instruction legality.
///
/// Lowering combines (e.g. pseudo matching) should be handled by
/// AArch64PostLegalizerLowering.
///
/// Combines which don't rely on instruction legality should go in the
/// AArch64PreLegalizerCombiner.
///
//===----------------------------------------------------------------------===//
#include "AArch64TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "aarch64-postlegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
/// This combine tries do what performExtractVectorEltCombine does in SDAG.
/// Rewrite for pairwise fadd pattern
/// (s32 (g_extract_vector_elt
/// (g_fadd (vXs32 Other)
/// (g_vector_shuffle (vXs32 Other) undef <1,X,...> )) 0))
/// ->
/// (s32 (g_fadd (g_extract_vector_elt (vXs32 Other) 0)
/// (g_extract_vector_elt (vXs32 Other) 1))
bool matchExtractVecEltPairwiseAdd(
MachineInstr &MI, MachineRegisterInfo &MRI,
std::tuple<unsigned, LLT, Register> &MatchInfo) {
Register Src1 = MI.getOperand(1).getReg();
Register Src2 = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
auto Cst = getIConstantVRegValWithLookThrough(Src2, MRI);
if (!Cst || Cst->Value != 0)
return false;
// SDAG also checks for FullFP16, but this looks to be beneficial anyway.
// Now check for an fadd operation. TODO: expand this for integer add?
auto *FAddMI = getOpcodeDef(TargetOpcode::G_FADD, Src1, MRI);
if (!FAddMI)
return false;
// If we add support for integer add, must restrict these types to just s64.
unsigned DstSize = DstTy.getSizeInBits();
if (DstSize != 16 && DstSize != 32 && DstSize != 64)
return false;
Register Src1Op1 = FAddMI->getOperand(1).getReg();
Register Src1Op2 = FAddMI->getOperand(2).getReg();
MachineInstr *Shuffle =
getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op2, MRI);
MachineInstr *Other = MRI.getVRegDef(Src1Op1);
if (!Shuffle) {
Shuffle = getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op1, MRI);
Other = MRI.getVRegDef(Src1Op2);
}
// We're looking for a shuffle that moves the second element to index 0.
if (Shuffle && Shuffle->getOperand(3).getShuffleMask()[0] == 1 &&
Other == MRI.getVRegDef(Shuffle->getOperand(1).getReg())) {
std::get<0>(MatchInfo) = TargetOpcode::G_FADD;
std::get<1>(MatchInfo) = DstTy;
std::get<2>(MatchInfo) = Other->getOperand(0).getReg();
return true;
}
return false;
}
bool applyExtractVecEltPairwiseAdd(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
std::tuple<unsigned, LLT, Register> &MatchInfo) {
unsigned Opc = std::get<0>(MatchInfo);
assert(Opc == TargetOpcode::G_FADD && "Unexpected opcode!");
// We want to generate two extracts of elements 0 and 1, and add them.
LLT Ty = std::get<1>(MatchInfo);
Register Src = std::get<2>(MatchInfo);
LLT s64 = LLT::scalar(64);
B.setInstrAndDebugLoc(MI);
auto Elt0 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 0));
auto Elt1 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 1));
B.buildInstr(Opc, {MI.getOperand(0).getReg()}, {Elt0, Elt1});
MI.eraseFromParent();
return true;
}
static bool isSignExtended(Register R, MachineRegisterInfo &MRI) {
// TODO: check if extended build vector as well.
unsigned Opc = MRI.getVRegDef(R)->getOpcode();
return Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG;
}
static bool isZeroExtended(Register R, MachineRegisterInfo &MRI) {
// TODO: check if extended build vector as well.
return MRI.getVRegDef(R)->getOpcode() == TargetOpcode::G_ZEXT;
}
bool matchAArch64MulConstCombine(
MachineInstr &MI, MachineRegisterInfo &MRI,
std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
assert(MI.getOpcode() == TargetOpcode::G_MUL);
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register Dst = MI.getOperand(0).getReg();
const LLT Ty = MRI.getType(LHS);
// The below optimizations require a constant RHS.
auto Const = getIConstantVRegValWithLookThrough(RHS, MRI);
if (!Const)
return false;
const APInt ConstValue = Const->Value.sextOrSelf(Ty.getSizeInBits());
// The following code is ported from AArch64ISelLowering.
// Multiplication of a power of two plus/minus one can be done more
// cheaply as as shift+add/sub. For now, this is true unilaterally. If
// future CPUs have a cheaper MADD instruction, this may need to be
// gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
// 64-bit is 5 cycles, so this is always a win.
// More aggressively, some multiplications N0 * C can be lowered to
// shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
// e.g. 6=3*2=(2+1)*2.
// TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
// which equals to (1+2)*16-(1+2).
// TrailingZeroes is used to test if the mul can be lowered to
// shift+add+shift.
unsigned TrailingZeroes = ConstValue.countTrailingZeros();
if (TrailingZeroes) {
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into smul or umul.
if (MRI.hasOneNonDBGUse(LHS) &&
(isSignExtended(LHS, MRI) || isZeroExtended(LHS, MRI)))
return false;
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into madd or msub.
if (MRI.hasOneNonDBGUse(Dst)) {
MachineInstr &UseMI = *MRI.use_instr_begin(Dst);
unsigned UseOpc = UseMI.getOpcode();
if (UseOpc == TargetOpcode::G_ADD || UseOpc == TargetOpcode::G_PTR_ADD ||
UseOpc == TargetOpcode::G_SUB)
return false;
}
}
// Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
// and shift+add+shift.
APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
unsigned ShiftAmt, AddSubOpc;
// Is the shifted value the LHS operand of the add/sub?
bool ShiftValUseIsLHS = true;
// Do we need to negate the result?
bool NegateResult = false;
if (ConstValue.isNonNegative()) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
// (mul x, 2^N - 1) => (sub (shl x, N), x)
// (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
APInt SCVMinus1 = ShiftedConstValue - 1;
APInt CVPlus1 = ConstValue + 1;
if (SCVMinus1.isPowerOf2()) {
ShiftAmt = SCVMinus1.logBase2();
AddSubOpc = TargetOpcode::G_ADD;
} else if (CVPlus1.isPowerOf2()) {
ShiftAmt = CVPlus1.logBase2();
AddSubOpc = TargetOpcode::G_SUB;
} else
return false;
} else {
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
APInt CVNegPlus1 = -ConstValue + 1;
APInt CVNegMinus1 = -ConstValue - 1;
if (CVNegPlus1.isPowerOf2()) {
ShiftAmt = CVNegPlus1.logBase2();
AddSubOpc = TargetOpcode::G_SUB;
ShiftValUseIsLHS = false;
} else if (CVNegMinus1.isPowerOf2()) {
ShiftAmt = CVNegMinus1.logBase2();
AddSubOpc = TargetOpcode::G_ADD;
NegateResult = true;
} else
return false;
}
if (NegateResult && TrailingZeroes)
return false;
ApplyFn = [=](MachineIRBuilder &B, Register DstReg) {
auto Shift = B.buildConstant(LLT::scalar(64), ShiftAmt);
auto ShiftedVal = B.buildShl(Ty, LHS, Shift);
Register AddSubLHS = ShiftValUseIsLHS ? ShiftedVal.getReg(0) : LHS;
Register AddSubRHS = ShiftValUseIsLHS ? LHS : ShiftedVal.getReg(0);
auto Res = B.buildInstr(AddSubOpc, {Ty}, {AddSubLHS, AddSubRHS});
assert(!(NegateResult && TrailingZeroes) &&
"NegateResult and TrailingZeroes cannot both be true for now.");
// Negate the result.
if (NegateResult) {
B.buildSub(DstReg, B.buildConstant(Ty, 0), Res);
return;
}
// Shift the result.
if (TrailingZeroes) {
B.buildShl(DstReg, Res, B.buildConstant(LLT::scalar(64), TrailingZeroes));
return;
}
B.buildCopy(DstReg, Res.getReg(0));
};
return true;
}
bool applyAArch64MulConstCombine(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
B.setInstrAndDebugLoc(MI);
ApplyFn(B, MI.getOperand(0).getReg());
MI.eraseFromParent();
return true;
}
/// Try to fold a G_MERGE_VALUES of 2 s32 sources, where the second source
/// is a zero, into a G_ZEXT of the first.
bool matchFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI) {
auto &Merge = cast<GMerge>(MI);
LLT SrcTy = MRI.getType(Merge.getSourceReg(0));
if (SrcTy != LLT::scalar(32) || Merge.getNumSources() != 2)
return false;
return mi_match(Merge.getSourceReg(1), MRI, m_SpecificICst(0));
}
void applyFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, GISelChangeObserver &Observer) {
// Mutate %d(s64) = G_MERGE_VALUES %a(s32), 0(s32)
// ->
// %d(s64) = G_ZEXT %a(s32)
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
MI.RemoveOperand(2);
Observer.changedInstr(MI);
}
/// \returns True if a G_ANYEXT instruction \p MI should be mutated to a G_ZEXT
/// instruction.
static bool matchMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI) {
// If this is coming from a scalar compare then we can use a G_ZEXT instead of
// a G_ANYEXT:
//
// %cmp:_(s32) = G_[I|F]CMP ... <-- produces 0/1.
// %ext:_(s64) = G_ANYEXT %cmp(s32)
//
// By doing this, we can leverage more KnownBits combines.
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
return MRI.getType(Dst).isScalar() &&
mi_match(Src, MRI,
m_any_of(m_GICmp(m_Pred(), m_Reg(), m_Reg()),
m_GFCmp(m_Pred(), m_Reg(), m_Reg())));
}
static void applyMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B,
GISelChangeObserver &Observer) {
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
Observer.changedInstr(MI);
}
#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
class AArch64PostLegalizerCombinerInfo : public CombinerInfo {
GISelKnownBits *KB;
MachineDominatorTree *MDT;
public:
AArch64GenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
AArch64PostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
GISelKnownBits *KB,
MachineDominatorTree *MDT)
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
KB(KB), MDT(MDT) {
if (!GeneratedRuleCfg.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AArch64PostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
const auto *LI =
MI.getParent()->getParent()->getSubtarget().getLegalizerInfo();
CombinerHelper Helper(Observer, B, KB, MDT, LI);
AArch64GenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg);
return Generated.tryCombineAll(Observer, MI, B, Helper);
}
#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
class AArch64PostLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AArch64PostLegalizerCombiner(bool IsOptNone = false);
StringRef getPassName() const override {
return "AArch64PostLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool IsOptNone;
};
} // end anonymous namespace
void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (!IsOptNone) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addPreserved<GISelCSEAnalysisWrapperPass>();
}
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
}
bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized) &&
"Expected a legalized function?");
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
AArch64PostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
F.hasMinSize(), KB, MDT);
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
auto *CSEInfo = &Wrapper.get(TPC->getCSEConfig());
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, CSEInfo);
}
char AArch64PostLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 MachineInstrs after legalization", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 MachineInstrs after legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PostLegalizerCombiner(bool IsOptNone) {
return new AArch64PostLegalizerCombiner(IsOptNone);
}
} // end namespace llvm