| //===------- VectorCombine.cpp - Optimize partial vector operations -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass optimizes scalar/vector interactions using target cost models. The |
| // transforms implemented here may not fit in traditional loop-based or SLP |
| // vectorization passes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Vectorize/VectorCombine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Vectorize.h" |
| |
| #define DEBUG_TYPE "vector-combine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| STATISTIC(NumVecLoad, "Number of vector loads formed"); |
| STATISTIC(NumVecCmp, "Number of vector compares formed"); |
| STATISTIC(NumVecBO, "Number of vector binops formed"); |
| STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); |
| STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); |
| STATISTIC(NumScalarBO, "Number of scalar binops formed"); |
| STATISTIC(NumScalarCmp, "Number of scalar compares formed"); |
| |
| static cl::opt<bool> DisableVectorCombine( |
| "disable-vector-combine", cl::init(false), cl::Hidden, |
| cl::desc("Disable all vector combine transforms")); |
| |
| static cl::opt<bool> DisableBinopExtractShuffle( |
| "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, |
| cl::desc("Disable binop extract to shuffle transforms")); |
| |
| static cl::opt<unsigned> MaxInstrsToScan( |
| "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, |
| cl::desc("Max number of instructions to scan for vector combining.")); |
| |
| static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); |
| |
| namespace { |
| class VectorCombine { |
| public: |
| VectorCombine(Function &F, const TargetTransformInfo &TTI, |
| const DominatorTree &DT, AAResults &AA, AssumptionCache &AC, |
| bool ScalarizationOnly) |
| : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), |
| ScalarizationOnly(ScalarizationOnly) {} |
| |
| bool run(); |
| |
| private: |
| Function &F; |
| IRBuilder<> Builder; |
| const TargetTransformInfo &TTI; |
| const DominatorTree &DT; |
| AAResults &AA; |
| AssumptionCache &AC; |
| |
| /// If true only perform scalarization combines and do not introduce new |
| /// vector operations. |
| bool ScalarizationOnly; |
| |
| InstructionWorklist Worklist; |
| |
| bool vectorizeLoadInsert(Instruction &I); |
| ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, |
| ExtractElementInst *Ext1, |
| unsigned PreferredExtractIndex) const; |
| bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
| const Instruction &I, |
| ExtractElementInst *&ConvertToShuffle, |
| unsigned PreferredExtractIndex); |
| void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
| Instruction &I); |
| void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
| Instruction &I); |
| bool foldExtractExtract(Instruction &I); |
| bool foldBitcastShuf(Instruction &I); |
| bool scalarizeBinopOrCmp(Instruction &I); |
| bool foldExtractedCmps(Instruction &I); |
| bool foldSingleElementStore(Instruction &I); |
| bool scalarizeLoadExtract(Instruction &I); |
| bool foldShuffleOfBinops(Instruction &I); |
| |
| void replaceValue(Value &Old, Value &New) { |
| Old.replaceAllUsesWith(&New); |
| New.takeName(&Old); |
| if (auto *NewI = dyn_cast<Instruction>(&New)) { |
| Worklist.pushUsersToWorkList(*NewI); |
| Worklist.pushValue(NewI); |
| } |
| Worklist.pushValue(&Old); |
| } |
| |
| void eraseInstruction(Instruction &I) { |
| for (Value *Op : I.operands()) |
| Worklist.pushValue(Op); |
| Worklist.remove(&I); |
| I.eraseFromParent(); |
| } |
| }; |
| } // namespace |
| |
| bool VectorCombine::vectorizeLoadInsert(Instruction &I) { |
| // Match insert into fixed vector of scalar value. |
| // TODO: Handle non-zero insert index. |
| auto *Ty = dyn_cast<FixedVectorType>(I.getType()); |
| Value *Scalar; |
| if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) || |
| !Scalar->hasOneUse()) |
| return false; |
| |
| // Optionally match an extract from another vector. |
| Value *X; |
| bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt())); |
| if (!HasExtract) |
| X = Scalar; |
| |
| // Match source value as load of scalar or vector. |
| // Do not vectorize scalar load (widening) if atomic/volatile or under |
| // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions |
| // or create data races non-existent in the source. |
| auto *Load = dyn_cast<LoadInst>(X); |
| if (!Load || !Load->isSimple() || !Load->hasOneUse() || |
| Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) || |
| mustSuppressSpeculation(*Load)) |
| return false; |
| |
| const DataLayout &DL = I.getModule()->getDataLayout(); |
| Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts(); |
| assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type"); |
| |
| // If original AS != Load's AS, we can't bitcast the original pointer and have |
| // to use Load's operand instead. Ideally we would want to strip pointer casts |
| // without changing AS, but there's no API to do that ATM. |
| unsigned AS = Load->getPointerAddressSpace(); |
| if (AS != SrcPtr->getType()->getPointerAddressSpace()) |
| SrcPtr = Load->getPointerOperand(); |
| |
| // We are potentially transforming byte-sized (8-bit) memory accesses, so make |
| // sure we have all of our type-based constraints in place for this target. |
| Type *ScalarTy = Scalar->getType(); |
| uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits(); |
| unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth(); |
| if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 || |
| ScalarSize % 8 != 0) |
| return false; |
| |
| // Check safety of replacing the scalar load with a larger vector load. |
| // We use minimal alignment (maximum flexibility) because we only care about |
| // the dereferenceable region. When calculating cost and creating a new op, |
| // we may use a larger value based on alignment attributes. |
| unsigned MinVecNumElts = MinVectorSize / ScalarSize; |
| auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false); |
| unsigned OffsetEltIndex = 0; |
| Align Alignment = Load->getAlign(); |
| if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) { |
| // It is not safe to load directly from the pointer, but we can still peek |
| // through gep offsets and check if it safe to load from a base address with |
| // updated alignment. If it is, we can shuffle the element(s) into place |
| // after loading. |
| unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType()); |
| APInt Offset(OffsetBitWidth, 0); |
| SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); |
| |
| // We want to shuffle the result down from a high element of a vector, so |
| // the offset must be positive. |
| if (Offset.isNegative()) |
| return false; |
| |
| // The offset must be a multiple of the scalar element to shuffle cleanly |
| // in the element's size. |
| uint64_t ScalarSizeInBytes = ScalarSize / 8; |
| if (Offset.urem(ScalarSizeInBytes) != 0) |
| return false; |
| |
| // If we load MinVecNumElts, will our target element still be loaded? |
| OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue(); |
| if (OffsetEltIndex >= MinVecNumElts) |
| return false; |
| |
| if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) |
| return false; |
| |
| // Update alignment with offset value. Note that the offset could be negated |
| // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but |
| // negation does not change the result of the alignment calculation. |
| Alignment = commonAlignment(Alignment, Offset.getZExtValue()); |
| } |
| |
| // Original pattern: insertelt undef, load [free casts of] PtrOp, 0 |
| // Use the greater of the alignment on the load or its source pointer. |
| Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment); |
| Type *LoadTy = Load->getType(); |
| InstructionCost OldCost = |
| TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS); |
| APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0); |
| OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, |
| /* Insert */ true, HasExtract); |
| |
| // New pattern: load VecPtr |
| InstructionCost NewCost = |
| TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS); |
| // Optionally, we are shuffling the loaded vector element(s) into place. |
| // For the mask set everything but element 0 to undef to prevent poison from |
| // propagating from the extra loaded memory. This will also optionally |
| // shrink/grow the vector from the loaded size to the output size. |
| // We assume this operation has no cost in codegen if there was no offset. |
| // Note that we could use freeze to avoid poison problems, but then we might |
| // still need a shuffle to change the vector size. |
| unsigned OutputNumElts = Ty->getNumElements(); |
| SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem); |
| assert(OffsetEltIndex < MinVecNumElts && "Address offset too big"); |
| Mask[0] = OffsetEltIndex; |
| if (OffsetEltIndex) |
| NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask); |
| |
| // We can aggressively convert to the vector form because the backend can |
| // invert this transform if it does not result in a performance win. |
| if (OldCost < NewCost || !NewCost.isValid()) |
| return false; |
| |
| // It is safe and potentially profitable to load a vector directly: |
| // inselt undef, load Scalar, 0 --> load VecPtr |
| IRBuilder<> Builder(Load); |
| Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS)); |
| Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment); |
| VecLd = Builder.CreateShuffleVector(VecLd, Mask); |
| |
| replaceValue(I, *VecLd); |
| ++NumVecLoad; |
| return true; |
| } |
| |
| /// Determine which, if any, of the inputs should be replaced by a shuffle |
| /// followed by extract from a different index. |
| ExtractElementInst *VectorCombine::getShuffleExtract( |
| ExtractElementInst *Ext0, ExtractElementInst *Ext1, |
| unsigned PreferredExtractIndex = InvalidIndex) const { |
| assert(isa<ConstantInt>(Ext0->getIndexOperand()) && |
| isa<ConstantInt>(Ext1->getIndexOperand()) && |
| "Expected constant extract indexes"); |
| |
| unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); |
| unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); |
| |
| // If the extract indexes are identical, no shuffle is needed. |
| if (Index0 == Index1) |
| return nullptr; |
| |
| Type *VecTy = Ext0->getVectorOperand()->getType(); |
| assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); |
| InstructionCost Cost0 = |
| TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); |
| InstructionCost Cost1 = |
| TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); |
| |
| // If both costs are invalid no shuffle is needed |
| if (!Cost0.isValid() && !Cost1.isValid()) |
| return nullptr; |
| |
| // We are extracting from 2 different indexes, so one operand must be shuffled |
| // before performing a vector operation and/or extract. The more expensive |
| // extract will be replaced by a shuffle. |
| if (Cost0 > Cost1) |
| return Ext0; |
| if (Cost1 > Cost0) |
| return Ext1; |
| |
| // If the costs are equal and there is a preferred extract index, shuffle the |
| // opposite operand. |
| if (PreferredExtractIndex == Index0) |
| return Ext1; |
| if (PreferredExtractIndex == Index1) |
| return Ext0; |
| |
| // Otherwise, replace the extract with the higher index. |
| return Index0 > Index1 ? Ext0 : Ext1; |
| } |
| |
| /// Compare the relative costs of 2 extracts followed by scalar operation vs. |
| /// vector operation(s) followed by extract. Return true if the existing |
| /// instructions are cheaper than a vector alternative. Otherwise, return false |
| /// and if one of the extracts should be transformed to a shufflevector, set |
| /// \p ConvertToShuffle to that extract instruction. |
| bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, |
| ExtractElementInst *Ext1, |
| const Instruction &I, |
| ExtractElementInst *&ConvertToShuffle, |
| unsigned PreferredExtractIndex) { |
| assert(isa<ConstantInt>(Ext0->getOperand(1)) && |
| isa<ConstantInt>(Ext1->getOperand(1)) && |
| "Expected constant extract indexes"); |
| unsigned Opcode = I.getOpcode(); |
| Type *ScalarTy = Ext0->getType(); |
| auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); |
| InstructionCost ScalarOpCost, VectorOpCost; |
| |
| // Get cost estimates for scalar and vector versions of the operation. |
| bool IsBinOp = Instruction::isBinaryOp(Opcode); |
| if (IsBinOp) { |
| ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); |
| VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); |
| } else { |
| assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && |
| "Expected a compare"); |
| CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); |
| ScalarOpCost = TTI.getCmpSelInstrCost( |
| Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); |
| VectorOpCost = TTI.getCmpSelInstrCost( |
| Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); |
| } |
| |
| // Get cost estimates for the extract elements. These costs will factor into |
| // both sequences. |
| unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); |
| unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); |
| |
| InstructionCost Extract0Cost = |
| TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); |
| InstructionCost Extract1Cost = |
| TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); |
| |
| // A more expensive extract will always be replaced by a splat shuffle. |
| // For example, if Ext0 is more expensive: |
| // opcode (extelt V0, Ext0), (ext V1, Ext1) --> |
| // extelt (opcode (splat V0, Ext0), V1), Ext1 |
| // TODO: Evaluate whether that always results in lowest cost. Alternatively, |
| // check the cost of creating a broadcast shuffle and shuffling both |
| // operands to element 0. |
| InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost); |
| |
| // Extra uses of the extracts mean that we include those costs in the |
| // vector total because those instructions will not be eliminated. |
| InstructionCost OldCost, NewCost; |
| if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { |
| // Handle a special case. If the 2 extracts are identical, adjust the |
| // formulas to account for that. The extra use charge allows for either the |
| // CSE'd pattern or an unoptimized form with identical values: |
| // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C |
| bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) |
| : !Ext0->hasOneUse() || !Ext1->hasOneUse(); |
| OldCost = CheapExtractCost + ScalarOpCost; |
| NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; |
| } else { |
| // Handle the general case. Each extract is actually a different value: |
| // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C |
| OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; |
| NewCost = VectorOpCost + CheapExtractCost + |
| !Ext0->hasOneUse() * Extract0Cost + |
| !Ext1->hasOneUse() * Extract1Cost; |
| } |
| |
| ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); |
| if (ConvertToShuffle) { |
| if (IsBinOp && DisableBinopExtractShuffle) |
| return true; |
| |
| // If we are extracting from 2 different indexes, then one operand must be |
| // shuffled before performing the vector operation. The shuffle mask is |
| // undefined except for 1 lane that is being translated to the remaining |
| // extraction lane. Therefore, it is a splat shuffle. Ex: |
| // ShufMask = { undef, undef, 0, undef } |
| // TODO: The cost model has an option for a "broadcast" shuffle |
| // (splat-from-element-0), but no option for a more general splat. |
| NewCost += |
| TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); |
| } |
| |
| // Aggressively form a vector op if the cost is equal because the transform |
| // may enable further optimization. |
| // Codegen can reverse this transform (scalarize) if it was not profitable. |
| return OldCost < NewCost; |
| } |
| |
| /// Create a shuffle that translates (shifts) 1 element from the input vector |
| /// to a new element location. |
| static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, |
| unsigned NewIndex, IRBuilder<> &Builder) { |
| // The shuffle mask is undefined except for 1 lane that is being translated |
| // to the new element index. Example for OldIndex == 2 and NewIndex == 0: |
| // ShufMask = { 2, undef, undef, undef } |
| auto *VecTy = cast<FixedVectorType>(Vec->getType()); |
| SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); |
| ShufMask[NewIndex] = OldIndex; |
| return Builder.CreateShuffleVector(Vec, ShufMask, "shift"); |
| } |
| |
| /// Given an extract element instruction with constant index operand, shuffle |
| /// the source vector (shift the scalar element) to a NewIndex for extraction. |
| /// Return null if the input can be constant folded, so that we are not creating |
| /// unnecessary instructions. |
| static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, |
| unsigned NewIndex, |
| IRBuilder<> &Builder) { |
| // If the extract can be constant-folded, this code is unsimplified. Defer |
| // to other passes to handle that. |
| Value *X = ExtElt->getVectorOperand(); |
| Value *C = ExtElt->getIndexOperand(); |
| assert(isa<ConstantInt>(C) && "Expected a constant index operand"); |
| if (isa<Constant>(X)) |
| return nullptr; |
| |
| Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), |
| NewIndex, Builder); |
| return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); |
| } |
| |
| /// Try to reduce extract element costs by converting scalar compares to vector |
| /// compares followed by extract. |
| /// cmp (ext0 V0, C), (ext1 V1, C) |
| void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, |
| ExtractElementInst *Ext1, Instruction &I) { |
| assert(isa<CmpInst>(&I) && "Expected a compare"); |
| assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == |
| cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && |
| "Expected matching constant extract indexes"); |
| |
| // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C |
| ++NumVecCmp; |
| CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); |
| Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); |
| Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); |
| Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); |
| replaceValue(I, *NewExt); |
| } |
| |
| /// Try to reduce extract element costs by converting scalar binops to vector |
| /// binops followed by extract. |
| /// bo (ext0 V0, C), (ext1 V1, C) |
| void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, |
| ExtractElementInst *Ext1, Instruction &I) { |
| assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); |
| assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == |
| cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && |
| "Expected matching constant extract indexes"); |
| |
| // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C |
| ++NumVecBO; |
| Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); |
| Value *VecBO = |
| Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); |
| |
| // All IR flags are safe to back-propagate because any potential poison |
| // created in unused vector elements is discarded by the extract. |
| if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) |
| VecBOInst->copyIRFlags(&I); |
| |
| Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); |
| replaceValue(I, *NewExt); |
| } |
| |
| /// Match an instruction with extracted vector operands. |
| bool VectorCombine::foldExtractExtract(Instruction &I) { |
| // It is not safe to transform things like div, urem, etc. because we may |
| // create undefined behavior when executing those on unknown vector elements. |
| if (!isSafeToSpeculativelyExecute(&I)) |
| return false; |
| |
| Instruction *I0, *I1; |
| CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
| if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && |
| !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) |
| return false; |
| |
| Value *V0, *V1; |
| uint64_t C0, C1; |
| if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || |
| !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || |
| V0->getType() != V1->getType()) |
| return false; |
| |
| // If the scalar value 'I' is going to be re-inserted into a vector, then try |
| // to create an extract to that same element. The extract/insert can be |
| // reduced to a "select shuffle". |
| // TODO: If we add a larger pattern match that starts from an insert, this |
| // probably becomes unnecessary. |
| auto *Ext0 = cast<ExtractElementInst>(I0); |
| auto *Ext1 = cast<ExtractElementInst>(I1); |
| uint64_t InsertIndex = InvalidIndex; |
| if (I.hasOneUse()) |
| match(I.user_back(), |
| m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); |
| |
| ExtractElementInst *ExtractToChange; |
| if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex)) |
| return false; |
| |
| if (ExtractToChange) { |
| unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; |
| ExtractElementInst *NewExtract = |
| translateExtract(ExtractToChange, CheapExtractIdx, Builder); |
| if (!NewExtract) |
| return false; |
| if (ExtractToChange == Ext0) |
| Ext0 = NewExtract; |
| else |
| Ext1 = NewExtract; |
| } |
| |
| if (Pred != CmpInst::BAD_ICMP_PREDICATE) |
| foldExtExtCmp(Ext0, Ext1, I); |
| else |
| foldExtExtBinop(Ext0, Ext1, I); |
| |
| Worklist.push(Ext0); |
| Worklist.push(Ext1); |
| return true; |
| } |
| |
| /// If this is a bitcast of a shuffle, try to bitcast the source vector to the |
| /// destination type followed by shuffle. This can enable further transforms by |
| /// moving bitcasts or shuffles together. |
| bool VectorCombine::foldBitcastShuf(Instruction &I) { |
| Value *V; |
| ArrayRef<int> Mask; |
| if (!match(&I, m_BitCast( |
| m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) |
| return false; |
| |
| // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for |
| // scalable type is unknown; Second, we cannot reason if the narrowed shuffle |
| // mask for scalable type is a splat or not. |
| // 2) Disallow non-vector casts and length-changing shuffles. |
| // TODO: We could allow any shuffle. |
| auto *DestTy = dyn_cast<FixedVectorType>(I.getType()); |
| auto *SrcTy = dyn_cast<FixedVectorType>(V->getType()); |
| if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy) |
| return false; |
| |
| unsigned DestNumElts = DestTy->getNumElements(); |
| unsigned SrcNumElts = SrcTy->getNumElements(); |
| SmallVector<int, 16> NewMask; |
| if (SrcNumElts <= DestNumElts) { |
| // The bitcast is from wide to narrow/equal elements. The shuffle mask can |
| // always be expanded to the equivalent form choosing narrower elements. |
| assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); |
| unsigned ScaleFactor = DestNumElts / SrcNumElts; |
| narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); |
| } else { |
| // The bitcast is from narrow elements to wide elements. The shuffle mask |
| // must choose consecutive elements to allow casting first. |
| assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); |
| unsigned ScaleFactor = SrcNumElts / DestNumElts; |
| if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) |
| return false; |
| } |
| |
| // The new shuffle must not cost more than the old shuffle. The bitcast is |
| // moved ahead of the shuffle, so assume that it has the same cost as before. |
| InstructionCost DestCost = TTI.getShuffleCost( |
| TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask); |
| InstructionCost SrcCost = |
| TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask); |
| if (DestCost > SrcCost || !DestCost.isValid()) |
| return false; |
| |
| // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' |
| ++NumShufOfBitcast; |
| Value *CastV = Builder.CreateBitCast(V, DestTy); |
| Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask); |
| replaceValue(I, *Shuf); |
| return true; |
| } |
| |
| /// Match a vector binop or compare instruction with at least one inserted |
| /// scalar operand and convert to scalar binop/cmp followed by insertelement. |
| bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { |
| CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
| Value *Ins0, *Ins1; |
| if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && |
| !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) |
| return false; |
| |
| // Do not convert the vector condition of a vector select into a scalar |
| // condition. That may cause problems for codegen because of differences in |
| // boolean formats and register-file transfers. |
| // TODO: Can we account for that in the cost model? |
| bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; |
| if (IsCmp) |
| for (User *U : I.users()) |
| if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) |
| return false; |
| |
| // Match against one or both scalar values being inserted into constant |
| // vectors: |
| // vec_op VecC0, (inselt VecC1, V1, Index) |
| // vec_op (inselt VecC0, V0, Index), VecC1 |
| // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) |
| // TODO: Deal with mismatched index constants and variable indexes? |
| Constant *VecC0 = nullptr, *VecC1 = nullptr; |
| Value *V0 = nullptr, *V1 = nullptr; |
| uint64_t Index0 = 0, Index1 = 0; |
| if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), |
| m_ConstantInt(Index0))) && |
| !match(Ins0, m_Constant(VecC0))) |
| return false; |
| if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), |
| m_ConstantInt(Index1))) && |
| !match(Ins1, m_Constant(VecC1))) |
| return false; |
| |
| bool IsConst0 = !V0; |
| bool IsConst1 = !V1; |
| if (IsConst0 && IsConst1) |
| return false; |
| if (!IsConst0 && !IsConst1 && Index0 != Index1) |
| return false; |
| |
| // Bail for single insertion if it is a load. |
| // TODO: Handle this once getVectorInstrCost can cost for load/stores. |
| auto *I0 = dyn_cast_or_null<Instruction>(V0); |
| auto *I1 = dyn_cast_or_null<Instruction>(V1); |
| if ((IsConst0 && I1 && I1->mayReadFromMemory()) || |
| (IsConst1 && I0 && I0->mayReadFromMemory())) |
| return false; |
| |
| uint64_t Index = IsConst0 ? Index1 : Index0; |
| Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); |
| Type *VecTy = I.getType(); |
| assert(VecTy->isVectorTy() && |
| (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && |
| (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || |
| ScalarTy->isPointerTy()) && |
| "Unexpected types for insert element into binop or cmp"); |
| |
| unsigned Opcode = I.getOpcode(); |
| InstructionCost ScalarOpCost, VectorOpCost; |
| if (IsCmp) { |
| CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate(); |
| ScalarOpCost = TTI.getCmpSelInstrCost( |
| Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred); |
| VectorOpCost = TTI.getCmpSelInstrCost( |
| Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred); |
| } else { |
| ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); |
| VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); |
| } |
| |
| // Get cost estimate for the insert element. This cost will factor into |
| // both sequences. |
| InstructionCost InsertCost = |
| TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); |
| InstructionCost OldCost = |
| (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost; |
| InstructionCost NewCost = ScalarOpCost + InsertCost + |
| (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + |
| (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); |
| |
| // We want to scalarize unless the vector variant actually has lower cost. |
| if (OldCost < NewCost || !NewCost.isValid()) |
| return false; |
| |
| // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> |
| // inselt NewVecC, (scalar_op V0, V1), Index |
| if (IsCmp) |
| ++NumScalarCmp; |
| else |
| ++NumScalarBO; |
| |
| // For constant cases, extract the scalar element, this should constant fold. |
| if (IsConst0) |
| V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); |
| if (IsConst1) |
| V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); |
| |
| Value *Scalar = |
| IsCmp ? Builder.CreateCmp(Pred, V0, V1) |
| : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); |
| |
| Scalar->setName(I.getName() + ".scalar"); |
| |
| // All IR flags are safe to back-propagate. There is no potential for extra |
| // poison to be created by the scalar instruction. |
| if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) |
| ScalarInst->copyIRFlags(&I); |
| |
| // Fold the vector constants in the original vectors into a new base vector. |
| Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) |
| : ConstantExpr::get(Opcode, VecC0, VecC1); |
| Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); |
| replaceValue(I, *Insert); |
| return true; |
| } |
| |
| /// Try to combine a scalar binop + 2 scalar compares of extracted elements of |
| /// a vector into vector operations followed by extract. Note: The SLP pass |
| /// may miss this pattern because of implementation problems. |
| bool VectorCombine::foldExtractedCmps(Instruction &I) { |
| // We are looking for a scalar binop of booleans. |
| // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) |
| if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) |
| return false; |
| |
| // The compare predicates should match, and each compare should have a |
| // constant operand. |
| // TODO: Relax the one-use constraints. |
| Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); |
| Instruction *I0, *I1; |
| Constant *C0, *C1; |
| CmpInst::Predicate P0, P1; |
| if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || |
| !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || |
| P0 != P1) |
| return false; |
| |
| // The compare operands must be extracts of the same vector with constant |
| // extract indexes. |
| // TODO: Relax the one-use constraints. |
| Value *X; |
| uint64_t Index0, Index1; |
| if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || |
| !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) |
| return false; |
| |
| auto *Ext0 = cast<ExtractElementInst>(I0); |
| auto *Ext1 = cast<ExtractElementInst>(I1); |
| ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); |
| if (!ConvertToShuf) |
| return false; |
| |
| // The original scalar pattern is: |
| // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) |
| CmpInst::Predicate Pred = P0; |
| unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp |
| : Instruction::ICmp; |
| auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); |
| if (!VecTy) |
| return false; |
| |
| InstructionCost OldCost = |
| TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); |
| OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); |
| OldCost += |
| TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(), |
| CmpInst::makeCmpResultType(I0->getType()), Pred) * |
| 2; |
| OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); |
| |
| // The proposed vector pattern is: |
| // vcmp = cmp Pred X, VecC |
| // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 |
| int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; |
| int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; |
| auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); |
| InstructionCost NewCost = TTI.getCmpSelInstrCost( |
| CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred); |
| SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); |
| ShufMask[CheapIndex] = ExpensiveIndex; |
| NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy, |
| ShufMask); |
| NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); |
| NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); |
| |
| // Aggressively form vector ops if the cost is equal because the transform |
| // may enable further optimization. |
| // Codegen can reverse this transform (scalarize) if it was not profitable. |
| if (OldCost < NewCost || !NewCost.isValid()) |
| return false; |
| |
| // Create a vector constant from the 2 scalar constants. |
| SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), |
| UndefValue::get(VecTy->getElementType())); |
| CmpC[Index0] = C0; |
| CmpC[Index1] = C1; |
| Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); |
| |
| Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); |
| Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), |
| VCmp, Shuf); |
| Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); |
| replaceValue(I, *NewExt); |
| ++NumVecCmpBO; |
| return true; |
| } |
| |
| // Check if memory loc modified between two instrs in the same BB |
| static bool isMemModifiedBetween(BasicBlock::iterator Begin, |
| BasicBlock::iterator End, |
| const MemoryLocation &Loc, AAResults &AA) { |
| unsigned NumScanned = 0; |
| return std::any_of(Begin, End, [&](const Instruction &Instr) { |
| return isModSet(AA.getModRefInfo(&Instr, Loc)) || |
| ++NumScanned > MaxInstrsToScan; |
| }); |
| } |
| |
| /// Helper class to indicate whether a vector index can be safely scalarized and |
| /// if a freeze needs to be inserted. |
| class ScalarizationResult { |
| enum class StatusTy { Unsafe, Safe, SafeWithFreeze }; |
| |
| StatusTy Status; |
| Value *ToFreeze; |
| |
| ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr) |
| : Status(Status), ToFreeze(ToFreeze) {} |
| |
| public: |
| ScalarizationResult(const ScalarizationResult &Other) = default; |
| ~ScalarizationResult() { |
| assert(!ToFreeze && "freeze() not called with ToFreeze being set"); |
| } |
| |
| static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; } |
| static ScalarizationResult safe() { return {StatusTy::Safe}; } |
| static ScalarizationResult safeWithFreeze(Value *ToFreeze) { |
| return {StatusTy::SafeWithFreeze, ToFreeze}; |
| } |
| |
| /// Returns true if the index can be scalarize without requiring a freeze. |
| bool isSafe() const { return Status == StatusTy::Safe; } |
| /// Returns true if the index cannot be scalarized. |
| bool isUnsafe() const { return Status == StatusTy::Unsafe; } |
| /// Returns true if the index can be scalarize, but requires inserting a |
| /// freeze. |
| bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; } |
| |
| /// Reset the state of Unsafe and clear ToFreze if set. |
| void discard() { |
| ToFreeze = nullptr; |
| Status = StatusTy::Unsafe; |
| } |
| |
| /// Freeze the ToFreeze and update the use in \p User to use it. |
| void freeze(IRBuilder<> &Builder, Instruction &UserI) { |
| assert(isSafeWithFreeze() && |
| "should only be used when freezing is required"); |
| assert(is_contained(ToFreeze->users(), &UserI) && |
| "UserI must be a user of ToFreeze"); |
| IRBuilder<>::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(cast<Instruction>(&UserI)); |
| Value *Frozen = |
| Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen"); |
| for (Use &U : make_early_inc_range((UserI.operands()))) |
| if (U.get() == ToFreeze) |
| U.set(Frozen); |
| |
| ToFreeze = nullptr; |
| } |
| }; |
| |
| /// Check if it is legal to scalarize a memory access to \p VecTy at index \p |
| /// Idx. \p Idx must access a valid vector element. |
| static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy, |
| Value *Idx, Instruction *CtxI, |
| AssumptionCache &AC, |
| const DominatorTree &DT) { |
| if (auto *C = dyn_cast<ConstantInt>(Idx)) { |
| if (C->getValue().ult(VecTy->getNumElements())) |
| return ScalarizationResult::safe(); |
| return ScalarizationResult::unsafe(); |
| } |
| |
| unsigned IntWidth = Idx->getType()->getScalarSizeInBits(); |
| APInt Zero(IntWidth, 0); |
| APInt MaxElts(IntWidth, VecTy->getNumElements()); |
| ConstantRange ValidIndices(Zero, MaxElts); |
| ConstantRange IdxRange(IntWidth, true); |
| |
| if (isGuaranteedNotToBePoison(Idx, &AC)) { |
| if (ValidIndices.contains(computeConstantRange(Idx, true, &AC, CtxI, &DT))) |
| return ScalarizationResult::safe(); |
| return ScalarizationResult::unsafe(); |
| } |
| |
| // If the index may be poison, check if we can insert a freeze before the |
| // range of the index is restricted. |
| Value *IdxBase; |
| ConstantInt *CI; |
| if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) { |
| IdxRange = IdxRange.binaryAnd(CI->getValue()); |
| } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) { |
| IdxRange = IdxRange.urem(CI->getValue()); |
| } |
| |
| if (ValidIndices.contains(IdxRange)) |
| return ScalarizationResult::safeWithFreeze(IdxBase); |
| return ScalarizationResult::unsafe(); |
| } |
| |
| /// The memory operation on a vector of \p ScalarType had alignment of |
| /// \p VectorAlignment. Compute the maximal, but conservatively correct, |
| /// alignment that will be valid for the memory operation on a single scalar |
| /// element of the same type with index \p Idx. |
| static Align computeAlignmentAfterScalarization(Align VectorAlignment, |
| Type *ScalarType, Value *Idx, |
| const DataLayout &DL) { |
| if (auto *C = dyn_cast<ConstantInt>(Idx)) |
| return commonAlignment(VectorAlignment, |
| C->getZExtValue() * DL.getTypeStoreSize(ScalarType)); |
| return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType)); |
| } |
| |
| // Combine patterns like: |
| // %0 = load <4 x i32>, <4 x i32>* %a |
| // %1 = insertelement <4 x i32> %0, i32 %b, i32 1 |
| // store <4 x i32> %1, <4 x i32>* %a |
| // to: |
| // %0 = bitcast <4 x i32>* %a to i32* |
| // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1 |
| // store i32 %b, i32* %1 |
| bool VectorCombine::foldSingleElementStore(Instruction &I) { |
| StoreInst *SI = dyn_cast<StoreInst>(&I); |
| if (!SI || !SI->isSimple() || |
| !isa<FixedVectorType>(SI->getValueOperand()->getType())) |
| return false; |
| |
| // TODO: Combine more complicated patterns (multiple insert) by referencing |
| // TargetTransformInfo. |
| Instruction *Source; |
| Value *NewElement; |
| Value *Idx; |
| if (!match(SI->getValueOperand(), |
| m_InsertElt(m_Instruction(Source), m_Value(NewElement), |
| m_Value(Idx)))) |
| return false; |
| |
| if (auto *Load = dyn_cast<LoadInst>(Source)) { |
| auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType()); |
| const DataLayout &DL = I.getModule()->getDataLayout(); |
| Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts(); |
| // Don't optimize for atomic/volatile load or store. Ensure memory is not |
| // modified between, vector type matches store size, and index is inbounds. |
| if (!Load->isSimple() || Load->getParent() != SI->getParent() || |
| !DL.typeSizeEqualsStoreSize(Load->getType()) || |
| SrcAddr != SI->getPointerOperand()->stripPointerCasts()) |
| return false; |
| |
| auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT); |
| if (ScalarizableIdx.isUnsafe() || |
| isMemModifiedBetween(Load->getIterator(), SI->getIterator(), |
| MemoryLocation::get(SI), AA)) |
| return false; |
| |
| if (ScalarizableIdx.isSafeWithFreeze()) |
| ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx)); |
| Value *GEP = Builder.CreateInBoundsGEP( |
| SI->getValueOperand()->getType(), SI->getPointerOperand(), |
| {ConstantInt::get(Idx->getType(), 0), Idx}); |
| StoreInst *NSI = Builder.CreateStore(NewElement, GEP); |
| NSI->copyMetadata(*SI); |
| Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
| std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx, |
| DL); |
| NSI->setAlignment(ScalarOpAlignment); |
| replaceValue(I, *NSI); |
| eraseInstruction(I); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Try to scalarize vector loads feeding extractelement instructions. |
| bool VectorCombine::scalarizeLoadExtract(Instruction &I) { |
| Value *Ptr; |
| if (!match(&I, m_Load(m_Value(Ptr)))) |
| return false; |
| |
| auto *LI = cast<LoadInst>(&I); |
| const DataLayout &DL = I.getModule()->getDataLayout(); |
| if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType())) |
| return false; |
| |
| auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType()); |
| if (!FixedVT) |
| return false; |
| |
| InstructionCost OriginalCost = TTI.getMemoryOpCost( |
| Instruction::Load, LI->getType(), Align(LI->getAlignment()), |
| LI->getPointerAddressSpace()); |
| InstructionCost ScalarizedCost = 0; |
| |
| Instruction *LastCheckedInst = LI; |
| unsigned NumInstChecked = 0; |
| // Check if all users of the load are extracts with no memory modifications |
| // between the load and the extract. Compute the cost of both the original |
| // code and the scalarized version. |
| for (User *U : LI->users()) { |
| auto *UI = dyn_cast<ExtractElementInst>(U); |
| if (!UI || UI->getParent() != LI->getParent()) |
| return false; |
| |
| if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT)) |
| return false; |
| |
| // Check if any instruction between the load and the extract may modify |
| // memory. |
| if (LastCheckedInst->comesBefore(UI)) { |
| for (Instruction &I : |
| make_range(std::next(LI->getIterator()), UI->getIterator())) { |
| // Bail out if we reached the check limit or the instruction may write |
| // to memory. |
| if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory()) |
| return false; |
| NumInstChecked++; |
| } |
| } |
| |
| if (!LastCheckedInst) |
| LastCheckedInst = UI; |
| else if (LastCheckedInst->comesBefore(UI)) |
| LastCheckedInst = UI; |
| |
| auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT); |
| if (!ScalarIdx.isSafe()) { |
| // TODO: Freeze index if it is safe to do so. |
| ScalarIdx.discard(); |
| return false; |
| } |
| |
| auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1)); |
| OriginalCost += |
| TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(), |
| Index ? Index->getZExtValue() : -1); |
| ScalarizedCost += |
| TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(), |
| Align(1), LI->getPointerAddressSpace()); |
| ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType()); |
| } |
| |
| if (ScalarizedCost >= OriginalCost) |
| return false; |
| |
| // Replace extracts with narrow scalar loads. |
| for (User *U : LI->users()) { |
| auto *EI = cast<ExtractElementInst>(U); |
| Builder.SetInsertPoint(EI); |
| |
| Value *Idx = EI->getOperand(1); |
| Value *GEP = |
| Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx}); |
| auto *NewLoad = cast<LoadInst>(Builder.CreateLoad( |
| FixedVT->getElementType(), GEP, EI->getName() + ".scalar")); |
| |
| Align ScalarOpAlignment = computeAlignmentAfterScalarization( |
| LI->getAlign(), FixedVT->getElementType(), Idx, DL); |
| NewLoad->setAlignment(ScalarOpAlignment); |
| |
| replaceValue(*EI, *NewLoad); |
| } |
| |
| return true; |
| } |
| |
| /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into |
| /// "binop (shuffle), (shuffle)". |
| bool VectorCombine::foldShuffleOfBinops(Instruction &I) { |
| auto *VecTy = dyn_cast<FixedVectorType>(I.getType()); |
| if (!VecTy) |
| return false; |
| |
| BinaryOperator *B0, *B1; |
| ArrayRef<int> Mask; |
| if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)), |
| m_Mask(Mask))) || |
| B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy) |
| return false; |
| |
| // Try to replace a binop with a shuffle if the shuffle is not costly. |
| // The new shuffle will choose from a single, common operand, so it may be |
| // cheaper than the existing two-operand shuffle. |
| SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size()); |
| Instruction::BinaryOps Opcode = B0->getOpcode(); |
| InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy); |
| InstructionCost ShufCost = TTI.getShuffleCost( |
| TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask); |
| if (ShufCost > BinopCost) |
| return false; |
| |
| // If we have something like "add X, Y" and "add Z, X", swap ops to match. |
| Value *X = B0->getOperand(0), *Y = B0->getOperand(1); |
| Value *Z = B1->getOperand(0), *W = B1->getOperand(1); |
| if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W) |
| std::swap(X, Y); |
| |
| Value *Shuf0, *Shuf1; |
| if (X == Z) { |
| // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W) |
| Shuf0 = Builder.CreateShuffleVector(X, UnaryMask); |
| Shuf1 = Builder.CreateShuffleVector(Y, W, Mask); |
| } else if (Y == W) { |
| // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y) |
| Shuf0 = Builder.CreateShuffleVector(X, Z, Mask); |
| Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask); |
| } else { |
| return false; |
| } |
| |
| Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1); |
| // Intersect flags from the old binops. |
| if (auto *NewInst = dyn_cast<Instruction>(NewBO)) { |
| NewInst->copyIRFlags(B0); |
| NewInst->andIRFlags(B1); |
| } |
| replaceValue(I, *NewBO); |
| return true; |
| } |
| |
| /// This is the entry point for all transforms. Pass manager differences are |
| /// handled in the callers of this function. |
| bool VectorCombine::run() { |
| if (DisableVectorCombine) |
| return false; |
| |
| // Don't attempt vectorization if the target does not support vectors. |
| if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true))) |
| return false; |
| |
| bool MadeChange = false; |
| auto FoldInst = [this, &MadeChange](Instruction &I) { |
| Builder.SetInsertPoint(&I); |
| if (!ScalarizationOnly) { |
| MadeChange |= vectorizeLoadInsert(I); |
| MadeChange |= foldExtractExtract(I); |
| MadeChange |= foldBitcastShuf(I); |
| MadeChange |= foldExtractedCmps(I); |
| MadeChange |= foldShuffleOfBinops(I); |
| } |
| MadeChange |= scalarizeBinopOrCmp(I); |
| MadeChange |= scalarizeLoadExtract(I); |
| MadeChange |= foldSingleElementStore(I); |
| }; |
| for (BasicBlock &BB : F) { |
| // Ignore unreachable basic blocks. |
| if (!DT.isReachableFromEntry(&BB)) |
| continue; |
| // Use early increment range so that we can erase instructions in loop. |
| for (Instruction &I : make_early_inc_range(BB)) { |
| if (I.isDebugOrPseudoInst()) |
| continue; |
| FoldInst(I); |
| } |
| } |
| |
| while (!Worklist.isEmpty()) { |
| Instruction *I = Worklist.removeOne(); |
| if (!I) |
| continue; |
| |
| if (isInstructionTriviallyDead(I)) { |
| eraseInstruction(*I); |
| continue; |
| } |
| |
| FoldInst(*I); |
| } |
| |
| return MadeChange; |
| } |
| |
| // Pass manager boilerplate below here. |
| |
| namespace { |
| class VectorCombineLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| VectorCombineLegacyPass() : FunctionPass(ID) { |
| initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.setPreservesCFG(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| FunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| VectorCombine Combiner(F, TTI, DT, AA, AC, false); |
| return Combiner.run(); |
| } |
| }; |
| } // namespace |
| |
| char VectorCombineLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", |
| "Optimize scalar/vector ops", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", |
| "Optimize scalar/vector ops", false, false) |
| Pass *llvm::createVectorCombinePass() { |
| return new VectorCombineLegacyPass(); |
| } |
| |
| PreservedAnalyses VectorCombinePass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| auto &AC = FAM.getResult<AssumptionAnalysis>(F); |
| TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); |
| DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
| AAResults &AA = FAM.getResult<AAManager>(F); |
| VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly); |
| if (!Combiner.run()) |
| return PreservedAnalyses::all(); |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |