| //===- MemProfiler.cpp - memory allocation and access profiler ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of MemProfiler. Memory accesses are instrumented |
| // to increment the access count held in a shadow memory location, or |
| // alternatively to call into the runtime. Memory intrinsic calls (memmove, |
| // memcpy, memset) are changed to call the memory profiling runtime version |
| // instead. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/MemProfiler.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "memprof" |
| |
| constexpr int LLVM_MEM_PROFILER_VERSION = 1; |
| |
| // Size of memory mapped to a single shadow location. |
| constexpr uint64_t DefaultShadowGranularity = 64; |
| |
| // Scale from granularity down to shadow size. |
| constexpr uint64_t DefaultShadowScale = 3; |
| |
| constexpr char MemProfModuleCtorName[] = "memprof.module_ctor"; |
| constexpr uint64_t MemProfCtorAndDtorPriority = 1; |
| // On Emscripten, the system needs more than one priorities for constructors. |
| constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50; |
| constexpr char MemProfInitName[] = "__memprof_init"; |
| constexpr char MemProfVersionCheckNamePrefix[] = |
| "__memprof_version_mismatch_check_v"; |
| |
| constexpr char MemProfShadowMemoryDynamicAddress[] = |
| "__memprof_shadow_memory_dynamic_address"; |
| |
| constexpr char MemProfFilenameVar[] = "__memprof_profile_filename"; |
| |
| // Command-line flags. |
| |
| static cl::opt<bool> ClInsertVersionCheck( |
| "memprof-guard-against-version-mismatch", |
| cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, |
| cl::init(true)); |
| |
| // This flag may need to be replaced with -f[no-]memprof-reads. |
| static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads", |
| cl::desc("instrument read instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| ClInstrumentWrites("memprof-instrument-writes", |
| cl::desc("instrument write instructions"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentAtomics( |
| "memprof-instrument-atomics", |
| cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClUseCalls( |
| "memprof-use-callbacks", |
| cl::desc("Use callbacks instead of inline instrumentation sequences."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<std::string> |
| ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix", |
| cl::desc("Prefix for memory access callbacks"), |
| cl::Hidden, cl::init("__memprof_")); |
| |
| // These flags allow to change the shadow mapping. |
| // The shadow mapping looks like |
| // Shadow = ((Mem & mask) >> scale) + offset |
| |
| static cl::opt<int> ClMappingScale("memprof-mapping-scale", |
| cl::desc("scale of memprof shadow mapping"), |
| cl::Hidden, cl::init(DefaultShadowScale)); |
| |
| static cl::opt<int> |
| ClMappingGranularity("memprof-mapping-granularity", |
| cl::desc("granularity of memprof shadow mapping"), |
| cl::Hidden, cl::init(DefaultShadowGranularity)); |
| |
| static cl::opt<bool> ClStack("memprof-instrument-stack", |
| cl::desc("Instrument scalar stack variables"), |
| cl::Hidden, cl::init(false)); |
| |
| // Debug flags. |
| |
| static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden, |
| cl::desc("Debug func")); |
| |
| static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); |
| STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads"); |
| STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes"); |
| |
| namespace { |
| |
| /// This struct defines the shadow mapping using the rule: |
| /// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset. |
| struct ShadowMapping { |
| ShadowMapping() { |
| Scale = ClMappingScale; |
| Granularity = ClMappingGranularity; |
| Mask = ~(Granularity - 1); |
| } |
| |
| int Scale; |
| int Granularity; |
| uint64_t Mask; // Computed as ~(Granularity-1) |
| }; |
| |
| static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) { |
| return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority |
| : MemProfCtorAndDtorPriority; |
| } |
| |
| struct InterestingMemoryAccess { |
| Value *Addr = nullptr; |
| bool IsWrite; |
| unsigned Alignment; |
| uint64_t TypeSize; |
| Value *MaybeMask = nullptr; |
| }; |
| |
| /// Instrument the code in module to profile memory accesses. |
| class MemProfiler { |
| public: |
| MemProfiler(Module &M) { |
| C = &(M.getContext()); |
| LongSize = M.getDataLayout().getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| } |
| |
| /// If it is an interesting memory access, populate information |
| /// about the access and return a InterestingMemoryAccess struct. |
| /// Otherwise return None. |
| Optional<InterestingMemoryAccess> |
| isInterestingMemoryAccess(Instruction *I) const; |
| |
| void instrumentMop(Instruction *I, const DataLayout &DL, |
| InterestingMemoryAccess &Access); |
| void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
| Value *Addr, uint32_t TypeSize, bool IsWrite); |
| void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, |
| Instruction *I, Value *Addr, |
| unsigned Alignment, uint32_t TypeSize, |
| bool IsWrite); |
| void instrumentMemIntrinsic(MemIntrinsic *MI); |
| Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| bool instrumentFunction(Function &F); |
| bool maybeInsertMemProfInitAtFunctionEntry(Function &F); |
| bool insertDynamicShadowAtFunctionEntry(Function &F); |
| |
| private: |
| void initializeCallbacks(Module &M); |
| |
| LLVMContext *C; |
| int LongSize; |
| Type *IntptrTy; |
| ShadowMapping Mapping; |
| |
| // These arrays is indexed by AccessIsWrite |
| FunctionCallee MemProfMemoryAccessCallback[2]; |
| FunctionCallee MemProfMemoryAccessCallbackSized[2]; |
| |
| FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset; |
| Value *DynamicShadowOffset = nullptr; |
| }; |
| |
| class MemProfilerLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| |
| explicit MemProfilerLegacyPass() : FunctionPass(ID) { |
| initializeMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "MemProfilerFunctionPass"; } |
| |
| bool runOnFunction(Function &F) override { |
| MemProfiler Profiler(*F.getParent()); |
| return Profiler.instrumentFunction(F); |
| } |
| }; |
| |
| class ModuleMemProfiler { |
| public: |
| ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); } |
| |
| bool instrumentModule(Module &); |
| |
| private: |
| Triple TargetTriple; |
| ShadowMapping Mapping; |
| Function *MemProfCtorFunction = nullptr; |
| }; |
| |
| class ModuleMemProfilerLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| |
| explicit ModuleMemProfilerLegacyPass() : ModulePass(ID) { |
| initializeModuleMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "ModuleMemProfiler"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override {} |
| |
| bool runOnModule(Module &M) override { |
| ModuleMemProfiler MemProfiler(M); |
| return MemProfiler.instrumentModule(M); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| MemProfilerPass::MemProfilerPass() {} |
| |
| PreservedAnalyses MemProfilerPass::run(Function &F, |
| AnalysisManager<Function> &AM) { |
| Module &M = *F.getParent(); |
| MemProfiler Profiler(M); |
| if (Profiler.instrumentFunction(F)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| ModuleMemProfilerPass::ModuleMemProfilerPass() {} |
| |
| PreservedAnalyses ModuleMemProfilerPass::run(Module &M, |
| AnalysisManager<Module> &AM) { |
| ModuleMemProfiler Profiler(M); |
| if (Profiler.instrumentModule(M)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| char MemProfilerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(MemProfilerLegacyPass, "memprof", |
| "MemProfiler: profile memory allocations and accesses.", |
| false, false) |
| INITIALIZE_PASS_END(MemProfilerLegacyPass, "memprof", |
| "MemProfiler: profile memory allocations and accesses.", |
| false, false) |
| |
| FunctionPass *llvm::createMemProfilerFunctionPass() { |
| return new MemProfilerLegacyPass(); |
| } |
| |
| char ModuleMemProfilerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS(ModuleMemProfilerLegacyPass, "memprof-module", |
| "MemProfiler: profile memory allocations and accesses." |
| "ModulePass", |
| false, false) |
| |
| ModulePass *llvm::createModuleMemProfilerLegacyPassPass() { |
| return new ModuleMemProfilerLegacyPass(); |
| } |
| |
| Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
| // (Shadow & mask) >> scale |
| Shadow = IRB.CreateAnd(Shadow, Mapping.Mask); |
| Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); |
| // (Shadow >> scale) | offset |
| assert(DynamicShadowOffset); |
| return IRB.CreateAdd(Shadow, DynamicShadowOffset); |
| } |
| |
| // Instrument memset/memmove/memcpy |
| void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| IRBuilder<> IRB(MI); |
| if (isa<MemTransferInst>(MI)) { |
| IRB.CreateCall( |
| isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } else if (isa<MemSetInst>(MI)) { |
| IRB.CreateCall( |
| MemProfMemset, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } |
| MI->eraseFromParent(); |
| } |
| |
| Optional<InterestingMemoryAccess> |
| MemProfiler::isInterestingMemoryAccess(Instruction *I) const { |
| // Do not instrument the load fetching the dynamic shadow address. |
| if (DynamicShadowOffset == I) |
| return None; |
| |
| InterestingMemoryAccess Access; |
| |
| const DataLayout &DL = I->getModule()->getDataLayout(); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!ClInstrumentReads) |
| return None; |
| Access.IsWrite = false; |
| Access.TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); |
| Access.Alignment = LI->getAlignment(); |
| Access.Addr = LI->getPointerOperand(); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!ClInstrumentWrites) |
| return None; |
| Access.IsWrite = true; |
| Access.TypeSize = |
| DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); |
| Access.Alignment = SI->getAlignment(); |
| Access.Addr = SI->getPointerOperand(); |
| } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| if (!ClInstrumentAtomics) |
| return None; |
| Access.IsWrite = true; |
| Access.TypeSize = |
| DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); |
| Access.Alignment = 0; |
| Access.Addr = RMW->getPointerOperand(); |
| } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { |
| if (!ClInstrumentAtomics) |
| return None; |
| Access.IsWrite = true; |
| Access.TypeSize = |
| DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); |
| Access.Alignment = 0; |
| Access.Addr = XCHG->getPointerOperand(); |
| } else if (auto *CI = dyn_cast<CallInst>(I)) { |
| auto *F = CI->getCalledFunction(); |
| if (F && (F->getIntrinsicID() == Intrinsic::masked_load || |
| F->getIntrinsicID() == Intrinsic::masked_store)) { |
| unsigned OpOffset = 0; |
| if (F->getIntrinsicID() == Intrinsic::masked_store) { |
| if (!ClInstrumentWrites) |
| return None; |
| // Masked store has an initial operand for the value. |
| OpOffset = 1; |
| Access.IsWrite = true; |
| } else { |
| if (!ClInstrumentReads) |
| return None; |
| Access.IsWrite = false; |
| } |
| |
| auto *BasePtr = CI->getOperand(0 + OpOffset); |
| auto *Ty = cast<PointerType>(BasePtr->getType())->getElementType(); |
| Access.TypeSize = DL.getTypeStoreSizeInBits(Ty); |
| if (auto *AlignmentConstant = |
| dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) |
| Access.Alignment = (unsigned)AlignmentConstant->getZExtValue(); |
| else |
| Access.Alignment = 1; // No alignment guarantees. We probably got Undef |
| Access.MaybeMask = CI->getOperand(2 + OpOffset); |
| Access.Addr = BasePtr; |
| } |
| } |
| |
| if (!Access.Addr) |
| return None; |
| |
| // Do not instrument acesses from different address spaces; we cannot deal |
| // with them. |
| Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType()); |
| if (PtrTy->getPointerAddressSpace() != 0) |
| return None; |
| |
| // Ignore swifterror addresses. |
| // swifterror memory addresses are mem2reg promoted by instruction |
| // selection. As such they cannot have regular uses like an instrumentation |
| // function and it makes no sense to track them as memory. |
| if (Access.Addr->isSwiftError()) |
| return None; |
| |
| return Access; |
| } |
| |
| void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, |
| Instruction *I, Value *Addr, |
| unsigned Alignment, |
| uint32_t TypeSize, bool IsWrite) { |
| auto *VTy = cast<FixedVectorType>( |
| cast<PointerType>(Addr->getType())->getElementType()); |
| uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); |
| unsigned Num = VTy->getNumElements(); |
| auto *Zero = ConstantInt::get(IntptrTy, 0); |
| for (unsigned Idx = 0; Idx < Num; ++Idx) { |
| Value *InstrumentedAddress = nullptr; |
| Instruction *InsertBefore = I; |
| if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { |
| // dyn_cast as we might get UndefValue |
| if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { |
| if (Masked->isZero()) |
| // Mask is constant false, so no instrumentation needed. |
| continue; |
| // If we have a true or undef value, fall through to instrumentAddress. |
| // with InsertBefore == I |
| } |
| } else { |
| IRBuilder<> IRB(I); |
| Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); |
| Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); |
| InsertBefore = ThenTerm; |
| } |
| |
| IRBuilder<> IRB(InsertBefore); |
| InstrumentedAddress = |
| IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); |
| instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize, |
| IsWrite); |
| } |
| } |
| |
| void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL, |
| InterestingMemoryAccess &Access) { |
| // Skip instrumentation of stack accesses unless requested. |
| if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) { |
| if (Access.IsWrite) |
| ++NumSkippedStackWrites; |
| else |
| ++NumSkippedStackReads; |
| return; |
| } |
| |
| if (Access.IsWrite) |
| NumInstrumentedWrites++; |
| else |
| NumInstrumentedReads++; |
| |
| if (Access.MaybeMask) { |
| instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr, |
| Access.Alignment, Access.TypeSize, |
| Access.IsWrite); |
| } else { |
| // Since the access counts will be accumulated across the entire allocation, |
| // we only update the shadow access count for the first location and thus |
| // don't need to worry about alignment and type size. |
| instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite); |
| } |
| } |
| |
| void MemProfiler::instrumentAddress(Instruction *OrigIns, |
| Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| |
| if (ClUseCalls) { |
| IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong); |
| return; |
| } |
| |
| // Create an inline sequence to compute shadow location, and increment the |
| // value by one. |
| Type *ShadowTy = Type::getInt64Ty(*C); |
| Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); |
| Value *ShadowPtr = memToShadow(AddrLong, IRB); |
| Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy); |
| Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr); |
| Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1); |
| ShadowValue = IRB.CreateAdd(ShadowValue, Inc); |
| IRB.CreateStore(ShadowValue, ShadowAddr); |
| } |
| |
| // Create the variable for the profile file name. |
| void createProfileFileNameVar(Module &M) { |
| const MDString *MemProfFilename = |
| dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename")); |
| if (!MemProfFilename) |
| return; |
| assert(!MemProfFilename->getString().empty() && |
| "Unexpected MemProfProfileFilename metadata with empty string"); |
| Constant *ProfileNameConst = ConstantDataArray::getString( |
| M.getContext(), MemProfFilename->getString(), true); |
| GlobalVariable *ProfileNameVar = new GlobalVariable( |
| M, ProfileNameConst->getType(), /*isConstant=*/true, |
| GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar); |
| Triple TT(M.getTargetTriple()); |
| if (TT.supportsCOMDAT()) { |
| ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); |
| ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar)); |
| } |
| } |
| |
| bool ModuleMemProfiler::instrumentModule(Module &M) { |
| // Create a module constructor. |
| std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION); |
| std::string VersionCheckName = |
| ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion) |
| : ""; |
| std::tie(MemProfCtorFunction, std::ignore) = |
| createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName, |
| MemProfInitName, /*InitArgTypes=*/{}, |
| /*InitArgs=*/{}, VersionCheckName); |
| |
| const uint64_t Priority = getCtorAndDtorPriority(TargetTriple); |
| appendToGlobalCtors(M, MemProfCtorFunction, Priority); |
| |
| createProfileFileNameVar(M); |
| |
| return true; |
| } |
| |
| void MemProfiler::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| |
| for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
| const std::string TypeStr = AccessIsWrite ? "store" : "load"; |
| |
| SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; |
| SmallVector<Type *, 2> Args1{1, IntptrTy}; |
| MemProfMemoryAccessCallbackSized[AccessIsWrite] = |
| M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N", |
| FunctionType::get(IRB.getVoidTy(), Args2, false)); |
| |
| MemProfMemoryAccessCallback[AccessIsWrite] = |
| M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr, |
| FunctionType::get(IRB.getVoidTy(), Args1, false)); |
| } |
| MemProfMemmove = M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); |
| MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt32Ty(), IntptrTy); |
| } |
| |
| bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) { |
| // For each NSObject descendant having a +load method, this method is invoked |
| // by the ObjC runtime before any of the static constructors is called. |
| // Therefore we need to instrument such methods with a call to __memprof_init |
| // at the beginning in order to initialize our runtime before any access to |
| // the shadow memory. |
| // We cannot just ignore these methods, because they may call other |
| // instrumented functions. |
| if (F.getName().find(" load]") != std::string::npos) { |
| FunctionCallee MemProfInitFunction = |
| declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {}); |
| IRBuilder<> IRB(&F.front(), F.front().begin()); |
| IRB.CreateCall(MemProfInitFunction, {}); |
| return true; |
| } |
| return false; |
| } |
| |
| bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) { |
| IRBuilder<> IRB(&F.front().front()); |
| Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( |
| MemProfShadowMemoryDynamicAddress, IntptrTy); |
| if (F.getParent()->getPICLevel() == PICLevel::NotPIC) |
| cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true); |
| DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); |
| return true; |
| } |
| |
| bool MemProfiler::instrumentFunction(Function &F) { |
| if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) |
| return false; |
| if (ClDebugFunc == F.getName()) |
| return false; |
| if (F.getName().startswith("__memprof_")) |
| return false; |
| |
| bool FunctionModified = false; |
| |
| // If needed, insert __memprof_init. |
| // This function needs to be called even if the function body is not |
| // instrumented. |
| if (maybeInsertMemProfInitAtFunctionEntry(F)) |
| FunctionModified = true; |
| |
| LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n"); |
| |
| initializeCallbacks(*F.getParent()); |
| |
| FunctionModified |= insertDynamicShadowAtFunctionEntry(F); |
| |
| SmallVector<Instruction *, 16> ToInstrument; |
| |
| // Fill the set of memory operations to instrument. |
| for (auto &BB : F) { |
| for (auto &Inst : BB) { |
| if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst)) |
| ToInstrument.push_back(&Inst); |
| } |
| } |
| |
| int NumInstrumented = 0; |
| for (auto *Inst : ToInstrument) { |
| if (ClDebugMin < 0 || ClDebugMax < 0 || |
| (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { |
| Optional<InterestingMemoryAccess> Access = |
| isInterestingMemoryAccess(Inst); |
| if (Access) |
| instrumentMop(Inst, F.getParent()->getDataLayout(), *Access); |
| else |
| instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); |
| } |
| NumInstrumented++; |
| } |
| |
| if (NumInstrumented > 0) |
| FunctionModified = true; |
| |
| LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " " |
| << F << "\n"); |
| |
| return FunctionModified; |
| } |