| //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow |
| /// analysis. |
| /// |
| /// Unlike other Sanitizer tools, this tool is not designed to detect a specific |
| /// class of bugs on its own. Instead, it provides a generic dynamic data flow |
| /// analysis framework to be used by clients to help detect application-specific |
| /// issues within their own code. |
| /// |
| /// The analysis is based on automatic propagation of data flow labels (also |
| /// known as taint labels) through a program as it performs computation. |
| /// |
| /// Argument and return value labels are passed through TLS variables |
| /// __dfsan_arg_tls and __dfsan_retval_tls. |
| /// |
| /// Each byte of application memory is backed by a shadow memory byte. The |
| /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then |
| /// laid out as follows: |
| /// |
| /// +--------------------+ 0x800000000000 (top of memory) |
| /// | application 3 | |
| /// +--------------------+ 0x700000000000 |
| /// | invalid | |
| /// +--------------------+ 0x610000000000 |
| /// | origin 1 | |
| /// +--------------------+ 0x600000000000 |
| /// | application 2 | |
| /// +--------------------+ 0x510000000000 |
| /// | shadow 1 | |
| /// +--------------------+ 0x500000000000 |
| /// | invalid | |
| /// +--------------------+ 0x400000000000 |
| /// | origin 3 | |
| /// +--------------------+ 0x300000000000 |
| /// | shadow 3 | |
| /// +--------------------+ 0x200000000000 |
| /// | origin 2 | |
| /// +--------------------+ 0x110000000000 |
| /// | invalid | |
| /// +--------------------+ 0x100000000000 |
| /// | shadow 2 | |
| /// +--------------------+ 0x010000000000 |
| /// | application 1 | |
| /// +--------------------+ 0x000000000000 |
| /// |
| /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 |
| /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 |
| /// |
| /// For more information, please refer to the design document: |
| /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/SpecialCaseList.h" |
| #include "llvm/Support/VirtualFileSystem.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| // This must be consistent with ShadowWidthBits. |
| static const Align ShadowTLSAlignment = Align(2); |
| |
| static const Align MinOriginAlignment = Align(4); |
| |
| // The size of TLS variables. These constants must be kept in sync with the ones |
| // in dfsan.cpp. |
| static const unsigned ArgTLSSize = 800; |
| static const unsigned RetvalTLSSize = 800; |
| |
| // The -dfsan-preserve-alignment flag controls whether this pass assumes that |
| // alignment requirements provided by the input IR are correct. For example, |
| // if the input IR contains a load with alignment 8, this flag will cause |
| // the shadow load to have alignment 16. This flag is disabled by default as |
| // we have unfortunately encountered too much code (including Clang itself; |
| // see PR14291) which performs misaligned access. |
| static cl::opt<bool> ClPreserveAlignment( |
| "dfsan-preserve-alignment", |
| cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, |
| cl::init(false)); |
| |
| // The ABI list files control how shadow parameters are passed. The pass treats |
| // every function labelled "uninstrumented" in the ABI list file as conforming |
| // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains |
| // additional annotations for those functions, a call to one of those functions |
| // will produce a warning message, as the labelling behaviour of the function is |
| // unknown. The other supported annotations for uninstrumented functions are |
| // "functional" and "discard", which are described below under |
| // DataFlowSanitizer::WrapperKind. |
| // Functions will often be labelled with both "uninstrumented" and one of |
| // "functional" or "discard". This will leave the function unchanged by this |
| // pass, and create a wrapper function that will call the original. |
| // |
| // Instrumented functions can also be annotated as "force_zero_labels", which |
| // will make all shadow and return values set zero labels. |
| // Functions should never be labelled with both "force_zero_labels" and |
| // "uninstrumented" or any of the unistrumented wrapper kinds. |
| static cl::list<std::string> ClABIListFiles( |
| "dfsan-abilist", |
| cl::desc("File listing native ABI functions and how the pass treats them"), |
| cl::Hidden); |
| |
| // Controls whether the pass includes or ignores the labels of pointers in load |
| // instructions. |
| static cl::opt<bool> ClCombinePointerLabelsOnLoad( |
| "dfsan-combine-pointer-labels-on-load", |
| cl::desc("Combine the label of the pointer with the label of the data when " |
| "loading from memory."), |
| cl::Hidden, cl::init(true)); |
| |
| // Controls whether the pass includes or ignores the labels of pointers in |
| // stores instructions. |
| static cl::opt<bool> ClCombinePointerLabelsOnStore( |
| "dfsan-combine-pointer-labels-on-store", |
| cl::desc("Combine the label of the pointer with the label of the data when " |
| "storing in memory."), |
| cl::Hidden, cl::init(false)); |
| |
| // Controls whether the pass propagates labels of offsets in GEP instructions. |
| static cl::opt<bool> ClCombineOffsetLabelsOnGEP( |
| "dfsan-combine-offset-labels-on-gep", |
| cl::desc( |
| "Combine the label of the offset with the label of the pointer when " |
| "doing pointer arithmetic."), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClDebugNonzeroLabels( |
| "dfsan-debug-nonzero-labels", |
| cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " |
| "load or return with a nonzero label"), |
| cl::Hidden); |
| |
| // Experimental feature that inserts callbacks for certain data events. |
| // Currently callbacks are only inserted for loads, stores, memory transfers |
| // (i.e. memcpy and memmove), and comparisons. |
| // |
| // If this flag is set to true, the user must provide definitions for the |
| // following callback functions: |
| // void __dfsan_load_callback(dfsan_label Label, void* addr); |
| // void __dfsan_store_callback(dfsan_label Label, void* addr); |
| // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); |
| // void __dfsan_cmp_callback(dfsan_label CombinedLabel); |
| static cl::opt<bool> ClEventCallbacks( |
| "dfsan-event-callbacks", |
| cl::desc("Insert calls to __dfsan_*_callback functions on data events."), |
| cl::Hidden, cl::init(false)); |
| |
| // Controls whether the pass tracks the control flow of select instructions. |
| static cl::opt<bool> ClTrackSelectControlFlow( |
| "dfsan-track-select-control-flow", |
| cl::desc("Propagate labels from condition values of select instructions " |
| "to results."), |
| cl::Hidden, cl::init(true)); |
| |
| // TODO: This default value follows MSan. DFSan may use a different value. |
| static cl::opt<int> ClInstrumentWithCallThreshold( |
| "dfsan-instrument-with-call-threshold", |
| cl::desc("If the function being instrumented requires more than " |
| "this number of origin stores, use callbacks instead of " |
| "inline checks (-1 means never use callbacks)."), |
| cl::Hidden, cl::init(3500)); |
| |
| // Controls how to track origins. |
| // * 0: do not track origins. |
| // * 1: track origins at memory store operations. |
| // * 2: track origins at memory load and store operations. |
| // TODO: track callsites. |
| static cl::opt<int> ClTrackOrigins("dfsan-track-origins", |
| cl::desc("Track origins of labels"), |
| cl::Hidden, cl::init(0)); |
| |
| static StringRef getGlobalTypeString(const GlobalValue &G) { |
| // Types of GlobalVariables are always pointer types. |
| Type *GType = G.getValueType(); |
| // For now we support excluding struct types only. |
| if (StructType *SGType = dyn_cast<StructType>(GType)) { |
| if (!SGType->isLiteral()) |
| return SGType->getName(); |
| } |
| return "<unknown type>"; |
| } |
| |
| namespace { |
| |
| // Memory map parameters used in application-to-shadow address calculation. |
| // Offset = (Addr & ~AndMask) ^ XorMask |
| // Shadow = ShadowBase + Offset |
| // Origin = (OriginBase + Offset) & ~3ULL |
| struct MemoryMapParams { |
| uint64_t AndMask; |
| uint64_t XorMask; |
| uint64_t ShadowBase; |
| uint64_t OriginBase; |
| }; |
| |
| } // end anonymous namespace |
| |
| // x86_64 Linux |
| // NOLINTNEXTLINE(readability-identifier-naming) |
| static const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
| 0, // AndMask (not used) |
| 0x500000000000, // XorMask |
| 0, // ShadowBase (not used) |
| 0x100000000000, // OriginBase |
| }; |
| |
| namespace { |
| |
| class DFSanABIList { |
| std::unique_ptr<SpecialCaseList> SCL; |
| |
| public: |
| DFSanABIList() = default; |
| |
| void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } |
| |
| /// Returns whether either this function or its source file are listed in the |
| /// given category. |
| bool isIn(const Function &F, StringRef Category) const { |
| return isIn(*F.getParent(), Category) || |
| SCL->inSection("dataflow", "fun", F.getName(), Category); |
| } |
| |
| /// Returns whether this global alias is listed in the given category. |
| /// |
| /// If GA aliases a function, the alias's name is matched as a function name |
| /// would be. Similarly, aliases of globals are matched like globals. |
| bool isIn(const GlobalAlias &GA, StringRef Category) const { |
| if (isIn(*GA.getParent(), Category)) |
| return true; |
| |
| if (isa<FunctionType>(GA.getValueType())) |
| return SCL->inSection("dataflow", "fun", GA.getName(), Category); |
| |
| return SCL->inSection("dataflow", "global", GA.getName(), Category) || |
| SCL->inSection("dataflow", "type", getGlobalTypeString(GA), |
| Category); |
| } |
| |
| /// Returns whether this module is listed in the given category. |
| bool isIn(const Module &M, StringRef Category) const { |
| return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); |
| } |
| }; |
| |
| /// TransformedFunction is used to express the result of transforming one |
| /// function type into another. This struct is immutable. It holds metadata |
| /// useful for updating calls of the old function to the new type. |
| struct TransformedFunction { |
| TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, |
| std::vector<unsigned> ArgumentIndexMapping) |
| : OriginalType(OriginalType), TransformedType(TransformedType), |
| ArgumentIndexMapping(ArgumentIndexMapping) {} |
| |
| // Disallow copies. |
| TransformedFunction(const TransformedFunction &) = delete; |
| TransformedFunction &operator=(const TransformedFunction &) = delete; |
| |
| // Allow moves. |
| TransformedFunction(TransformedFunction &&) = default; |
| TransformedFunction &operator=(TransformedFunction &&) = default; |
| |
| /// Type of the function before the transformation. |
| FunctionType *OriginalType; |
| |
| /// Type of the function after the transformation. |
| FunctionType *TransformedType; |
| |
| /// Transforming a function may change the position of arguments. This |
| /// member records the mapping from each argument's old position to its new |
| /// position. Argument positions are zero-indexed. If the transformation |
| /// from F to F' made the first argument of F into the third argument of F', |
| /// then ArgumentIndexMapping[0] will equal 2. |
| std::vector<unsigned> ArgumentIndexMapping; |
| }; |
| |
| /// Given function attributes from a call site for the original function, |
| /// return function attributes appropriate for a call to the transformed |
| /// function. |
| AttributeList |
| transformFunctionAttributes(const TransformedFunction &TransformedFunction, |
| LLVMContext &Ctx, AttributeList CallSiteAttrs) { |
| |
| // Construct a vector of AttributeSet for each function argument. |
| std::vector<llvm::AttributeSet> ArgumentAttributes( |
| TransformedFunction.TransformedType->getNumParams()); |
| |
| // Copy attributes from the parameter of the original function to the |
| // transformed version. 'ArgumentIndexMapping' holds the mapping from |
| // old argument position to new. |
| for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); |
| I < IE; ++I) { |
| unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; |
| ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); |
| } |
| |
| // Copy annotations on varargs arguments. |
| for (unsigned I = TransformedFunction.OriginalType->getNumParams(), |
| IE = CallSiteAttrs.getNumAttrSets(); |
| I < IE; ++I) { |
| ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); |
| } |
| |
| return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), |
| CallSiteAttrs.getRetAttrs(), |
| llvm::makeArrayRef(ArgumentAttributes)); |
| } |
| |
| class DataFlowSanitizer { |
| friend struct DFSanFunction; |
| friend class DFSanVisitor; |
| |
| enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; |
| |
| enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; |
| |
| /// How should calls to uninstrumented functions be handled? |
| enum WrapperKind { |
| /// This function is present in an uninstrumented form but we don't know |
| /// how it should be handled. Print a warning and call the function anyway. |
| /// Don't label the return value. |
| WK_Warning, |
| |
| /// This function does not write to (user-accessible) memory, and its return |
| /// value is unlabelled. |
| WK_Discard, |
| |
| /// This function does not write to (user-accessible) memory, and the label |
| /// of its return value is the union of the label of its arguments. |
| WK_Functional, |
| |
| /// Instead of calling the function, a custom wrapper __dfsw_F is called, |
| /// where F is the name of the function. This function may wrap the |
| /// original function or provide its own implementation. WK_Custom uses an |
| /// extra pointer argument to return the shadow. This allows the wrapped |
| /// form of the function type to be expressed in C. |
| WK_Custom |
| }; |
| |
| Module *Mod; |
| LLVMContext *Ctx; |
| Type *Int8Ptr; |
| IntegerType *OriginTy; |
| PointerType *OriginPtrTy; |
| ConstantInt *ZeroOrigin; |
| /// The shadow type for all primitive types and vector types. |
| IntegerType *PrimitiveShadowTy; |
| PointerType *PrimitiveShadowPtrTy; |
| IntegerType *IntptrTy; |
| ConstantInt *ZeroPrimitiveShadow; |
| Constant *ArgTLS; |
| ArrayType *ArgOriginTLSTy; |
| Constant *ArgOriginTLS; |
| Constant *RetvalTLS; |
| Constant *RetvalOriginTLS; |
| FunctionType *DFSanUnionLoadFnTy; |
| FunctionType *DFSanLoadLabelAndOriginFnTy; |
| FunctionType *DFSanUnimplementedFnTy; |
| FunctionType *DFSanSetLabelFnTy; |
| FunctionType *DFSanNonzeroLabelFnTy; |
| FunctionType *DFSanVarargWrapperFnTy; |
| FunctionType *DFSanCmpCallbackFnTy; |
| FunctionType *DFSanLoadStoreCallbackFnTy; |
| FunctionType *DFSanMemTransferCallbackFnTy; |
| FunctionType *DFSanChainOriginFnTy; |
| FunctionType *DFSanChainOriginIfTaintedFnTy; |
| FunctionType *DFSanMemOriginTransferFnTy; |
| FunctionType *DFSanMaybeStoreOriginFnTy; |
| FunctionCallee DFSanUnionLoadFn; |
| FunctionCallee DFSanLoadLabelAndOriginFn; |
| FunctionCallee DFSanUnimplementedFn; |
| FunctionCallee DFSanSetLabelFn; |
| FunctionCallee DFSanNonzeroLabelFn; |
| FunctionCallee DFSanVarargWrapperFn; |
| FunctionCallee DFSanLoadCallbackFn; |
| FunctionCallee DFSanStoreCallbackFn; |
| FunctionCallee DFSanMemTransferCallbackFn; |
| FunctionCallee DFSanCmpCallbackFn; |
| FunctionCallee DFSanChainOriginFn; |
| FunctionCallee DFSanChainOriginIfTaintedFn; |
| FunctionCallee DFSanMemOriginTransferFn; |
| FunctionCallee DFSanMaybeStoreOriginFn; |
| SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; |
| MDNode *ColdCallWeights; |
| MDNode *OriginStoreWeights; |
| DFSanABIList ABIList; |
| DenseMap<Value *, Function *> UnwrappedFnMap; |
| AttrBuilder ReadOnlyNoneAttrs; |
| |
| /// Memory map parameters used in calculation mapping application addresses |
| /// to shadow addresses and origin addresses. |
| const MemoryMapParams *MapParams; |
| |
| Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); |
| Value *getShadowAddress(Value *Addr, Instruction *Pos); |
| Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); |
| std::pair<Value *, Value *> |
| getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); |
| bool isInstrumented(const Function *F); |
| bool isInstrumented(const GlobalAlias *GA); |
| bool isForceZeroLabels(const Function *F); |
| FunctionType *getTrampolineFunctionType(FunctionType *T); |
| TransformedFunction getCustomFunctionType(FunctionType *T); |
| WrapperKind getWrapperKind(Function *F); |
| void addGlobalNameSuffix(GlobalValue *GV); |
| Function *buildWrapperFunction(Function *F, StringRef NewFName, |
| GlobalValue::LinkageTypes NewFLink, |
| FunctionType *NewFT); |
| Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); |
| void initializeCallbackFunctions(Module &M); |
| void initializeRuntimeFunctions(Module &M); |
| void injectMetadataGlobals(Module &M); |
| bool initializeModule(Module &M); |
| |
| /// Advances \p OriginAddr to point to the next 32-bit origin and then loads |
| /// from it. Returns the origin's loaded value. |
| Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, |
| Value **OriginAddr); |
| |
| /// Returns whether the given load byte size is amenable to inlined |
| /// optimization patterns. |
| bool hasLoadSizeForFastPath(uint64_t Size); |
| |
| /// Returns whether the pass tracks origins. Supports only TLS ABI mode. |
| bool shouldTrackOrigins(); |
| |
| /// Returns a zero constant with the shadow type of OrigTy. |
| /// |
| /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} |
| /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] |
| /// getZeroShadow(other type) = i16(0) |
| Constant *getZeroShadow(Type *OrigTy); |
| /// Returns a zero constant with the shadow type of V's type. |
| Constant *getZeroShadow(Value *V); |
| |
| /// Checks if V is a zero shadow. |
| bool isZeroShadow(Value *V); |
| |
| /// Returns the shadow type of OrigTy. |
| /// |
| /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} |
| /// getShadowTy([n x T]) = [n x getShadowTy(T)] |
| /// getShadowTy(other type) = i16 |
| Type *getShadowTy(Type *OrigTy); |
| /// Returns the shadow type of of V's type. |
| Type *getShadowTy(Value *V); |
| |
| const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; |
| |
| public: |
| DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); |
| |
| bool runImpl(Module &M); |
| }; |
| |
| struct DFSanFunction { |
| DataFlowSanitizer &DFS; |
| Function *F; |
| DominatorTree DT; |
| bool IsNativeABI; |
| bool IsForceZeroLabels; |
| AllocaInst *LabelReturnAlloca = nullptr; |
| AllocaInst *OriginReturnAlloca = nullptr; |
| DenseMap<Value *, Value *> ValShadowMap; |
| DenseMap<Value *, Value *> ValOriginMap; |
| DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; |
| DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; |
| |
| struct PHIFixupElement { |
| PHINode *Phi; |
| PHINode *ShadowPhi; |
| PHINode *OriginPhi; |
| }; |
| std::vector<PHIFixupElement> PHIFixups; |
| |
| DenseSet<Instruction *> SkipInsts; |
| std::vector<Value *> NonZeroChecks; |
| |
| struct CachedShadow { |
| BasicBlock *Block; // The block where Shadow is defined. |
| Value *Shadow; |
| }; |
| /// Maps a value to its latest shadow value in terms of domination tree. |
| DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; |
| /// Maps a value to its latest collapsed shadow value it was converted to in |
| /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is |
| /// used at a post process where CFG blocks are split. So it does not cache |
| /// BasicBlock like CachedShadows, but uses domination between values. |
| DenseMap<Value *, Value *> CachedCollapsedShadows; |
| DenseMap<Value *, std::set<Value *>> ShadowElements; |
| |
| DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, |
| bool IsForceZeroLabels) |
| : DFS(DFS), F(F), IsNativeABI(IsNativeABI), |
| IsForceZeroLabels(IsForceZeroLabels) { |
| DT.recalculate(*F); |
| } |
| |
| /// Computes the shadow address for a given function argument. |
| /// |
| /// Shadow = ArgTLS+ArgOffset. |
| Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); |
| |
| /// Computes the shadow address for a return value. |
| Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); |
| |
| /// Computes the origin address for a given function argument. |
| /// |
| /// Origin = ArgOriginTLS[ArgNo]. |
| Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); |
| |
| /// Computes the origin address for a return value. |
| Value *getRetvalOriginTLS(); |
| |
| Value *getOrigin(Value *V); |
| void setOrigin(Instruction *I, Value *Origin); |
| /// Generates IR to compute the origin of the last operand with a taint label. |
| Value *combineOperandOrigins(Instruction *Inst); |
| /// Before the instruction Pos, generates IR to compute the last origin with a |
| /// taint label. Labels and origins are from vectors Shadows and Origins |
| /// correspondingly. The generated IR is like |
| /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 |
| /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be |
| /// zeros with other bitwidths. |
| Value *combineOrigins(const std::vector<Value *> &Shadows, |
| const std::vector<Value *> &Origins, Instruction *Pos, |
| ConstantInt *Zero = nullptr); |
| |
| Value *getShadow(Value *V); |
| void setShadow(Instruction *I, Value *Shadow); |
| /// Generates IR to compute the union of the two given shadows, inserting it |
| /// before Pos. The combined value is with primitive type. |
| Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); |
| /// Combines the shadow values of V1 and V2, then converts the combined value |
| /// with primitive type into a shadow value with the original type T. |
| Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, |
| Instruction *Pos); |
| Value *combineOperandShadows(Instruction *Inst); |
| |
| /// Generates IR to load shadow and origin corresponding to bytes [\p |
| /// Addr, \p Addr + \p Size), where addr has alignment \p |
| /// InstAlignment, and take the union of each of those shadows. The returned |
| /// shadow always has primitive type. |
| /// |
| /// When tracking loads is enabled, the returned origin is a chain at the |
| /// current stack if the returned shadow is tainted. |
| std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, |
| Align InstAlignment, |
| Instruction *Pos); |
| |
| void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, |
| Align InstAlignment, Value *PrimitiveShadow, |
| Value *Origin, Instruction *Pos); |
| /// Applies PrimitiveShadow to all primitive subtypes of T, returning |
| /// the expanded shadow value. |
| /// |
| /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} |
| /// EFP([n x T], PS) = [n x EFP(T,PS)] |
| /// EFP(other types, PS) = PS |
| Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, |
| Instruction *Pos); |
| /// Collapses Shadow into a single primitive shadow value, unioning all |
| /// primitive shadow values in the process. Returns the final primitive |
| /// shadow value. |
| /// |
| /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) |
| /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) |
| /// CTP(other types, PS) = PS |
| Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); |
| |
| void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, |
| Instruction *Pos); |
| |
| Align getShadowAlign(Align InstAlignment); |
| |
| private: |
| /// Collapses the shadow with aggregate type into a single primitive shadow |
| /// value. |
| template <class AggregateType> |
| Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, |
| IRBuilder<> &IRB); |
| |
| Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); |
| |
| /// Returns the shadow value of an argument A. |
| Value *getShadowForTLSArgument(Argument *A); |
| |
| /// The fast path of loading shadows. |
| std::pair<Value *, Value *> |
| loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, |
| Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, |
| Instruction *Pos); |
| |
| Align getOriginAlign(Align InstAlignment); |
| |
| /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load |
| /// is __dfsan_load_label_and_origin. This function returns the union of all |
| /// labels and the origin of the first taint label. However this is an |
| /// additional call with many instructions. To ensure common cases are fast, |
| /// checks if it is possible to load labels and origins without using the |
| /// callback function. |
| /// |
| /// When enabling tracking load instructions, we always use |
| /// __dfsan_load_label_and_origin to reduce code size. |
| bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); |
| |
| /// Returns a chain at the current stack with previous origin V. |
| Value *updateOrigin(Value *V, IRBuilder<> &IRB); |
| |
| /// Returns a chain at the current stack with previous origin V if Shadow is |
| /// tainted. |
| Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); |
| |
| /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns |
| /// Origin otherwise. |
| Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); |
| |
| /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + |
| /// Size). |
| void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, |
| uint64_t StoreOriginSize, Align Alignment); |
| |
| /// Stores Origin in terms of its Shadow value. |
| /// * Do not write origins for zero shadows because we do not trace origins |
| /// for untainted sinks. |
| /// * Use __dfsan_maybe_store_origin if there are too many origin store |
| /// instrumentations. |
| void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, |
| Value *Origin, Value *StoreOriginAddr, Align InstAlignment); |
| |
| /// Convert a scalar value to an i1 by comparing with 0. |
| Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); |
| |
| bool shouldInstrumentWithCall(); |
| |
| /// Generates IR to load shadow and origin corresponding to bytes [\p |
| /// Addr, \p Addr + \p Size), where addr has alignment \p |
| /// InstAlignment, and take the union of each of those shadows. The returned |
| /// shadow always has primitive type. |
| std::pair<Value *, Value *> |
| loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, |
| Align InstAlignment, Instruction *Pos); |
| int NumOriginStores = 0; |
| }; |
| |
| class DFSanVisitor : public InstVisitor<DFSanVisitor> { |
| public: |
| DFSanFunction &DFSF; |
| |
| DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} |
| |
| const DataLayout &getDataLayout() const { |
| return DFSF.F->getParent()->getDataLayout(); |
| } |
| |
| // Combines shadow values and origins for all of I's operands. |
| void visitInstOperands(Instruction &I); |
| |
| void visitUnaryOperator(UnaryOperator &UO); |
| void visitBinaryOperator(BinaryOperator &BO); |
| void visitBitCastInst(BitCastInst &BCI); |
| void visitCastInst(CastInst &CI); |
| void visitCmpInst(CmpInst &CI); |
| void visitLandingPadInst(LandingPadInst &LPI); |
| void visitGetElementPtrInst(GetElementPtrInst &GEPI); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void visitAtomicRMWInst(AtomicRMWInst &I); |
| void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); |
| void visitReturnInst(ReturnInst &RI); |
| void visitCallBase(CallBase &CB); |
| void visitPHINode(PHINode &PN); |
| void visitExtractElementInst(ExtractElementInst &I); |
| void visitInsertElementInst(InsertElementInst &I); |
| void visitShuffleVectorInst(ShuffleVectorInst &I); |
| void visitExtractValueInst(ExtractValueInst &I); |
| void visitInsertValueInst(InsertValueInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitSelectInst(SelectInst &I); |
| void visitMemSetInst(MemSetInst &I); |
| void visitMemTransferInst(MemTransferInst &I); |
| |
| private: |
| void visitCASOrRMW(Align InstAlignment, Instruction &I); |
| |
| // Returns false when this is an invoke of a custom function. |
| bool visitWrappedCallBase(Function &F, CallBase &CB); |
| |
| // Combines origins for all of I's operands. |
| void visitInstOperandOrigins(Instruction &I); |
| |
| void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, |
| IRBuilder<> &IRB); |
| |
| void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, |
| IRBuilder<> &IRB); |
| }; |
| |
| } // end anonymous namespace |
| |
| DataFlowSanitizer::DataFlowSanitizer( |
| const std::vector<std::string> &ABIListFiles) { |
| std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); |
| llvm::append_range(AllABIListFiles, ClABIListFiles); |
| // FIXME: should we propagate vfs::FileSystem to this constructor? |
| ABIList.set( |
| SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); |
| } |
| |
| FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { |
| assert(!T->isVarArg()); |
| SmallVector<Type *, 4> ArgTypes; |
| ArgTypes.push_back(T->getPointerTo()); |
| ArgTypes.append(T->param_begin(), T->param_end()); |
| ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); |
| Type *RetType = T->getReturnType(); |
| if (!RetType->isVoidTy()) |
| ArgTypes.push_back(PrimitiveShadowPtrTy); |
| |
| if (shouldTrackOrigins()) { |
| ArgTypes.append(T->getNumParams(), OriginTy); |
| if (!RetType->isVoidTy()) |
| ArgTypes.push_back(OriginPtrTy); |
| } |
| |
| return FunctionType::get(T->getReturnType(), ArgTypes, false); |
| } |
| |
| TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { |
| SmallVector<Type *, 4> ArgTypes; |
| |
| // Some parameters of the custom function being constructed are |
| // parameters of T. Record the mapping from parameters of T to |
| // parameters of the custom function, so that parameter attributes |
| // at call sites can be updated. |
| std::vector<unsigned> ArgumentIndexMapping; |
| for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { |
| Type *ParamType = T->getParamType(I); |
| FunctionType *FT; |
| if (isa<PointerType>(ParamType) && |
| (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { |
| ArgumentIndexMapping.push_back(ArgTypes.size()); |
| ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); |
| ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); |
| } else { |
| ArgumentIndexMapping.push_back(ArgTypes.size()); |
| ArgTypes.push_back(ParamType); |
| } |
| } |
| for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) |
| ArgTypes.push_back(PrimitiveShadowTy); |
| if (T->isVarArg()) |
| ArgTypes.push_back(PrimitiveShadowPtrTy); |
| Type *RetType = T->getReturnType(); |
| if (!RetType->isVoidTy()) |
| ArgTypes.push_back(PrimitiveShadowPtrTy); |
| |
| if (shouldTrackOrigins()) { |
| for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) |
| ArgTypes.push_back(OriginTy); |
| if (T->isVarArg()) |
| ArgTypes.push_back(OriginPtrTy); |
| if (!RetType->isVoidTy()) |
| ArgTypes.push_back(OriginPtrTy); |
| } |
| |
| return TransformedFunction( |
| T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), |
| ArgumentIndexMapping); |
| } |
| |
| bool DataFlowSanitizer::isZeroShadow(Value *V) { |
| Type *T = V->getType(); |
| if (!isa<ArrayType>(T) && !isa<StructType>(T)) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return CI->isZero(); |
| return false; |
| } |
| |
| return isa<ConstantAggregateZero>(V); |
| } |
| |
| bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { |
| uint64_t ShadowSize = Size * ShadowWidthBytes; |
| return ShadowSize % 8 == 0 || ShadowSize == 4; |
| } |
| |
| bool DataFlowSanitizer::shouldTrackOrigins() { |
| static const bool ShouldTrackOrigins = ClTrackOrigins; |
| return ShouldTrackOrigins; |
| } |
| |
| Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { |
| if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) |
| return ZeroPrimitiveShadow; |
| Type *ShadowTy = getShadowTy(OrigTy); |
| return ConstantAggregateZero::get(ShadowTy); |
| } |
| |
| Constant *DataFlowSanitizer::getZeroShadow(Value *V) { |
| return getZeroShadow(V->getType()); |
| } |
| |
| static Value *expandFromPrimitiveShadowRecursive( |
| Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, |
| Value *PrimitiveShadow, IRBuilder<> &IRB) { |
| if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) |
| return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); |
| |
| if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { |
| for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { |
| Indices.push_back(Idx); |
| Shadow = expandFromPrimitiveShadowRecursive( |
| Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); |
| Indices.pop_back(); |
| } |
| return Shadow; |
| } |
| |
| if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { |
| for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { |
| Indices.push_back(Idx); |
| Shadow = expandFromPrimitiveShadowRecursive( |
| Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); |
| Indices.pop_back(); |
| } |
| return Shadow; |
| } |
| llvm_unreachable("Unexpected shadow type"); |
| } |
| |
| bool DFSanFunction::shouldInstrumentWithCall() { |
| return ClInstrumentWithCallThreshold >= 0 && |
| NumOriginStores >= ClInstrumentWithCallThreshold; |
| } |
| |
| Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, |
| Instruction *Pos) { |
| Type *ShadowTy = DFS.getShadowTy(T); |
| |
| if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) |
| return PrimitiveShadow; |
| |
| if (DFS.isZeroShadow(PrimitiveShadow)) |
| return DFS.getZeroShadow(ShadowTy); |
| |
| IRBuilder<> IRB(Pos); |
| SmallVector<unsigned, 4> Indices; |
| Value *Shadow = UndefValue::get(ShadowTy); |
| Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, |
| PrimitiveShadow, IRB); |
| |
| // Caches the primitive shadow value that built the shadow value. |
| CachedCollapsedShadows[Shadow] = PrimitiveShadow; |
| return Shadow; |
| } |
| |
| template <class AggregateType> |
| Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, |
| IRBuilder<> &IRB) { |
| if (!AT->getNumElements()) |
| return DFS.ZeroPrimitiveShadow; |
| |
| Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); |
| Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); |
| |
| for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { |
| Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); |
| Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); |
| Aggregator = IRB.CreateOr(Aggregator, ShadowInner); |
| } |
| return Aggregator; |
| } |
| |
| Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, |
| IRBuilder<> &IRB) { |
| Type *ShadowTy = Shadow->getType(); |
| if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) |
| return Shadow; |
| if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) |
| return collapseAggregateShadow<>(AT, Shadow, IRB); |
| if (StructType *ST = dyn_cast<StructType>(ShadowTy)) |
| return collapseAggregateShadow<>(ST, Shadow, IRB); |
| llvm_unreachable("Unexpected shadow type"); |
| } |
| |
| Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, |
| Instruction *Pos) { |
| Type *ShadowTy = Shadow->getType(); |
| if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) |
| return Shadow; |
| |
| // Checks if the cached collapsed shadow value dominates Pos. |
| Value *&CS = CachedCollapsedShadows[Shadow]; |
| if (CS && DT.dominates(CS, Pos)) |
| return CS; |
| |
| IRBuilder<> IRB(Pos); |
| Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); |
| // Caches the converted primitive shadow value. |
| CS = PrimitiveShadow; |
| return PrimitiveShadow; |
| } |
| |
| Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { |
| if (!OrigTy->isSized()) |
| return PrimitiveShadowTy; |
| if (isa<IntegerType>(OrigTy)) |
| return PrimitiveShadowTy; |
| if (isa<VectorType>(OrigTy)) |
| return PrimitiveShadowTy; |
| if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) |
| return ArrayType::get(getShadowTy(AT->getElementType()), |
| AT->getNumElements()); |
| if (StructType *ST = dyn_cast<StructType>(OrigTy)) { |
| SmallVector<Type *, 4> Elements; |
| for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) |
| Elements.push_back(getShadowTy(ST->getElementType(I))); |
| return StructType::get(*Ctx, Elements); |
| } |
| return PrimitiveShadowTy; |
| } |
| |
| Type *DataFlowSanitizer::getShadowTy(Value *V) { |
| return getShadowTy(V->getType()); |
| } |
| |
| bool DataFlowSanitizer::initializeModule(Module &M) { |
| Triple TargetTriple(M.getTargetTriple()); |
| const DataLayout &DL = M.getDataLayout(); |
| |
| if (TargetTriple.getOS() != Triple::Linux) |
| report_fatal_error("unsupported operating system"); |
| if (TargetTriple.getArch() != Triple::x86_64) |
| report_fatal_error("unsupported architecture"); |
| MapParams = &Linux_X86_64_MemoryMapParams; |
| |
| Mod = &M; |
| Ctx = &M.getContext(); |
| Int8Ptr = Type::getInt8PtrTy(*Ctx); |
| OriginTy = IntegerType::get(*Ctx, OriginWidthBits); |
| OriginPtrTy = PointerType::getUnqual(OriginTy); |
| PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); |
| PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); |
| IntptrTy = DL.getIntPtrType(*Ctx); |
| ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); |
| ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); |
| |
| Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; |
| DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, |
| /*isVarArg=*/false); |
| Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; |
| DFSanLoadLabelAndOriginFnTy = |
| FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, |
| /*isVarArg=*/false); |
| DFSanUnimplementedFnTy = FunctionType::get( |
| Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); |
| Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, |
| Type::getInt8PtrTy(*Ctx), IntptrTy}; |
| DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), |
| DFSanSetLabelArgs, /*isVarArg=*/false); |
| DFSanNonzeroLabelFnTy = |
| FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); |
| DFSanVarargWrapperFnTy = FunctionType::get( |
| Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); |
| DFSanCmpCallbackFnTy = |
| FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, |
| /*isVarArg=*/false); |
| DFSanChainOriginFnTy = |
| FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); |
| Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; |
| DFSanChainOriginIfTaintedFnTy = FunctionType::get( |
| OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); |
| Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), |
| Int8Ptr, IntptrTy, OriginTy}; |
| DFSanMaybeStoreOriginFnTy = FunctionType::get( |
| Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); |
| Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; |
| DFSanMemOriginTransferFnTy = FunctionType::get( |
| Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); |
| Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; |
| DFSanLoadStoreCallbackFnTy = |
| FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, |
| /*isVarArg=*/false); |
| Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; |
| DFSanMemTransferCallbackFnTy = |
| FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, |
| /*isVarArg=*/false); |
| |
| ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); |
| OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); |
| return true; |
| } |
| |
| bool DataFlowSanitizer::isInstrumented(const Function *F) { |
| return !ABIList.isIn(*F, "uninstrumented"); |
| } |
| |
| bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { |
| return !ABIList.isIn(*GA, "uninstrumented"); |
| } |
| |
| bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { |
| return ABIList.isIn(*F, "force_zero_labels"); |
| } |
| |
| DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { |
| if (ABIList.isIn(*F, "functional")) |
| return WK_Functional; |
| if (ABIList.isIn(*F, "discard")) |
| return WK_Discard; |
| if (ABIList.isIn(*F, "custom")) |
| return WK_Custom; |
| |
| return WK_Warning; |
| } |
| |
| void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { |
| std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; |
| GV->setName(GVName + Suffix); |
| |
| // Try to change the name of the function in module inline asm. We only do |
| // this for specific asm directives, currently only ".symver", to try to avoid |
| // corrupting asm which happens to contain the symbol name as a substring. |
| // Note that the substitution for .symver assumes that the versioned symbol |
| // also has an instrumented name. |
| std::string Asm = GV->getParent()->getModuleInlineAsm(); |
| std::string SearchStr = ".symver " + GVName + ","; |
| size_t Pos = Asm.find(SearchStr); |
| if (Pos != std::string::npos) { |
| Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); |
| Pos = Asm.find("@"); |
| |
| if (Pos == std::string::npos) |
| report_fatal_error(Twine("unsupported .symver: ", Asm)); |
| |
| Asm.replace(Pos, 1, Suffix + "@"); |
| GV->getParent()->setModuleInlineAsm(Asm); |
| } |
| } |
| |
| Function * |
| DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, |
| GlobalValue::LinkageTypes NewFLink, |
| FunctionType *NewFT) { |
| FunctionType *FT = F->getFunctionType(); |
| Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), |
| NewFName, F->getParent()); |
| NewF->copyAttributesFrom(F); |
| NewF->removeRetAttrs( |
| AttributeFuncs::typeIncompatible(NewFT->getReturnType())); |
| |
| BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); |
| if (F->isVarArg()) { |
| NewF->removeFnAttrs(AttrBuilder().addAttribute("split-stack")); |
| CallInst::Create(DFSanVarargWrapperFn, |
| IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", |
| BB); |
| new UnreachableInst(*Ctx, BB); |
| } else { |
| auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); |
| std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); |
| |
| CallInst *CI = CallInst::Create(F, Args, "", BB); |
| if (FT->getReturnType()->isVoidTy()) |
| ReturnInst::Create(*Ctx, BB); |
| else |
| ReturnInst::Create(*Ctx, CI, BB); |
| } |
| |
| return NewF; |
| } |
| |
| Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, |
| StringRef FName) { |
| FunctionType *FTT = getTrampolineFunctionType(FT); |
| FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); |
| Function *F = dyn_cast<Function>(C.getCallee()); |
| if (F && F->isDeclaration()) { |
| F->setLinkage(GlobalValue::LinkOnceODRLinkage); |
| BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); |
| std::vector<Value *> Args; |
| Function::arg_iterator AI = F->arg_begin() + 1; |
| for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) |
| Args.push_back(&*AI); |
| CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); |
| Type *RetType = FT->getReturnType(); |
| ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) |
| : ReturnInst::Create(*Ctx, CI, BB); |
| |
| // F is called by a wrapped custom function with primitive shadows. So |
| // its arguments and return value need conversion. |
| DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true, |
| /*ForceZeroLabels=*/false); |
| Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; |
| ++ValAI; |
| for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { |
| Value *Shadow = |
| DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); |
| DFSF.ValShadowMap[&*ValAI] = Shadow; |
| } |
| Function::arg_iterator RetShadowAI = ShadowAI; |
| const bool ShouldTrackOrigins = shouldTrackOrigins(); |
| if (ShouldTrackOrigins) { |
| ValAI = F->arg_begin(); |
| ++ValAI; |
| Function::arg_iterator OriginAI = ShadowAI; |
| if (!RetType->isVoidTy()) |
| ++OriginAI; |
| for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { |
| DFSF.ValOriginMap[&*ValAI] = &*OriginAI; |
| } |
| } |
| DFSanVisitor(DFSF).visitCallInst(*CI); |
| if (!RetType->isVoidTy()) { |
| Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( |
| DFSF.getShadow(RI->getReturnValue()), RI); |
| new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); |
| if (ShouldTrackOrigins) { |
| Value *Origin = DFSF.getOrigin(RI->getReturnValue()); |
| new StoreInst(Origin, &*std::prev(F->arg_end()), RI); |
| } |
| } |
| } |
| |
| return cast<Constant>(C.getCallee()); |
| } |
| |
| // Initialize DataFlowSanitizer runtime functions and declare them in the module |
| void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { |
| { |
| AttributeList AL; |
| AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); |
| AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); |
| AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); |
| DFSanUnionLoadFn = |
| Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); |
| } |
| { |
| AttributeList AL; |
| AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); |
| AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); |
| AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); |
| DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( |
| "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); |
| } |
| DFSanUnimplementedFn = |
| Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); |
| { |
| AttributeList AL; |
| AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); |
| AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); |
| DFSanSetLabelFn = |
| Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); |
| } |
| DFSanNonzeroLabelFn = |
| Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); |
| DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", |
| DFSanVarargWrapperFnTy); |
| { |
| AttributeList AL; |
| AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); |
| AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); |
| DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", |
| DFSanChainOriginFnTy, AL); |
| } |
| { |
| AttributeList AL; |
| AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); |
| AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); |
| AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); |
| DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( |
| "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); |
| } |
| DFSanMemOriginTransferFn = Mod->getOrInsertFunction( |
| "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); |
| |
| { |
| AttributeList AL; |
| AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); |
| AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); |
| DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( |
| "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); |
| } |
| |
| DFSanRuntimeFunctions.insert( |
| DFSanUnionLoadFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanUnimplementedFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanSetLabelFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanChainOriginFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); |
| DFSanRuntimeFunctions.insert( |
| DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); |
| } |
| |
| // Initializes event callback functions and declare them in the module |
| void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { |
| DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", |
| DFSanLoadStoreCallbackFnTy); |
| DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", |
| DFSanLoadStoreCallbackFnTy); |
| DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( |
| "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); |
| DFSanCmpCallbackFn = |
| Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); |
| } |
| |
| void DataFlowSanitizer::injectMetadataGlobals(Module &M) { |
| // These variables can be used: |
| // - by the runtime (to discover what the shadow width was, during |
| // compilation) |
| // - in testing (to avoid hardcoding the shadow width and type but instead |
| // extract them by pattern matching) |
| Type *IntTy = Type::getInt32Ty(*Ctx); |
| (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { |
| return new GlobalVariable( |
| M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, |
| ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); |
| }); |
| (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { |
| return new GlobalVariable(M, IntTy, /*isConstant=*/true, |
| GlobalValue::WeakODRLinkage, |
| ConstantInt::get(IntTy, ShadowWidthBytes), |
| "__dfsan_shadow_width_bytes"); |
| }); |
| } |
| |
| bool DataFlowSanitizer::runImpl(Module &M) { |
| initializeModule(M); |
| |
| if (ABIList.isIn(M, "skip")) |
| return false; |
| |
| const unsigned InitialGlobalSize = M.global_size(); |
| const unsigned InitialModuleSize = M.size(); |
| |
| bool Changed = false; |
| |
| auto GetOrInsertGlobal = [this, &Changed](StringRef Name, |
| Type *Ty) -> Constant * { |
| Constant *C = Mod->getOrInsertGlobal(Name, Ty); |
| if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { |
| Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; |
| G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); |
| } |
| return C; |
| }; |
| |
| // These globals must be kept in sync with the ones in dfsan.cpp. |
| ArgTLS = |
| GetOrInsertGlobal("__dfsan_arg_tls", |
| ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); |
| RetvalTLS = GetOrInsertGlobal( |
| "__dfsan_retval_tls", |
| ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); |
| ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); |
| ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); |
| RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); |
| |
| (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { |
| Changed = true; |
| return new GlobalVariable( |
| M, OriginTy, true, GlobalValue::WeakODRLinkage, |
| ConstantInt::getSigned(OriginTy, |
| shouldTrackOrigins() ? ClTrackOrigins : 0), |
| "__dfsan_track_origins"); |
| }); |
| |
| injectMetadataGlobals(M); |
| |
| initializeCallbackFunctions(M); |
| initializeRuntimeFunctions(M); |
| |
| std::vector<Function *> FnsToInstrument; |
| SmallPtrSet<Function *, 2> FnsWithNativeABI; |
| SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; |
| for (Function &F : M) |
| if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) |
| FnsToInstrument.push_back(&F); |
| |
| // Give function aliases prefixes when necessary, and build wrappers where the |
| // instrumentedness is inconsistent. |
| for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { |
| // Don't stop on weak. We assume people aren't playing games with the |
| // instrumentedness of overridden weak aliases. |
| auto *F = dyn_cast<Function>(GA.getAliaseeObject()); |
| if (!F) |
| continue; |
| |
| bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); |
| if (GAInst && FInst) { |
| addGlobalNameSuffix(&GA); |
| } else if (GAInst != FInst) { |
| // Non-instrumented alias of an instrumented function, or vice versa. |
| // Replace the alias with a native-ABI wrapper of the aliasee. The pass |
| // below will take care of instrumenting it. |
| Function *NewF = |
| buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); |
| GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType())); |
| NewF->takeName(&GA); |
| GA.eraseFromParent(); |
| FnsToInstrument.push_back(NewF); |
| } |
| } |
| |
| ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) |
| .addAttribute(Attribute::ReadNone); |
| |
| // First, change the ABI of every function in the module. ABI-listed |
| // functions keep their original ABI and get a wrapper function. |
| for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), |
| FE = FnsToInstrument.end(); |
| FI != FE; ++FI) { |
| Function &F = **FI; |
| FunctionType *FT = F.getFunctionType(); |
| |
| bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && |
| FT->getReturnType()->isVoidTy()); |
| |
| if (isInstrumented(&F)) { |
| if (isForceZeroLabels(&F)) |
| FnsWithForceZeroLabel.insert(&F); |
| |
| // Instrumented functions get a '.dfsan' suffix. This allows us to more |
| // easily identify cases of mismatching ABIs. This naming scheme is |
| // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. |
| addGlobalNameSuffix(&F); |
| } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { |
| // Build a wrapper function for F. The wrapper simply calls F, and is |
| // added to FnsToInstrument so that any instrumentation according to its |
| // WrapperKind is done in the second pass below. |
| |
| // If the function being wrapped has local linkage, then preserve the |
| // function's linkage in the wrapper function. |
| GlobalValue::LinkageTypes WrapperLinkage = |
| F.hasLocalLinkage() ? F.getLinkage() |
| : GlobalValue::LinkOnceODRLinkage; |
| |
| Function *NewF = buildWrapperFunction( |
| &F, |
| (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + |
| std::string(F.getName()), |
| WrapperLinkage, FT); |
| NewF->removeFnAttrs(ReadOnlyNoneAttrs); |
| |
| Value *WrappedFnCst = |
| ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); |
| F.replaceAllUsesWith(WrappedFnCst); |
| |
| UnwrappedFnMap[WrappedFnCst] = &F; |
| *FI = NewF; |
| |
| if (!F.isDeclaration()) { |
| // This function is probably defining an interposition of an |
| // uninstrumented function and hence needs to keep the original ABI. |
| // But any functions it may call need to use the instrumented ABI, so |
| // we instrument it in a mode which preserves the original ABI. |
| FnsWithNativeABI.insert(&F); |
| |
| // This code needs to rebuild the iterators, as they may be invalidated |
| // by the push_back, taking care that the new range does not include |
| // any functions added by this code. |
| size_t N = FI - FnsToInstrument.begin(), |
| Count = FE - FnsToInstrument.begin(); |
| FnsToInstrument.push_back(&F); |
| FI = FnsToInstrument.begin() + N; |
| FE = FnsToInstrument.begin() + Count; |
| } |
| // Hopefully, nobody will try to indirectly call a vararg |
| // function... yet. |
| } else if (FT->isVarArg()) { |
| UnwrappedFnMap[&F] = &F; |
| *FI = nullptr; |
| } |
| } |
| |
| for (Function *F : FnsToInstrument) { |
| if (!F || F->isDeclaration()) |
| continue; |
| |
| removeUnreachableBlocks(*F); |
| |
| DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), |
| FnsWithForceZeroLabel.count(F)); |
| |
| // DFSanVisitor may create new basic blocks, which confuses df_iterator. |
| // Build a copy of the list before iterating over it. |
| SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); |
| |
| for (BasicBlock *BB : BBList) { |
| Instruction *Inst = &BB->front(); |
| while (true) { |
| // DFSanVisitor may split the current basic block, changing the current |
| // instruction's next pointer and moving the next instruction to the |
| // tail block from which we should continue. |
| Instruction *Next = Inst->getNextNode(); |
| // DFSanVisitor may delete Inst, so keep track of whether it was a |
| // terminator. |
| bool IsTerminator = Inst->isTerminator(); |
| if (!DFSF.SkipInsts.count(Inst)) |
| DFSanVisitor(DFSF).visit(Inst); |
| if (IsTerminator) |
| break; |
| Inst = Next; |
| } |
| } |
| |
| // We will not necessarily be able to compute the shadow for every phi node |
| // until we have visited every block. Therefore, the code that handles phi |
| // nodes adds them to the PHIFixups list so that they can be properly |
| // handled here. |
| for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { |
| for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; |
| ++Val) { |
| P.ShadowPhi->setIncomingValue( |
| Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); |
| if (P.OriginPhi) |
| P.OriginPhi->setIncomingValue( |
| Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); |
| } |
| } |
| |
| // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy |
| // places (i.e. instructions in basic blocks we haven't even begun visiting |
| // yet). To make our life easier, do this work in a pass after the main |
| // instrumentation. |
| if (ClDebugNonzeroLabels) { |
| for (Value *V : DFSF.NonZeroChecks) { |
| Instruction *Pos; |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| Pos = I->getNextNode(); |
| else |
| Pos = &DFSF.F->getEntryBlock().front(); |
| while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) |
| Pos = Pos->getNextNode(); |
| IRBuilder<> IRB(Pos); |
| Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); |
| Value *Ne = |
| IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); |
| BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( |
| Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); |
| IRBuilder<> ThenIRB(BI); |
| ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); |
| } |
| } |
| } |
| |
| return Changed || !FnsToInstrument.empty() || |
| M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; |
| } |
| |
| Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { |
| Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); |
| if (ArgOffset) |
| Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), |
| "_dfsarg"); |
| } |
| |
| Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { |
| return IRB.CreatePointerCast( |
| DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); |
| } |
| |
| Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } |
| |
| Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { |
| return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, |
| "_dfsarg_o"); |
| } |
| |
| Value *DFSanFunction::getOrigin(Value *V) { |
| assert(DFS.shouldTrackOrigins()); |
| if (!isa<Argument>(V) && !isa<Instruction>(V)) |
| return DFS.ZeroOrigin; |
| Value *&Origin = ValOriginMap[V]; |
| if (!Origin) { |
| if (Argument *A = dyn_cast<Argument>(V)) { |
| if (IsNativeABI) |
| return DFS.ZeroOrigin; |
| if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { |
| Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); |
| IRBuilder<> IRB(ArgOriginTLSPos); |
| Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); |
| Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); |
| } else { |
| // Overflow |
| Origin = DFS.ZeroOrigin; |
| } |
| } else { |
| Origin = DFS.ZeroOrigin; |
| } |
| } |
| return Origin; |
| } |
| |
| void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { |
| if (!DFS.shouldTrackOrigins()) |
| return; |
| assert(!ValOriginMap.count(I)); |
| assert(Origin->getType() == DFS.OriginTy); |
| ValOriginMap[I] = Origin; |
| } |
| |
| Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { |
| unsigned ArgOffset = 0; |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| for (auto &FArg : F->args()) { |
| if (!FArg.getType()->isSized()) { |
| if (A == &FArg) |
| break; |
| continue; |
| } |
| |
| unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); |
| if (A != &FArg) { |
| ArgOffset += alignTo(Size, ShadowTLSAlignment); |
| if (ArgOffset > ArgTLSSize) |
| break; // ArgTLS overflows, uses a zero shadow. |
| continue; |
| } |
| |
| if (ArgOffset + Size > ArgTLSSize) |
| break; // ArgTLS overflows, uses a zero shadow. |
| |
| Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); |
| IRBuilder<> IRB(ArgTLSPos); |
| Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); |
| return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, |
| ShadowTLSAlignment); |
| } |
| |
| return DFS.getZeroShadow(A); |
| } |
| |
| Value *DFSanFunction::getShadow(Value *V) { |
| if (!isa<Argument>(V) && !isa<Instruction>(V)) |
| return DFS.getZeroShadow(V); |
| if (IsForceZeroLabels) |
| return DFS.getZeroShadow(V); |
| Value *&Shadow = ValShadowMap[V]; |
| if (!Shadow) { |
| if (Argument *A = dyn_cast<Argument>(V)) { |
| if (IsNativeABI) |
| return DFS.getZeroShadow(V); |
| Shadow = getShadowForTLSArgument(A); |
| NonZeroChecks.push_back(Shadow); |
| } else { |
| Shadow = DFS.getZeroShadow(V); |
| } |
| } |
| return Shadow; |
| } |
| |
| void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { |
| assert(!ValShadowMap.count(I)); |
| ValShadowMap[I] = Shadow; |
| } |
| |
| /// Compute the integer shadow offset that corresponds to a given |
| /// application address. |
| /// |
| /// Offset = (Addr & ~AndMask) ^ XorMask |
| Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { |
| assert(Addr != RetvalTLS && "Reinstrumenting?"); |
| Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| |
| uint64_t AndMask = MapParams->AndMask; |
| if (AndMask) |
| OffsetLong = |
| IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); |
| |
| uint64_t XorMask = MapParams->XorMask; |
| if (XorMask) |
| OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); |
| return OffsetLong; |
| } |
| |
| std::pair<Value *, Value *> |
| DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, |
| Instruction *Pos) { |
| // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL |
| IRBuilder<> IRB(Pos); |
| Value *ShadowOffset = getShadowOffset(Addr, IRB); |
| Value *ShadowLong = ShadowOffset; |
| uint64_t ShadowBase = MapParams->ShadowBase; |
| if (ShadowBase != 0) { |
| ShadowLong = |
| IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); |
| } |
| IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); |
| Value *ShadowPtr = |
| IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); |
| Value *OriginPtr = nullptr; |
| if (shouldTrackOrigins()) { |
| Value *OriginLong = ShadowOffset; |
| uint64_t OriginBase = MapParams->OriginBase; |
| if (OriginBase != 0) |
| OriginLong = |
| IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); |
| const Align Alignment = llvm::assumeAligned(InstAlignment.value()); |
| // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. |
| // So Mask is unnecessary. |
| if (Alignment < MinOriginAlignment) { |
| uint64_t Mask = MinOriginAlignment.value() - 1; |
| OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); |
| } |
| OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); |
| } |
| return std::make_pair(ShadowPtr, OriginPtr); |
| } |
| |
| Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, |
| Value *ShadowOffset) { |
| IRBuilder<> IRB(Pos); |
| return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); |
| } |
| |
| Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { |
| IRBuilder<> IRB(Pos); |
| Value *ShadowOffset = getShadowOffset(Addr, IRB); |
| return getShadowAddress(Addr, Pos, ShadowOffset); |
| } |
| |
| Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, |
| Instruction *Pos) { |
| Value *PrimitiveValue = combineShadows(V1, V2, Pos); |
| return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); |
| } |
| |
| // Generates IR to compute the union of the two given shadows, inserting it |
| // before Pos. The combined value is with primitive type. |
| Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { |
| if (DFS.isZeroShadow(V1)) |
| return collapseToPrimitiveShadow(V2, Pos); |
| if (DFS.isZeroShadow(V2)) |
| return collapseToPrimitiveShadow(V1, Pos); |
| if (V1 == V2) |
| return collapseToPrimitiveShadow(V1, Pos); |
| |
| auto V1Elems = ShadowElements.find(V1); |
| auto V2Elems = ShadowElements.find(V2); |
| if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { |
| if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), |
| V2Elems->second.begin(), V2Elems->second.end())) { |
| return collapseToPrimitiveShadow(V1, Pos); |
| } |
| if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), |
| V1Elems->second.begin(), V1Elems->second.end())) { |
| return collapseToPrimitiveShadow(V2, Pos); |
| } |
| } else if (V1Elems != ShadowElements.end()) { |
| if (V1Elems->second.count(V2)) |
| return collapseToPrimitiveShadow(V1, Pos); |
| } else if (V2Elems != ShadowElements.end()) { |
| if (V2Elems->second.count(V1)) |
| return collapseToPrimitiveShadow(V2, Pos); |
| } |
| |
| auto Key = std::make_pair(V1, V2); |
| if (V1 > V2) |
| std::swap(Key.first, Key.second); |
| CachedShadow &CCS = CachedShadows[Key]; |
| if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) |
| return CCS.Shadow; |
| |
| // Converts inputs shadows to shadows with primitive types. |
| Value *PV1 = collapseToPrimitiveShadow(V1, Pos); |
| Value *PV2 = collapseToPrimitiveShadow(V2, Pos); |
| |
| IRBuilder<> IRB(Pos); |
| CCS.Block = Pos->getParent(); |
| CCS.Shadow = IRB.CreateOr(PV1, PV2); |
| |
| std::set<Value *> UnionElems; |
| if (V1Elems != ShadowElements.end()) { |
| UnionElems = V1Elems->second; |
| } else { |
| UnionElems.insert(V1); |
| } |
| if (V2Elems != ShadowElements.end()) { |
| UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); |
| } else { |
| UnionElems.insert(V2); |
| } |
| ShadowElements[CCS.Shadow] = std::move(UnionElems); |
| |
| return CCS.Shadow; |
| } |
| |
| // A convenience function which folds the shadows of each of the operands |
| // of the provided instruction Inst, inserting the IR before Inst. Returns |
| // the computed union Value. |
| Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { |
| if (Inst->getNumOperands() == 0) |
| return DFS.getZeroShadow(Inst); |
| |
| Value *Shadow = getShadow(Inst->getOperand(0)); |
| for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) |
| Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); |
| |
| return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); |
| } |
| |
| void DFSanVisitor::visitInstOperands(Instruction &I) { |
| Value *CombinedShadow = DFSF.combineOperandShadows(&I); |
| DFSF.setShadow(&I, CombinedShadow); |
| visitInstOperandOrigins(I); |
| } |
| |
| Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, |
| const std::vector<Value *> &Origins, |
| Instruction *Pos, ConstantInt *Zero) { |
| assert(Shadows.size() == Origins.size()); |
| size_t Size = Origins.size(); |
| if (Size == 0) |
| return DFS.ZeroOrigin; |
| Value *Origin = nullptr; |
| if (!Zero) |
| Zero = DFS.ZeroPrimitiveShadow; |
| for (size_t I = 0; I != Size; ++I) { |
| Value *OpOrigin = Origins[I]; |
| Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); |
| if (ConstOpOrigin && ConstOpOrigin->isNullValue()) |
| continue; |
| if (!Origin) { |
| Origin = OpOrigin; |
| continue; |
| } |
| Value *OpShadow = Shadows[I]; |
| Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); |
| IRBuilder<> IRB(Pos); |
| Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); |
| Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); |
| } |
| return Origin ? Origin : DFS.ZeroOrigin; |
| } |
| |
| Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { |
| size_t Size = Inst->getNumOperands(); |
| std::vector<Value *> Shadows(Size); |
| std::vector<Value *> Origins(Size); |
| for (unsigned I = 0; I != Size; ++I) { |
| Shadows[I] = getShadow(Inst->getOperand(I)); |
| Origins[I] = getOrigin(Inst->getOperand(I)); |
| } |
| return combineOrigins(Shadows, Origins, Inst); |
| } |
| |
| void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { |
| if (!DFSF.DFS.shouldTrackOrigins()) |
| return; |
| Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); |
| DFSF.setOrigin(&I, CombinedOrigin); |
| } |
| |
| Align DFSanFunction::getShadowAlign(Align InstAlignment) { |
| const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); |
| return Align(Alignment.value() * DFS.ShadowWidthBytes); |
| } |
| |
| Align DFSanFunction::getOriginAlign(Align InstAlignment) { |
| const Align Alignment = llvm::assumeAligned(InstAlignment.value()); |
| return Align(std::max(MinOriginAlignment, Alignment)); |
| } |
| |
| bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, |
| Align InstAlignment) { |
| // When enabling tracking load instructions, we always use |
| // __dfsan_load_label_and_origin to reduce code size. |
| if (ClTrackOrigins == 2) |
| return true; |
| |
| assert(Size != 0); |
| // * if Size == 1, it is sufficient to load its origin aligned at 4. |
| // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to |
| // load its origin aligned at 4. If not, although origins may be lost, it |
| // should not happen very often. |
| // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When |
| // Size % 4 == 0, it is more efficient to load origins without callbacks. |
| // * Otherwise we use __dfsan_load_label_and_origin. |
| // This should ensure that common cases run efficiently. |
| if (Size <= 2) |
| return false; |
| |
| const Align Alignment = llvm::assumeAligned(InstAlignment.value()); |
| return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); |
| } |
| |
| Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, |
| Value **OriginAddr) { |
| IRBuilder<> IRB(Pos); |
| *OriginAddr = |
| IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); |
| return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); |
| } |
| |
| std::pair<Value *, Value *> DFSanFunction::loadShadowFast( |
| Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, |
| Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { |
| const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); |
| const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; |
| |
| assert(Size >= 4 && "Not large enough load size for fast path!"); |
| |
| // Used for origin tracking. |
| std::vector<Value *> Shadows; |
| std::vector<Value *> Origins; |
| |
| // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) |
| // but this function is only used in a subset of cases that make it possible |
| // to optimize the instrumentation. |
| // |
| // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow |
| // per byte) is either: |
| // - a multiple of 8 (common) |
| // - equal to 4 (only for load32) |
| // |
| // For the second case, we can fit the wide shadow in a 32-bit integer. In all |
| // other cases, we use a 64-bit integer to hold the wide shadow. |
| Type *WideShadowTy = |
| ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); |
| |
| IRBuilder<> IRB(Pos); |
| Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); |
| Value *CombinedWideShadow = |
| IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); |
| |
| unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); |
| const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; |
| |
| auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { |
| if (BytesPerWideShadow > 4) { |
| assert(BytesPerWideShadow == 8); |
| // The wide shadow relates to two origin pointers: one for the first four |
| // application bytes, and one for the latest four. We use a left shift to |
| // get just the shadow bytes that correspond to the first origin pointer, |
| // and then the entire shadow for the second origin pointer (which will be |
| // chosen by combineOrigins() iff the least-significant half of the wide |
| // shadow was empty but the other half was not). |
| Value *WideShadowLo = IRB.CreateShl( |
| WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); |
| Shadows.push_back(WideShadow); |
| Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); |
| |
| Shadows.push_back(WideShadowLo); |
| Origins.push_back(Origin); |
| } else { |
| Shadows.push_back(WideShadow); |
| Origins.push_back(Origin); |
| } |
| }; |
| |
| if (ShouldTrackOrigins) |
| AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); |
| |
| // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; |
| // then OR individual shadows within the combined WideShadow by binary ORing. |
| // This is fewer instructions than ORing shadows individually, since it |
| // needs logN shift/or instructions (N being the bytes of the combined wide |
| // shadow). |
| for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; |
| ByteOfs += BytesPerWideShadow) { |
| WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, |
| ConstantInt::get(DFS.IntptrTy, 1)); |
| Value *NextWideShadow = |
| IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); |
| CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); |
| if (ShouldTrackOrigins) { |
| Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); |
| AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); |
| } |
| } |
| for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; |
| Width >>= 1) { |
| Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); |
| CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); |
| } |
| return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), |
| ShouldTrackOrigins |
| ? combineOrigins(Shadows, Origins, Pos, |
| ConstantInt::getSigned(IRB.getInt64Ty(), 0)) |
| : DFS.ZeroOrigin}; |
| } |
| |
| std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( |
| Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { |
| const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); |
| |
| // Non-escaped loads. |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { |
| const auto SI = AllocaShadowMap.find(AI); |
| if (SI != AllocaShadowMap.end()) { |
| IRBuilder<> IRB(Pos); |
| Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); |
| const auto OI = AllocaOriginMap.find(AI); |
| assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); |
| return {ShadowLI, ShouldTrackOrigins |
| ? IRB.CreateLoad(DFS.OriginTy, OI->second) |
| : nullptr}; |
| } |
| } |
| |
| // Load from constant addresses. |
| SmallVector<const Value *, 2> Objs; |
| getUnderlyingObjects(Addr, Objs); |
| bool AllConstants = true; |
| for (const Value *Obj : Objs) { |
| if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) |
| continue; |
| if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) |
| continue; |
| |
| AllConstants = false; |
| break; |
| } |
| if (AllConstants) |
| return {DFS.ZeroPrimitiveShadow, |
| ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; |
| |
| if (Size == 0) |
| return {DFS.ZeroPrimitiveShadow, |
| ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; |
| |
| // Use callback to load if this is not an optimizable case for origin |
| // tracking. |
| if (ShouldTrackOrigins && |
| useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { |
| IRBuilder<> IRB(Pos); |
| CallInst *Call = |
| IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, |
| {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), |
| ConstantInt::get(DFS.IntptrTy, Size)}); |
| Call->addRetAttr(Attribute::ZExt); |
| return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), |
| DFS.PrimitiveShadowTy), |
| IRB.CreateTrunc(Call, DFS.OriginTy)}; |
| } |
| |
| // Other cases that support loading shadows or origins in a fast way. |
| Value *ShadowAddr, *OriginAddr; |
| std::tie(ShadowAddr, OriginAddr) = |
| DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); |
| |
| const Align ShadowAlign = getShadowAlign(InstAlignment); |
| const Align OriginAlign = getOriginAlign(InstAlignment); |
| Value *Origin = nullptr; |
| if (ShouldTrackOrigins) { |
| IRBuilder<> IRB(Pos); |
| Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); |
| } |
| |
| // When the byte size is small enough, we can load the shadow directly with |
| // just a few instructions. |
| switch (Size) { |
| case 1: { |
| LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); |
| LI->setAlignment(ShadowAlign); |
| return {LI, Origin}; |
| } |
| case 2: { |
| IRBuilder<> IRB(Pos); |
| Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, |
| ConstantInt::get(DFS.IntptrTy, 1)); |
| Value *Load = |
| IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); |
| Value *Load1 = |
| IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); |
| return {combineShadows(Load, Load1, Pos), Origin}; |
| } |
| } |
| bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); |
| |
| if (HasSizeForFastPath) |
| return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, |
| OriginAlign, Origin, Pos); |
| |
| IRBuilder<> IRB(Pos); |
| CallInst *FallbackCall = IRB.CreateCall( |
| DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); |
| FallbackCall->addRetAttr(Attribute::ZExt); |
| return {FallbackCall, Origin}; |
| } |
| |
| std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, |
| uint64_t Size, |
| Align InstAlignment, |
| Instruction *Pos) { |
| Value *PrimitiveShadow, *Origin; |
| std::tie(PrimitiveShadow, Origin) = |
| loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); |
| if (DFS.shouldTrackOrigins()) { |
| if (ClTrackOrigins == 2) { |
| IRBuilder<> IRB(Pos); |
| auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); |
| if (!ConstantShadow || !ConstantShadow->isZeroValue()) |
| Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); |
| } |
| } |
| return {PrimitiveShadow, Origin}; |
| } |
| |
| static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { |
| switch (AO) { |
| case AtomicOrdering::NotAtomic: |
| return AtomicOrdering::NotAtomic; |
| case AtomicOrdering::Unordered: |
| case AtomicOrdering::Monotonic: |
| case AtomicOrdering::Acquire: |
| return AtomicOrdering::Acquire; |
| case AtomicOrdering::Release: |
| case AtomicOrdering::AcquireRelease: |
| return AtomicOrdering::AcquireRelease; |
| case AtomicOrdering::SequentiallyConsistent: |
| return AtomicOrdering::SequentiallyConsistent; |
| } |
| llvm_unreachable("Unknown ordering"); |
| } |
| |
| void DFSanVisitor::visitLoadInst(LoadInst &LI) { |
| auto &DL = LI.getModule()->getDataLayout(); |
| uint64_t Size = DL.getTypeStoreSize(LI.getType()); |
| if (Size == 0) { |
| DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); |
| DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); |
| return; |
| } |
| |
| // When an application load is atomic, increase atomic ordering between |
| // atomic application loads and stores to ensure happen-before order; load |
| // shadow data after application data; store zero shadow data before |
| // application data. This ensure shadow loads return either labels of the |
| // initial application data or zeros. |
| if (LI.isAtomic()) |
| LI.setOrdering(addAcquireOrdering(LI.getOrdering())); |
| |
| Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; |
| std::vector<Value *> Shadows; |
| std::vector<Value *> Origins; |
| Value *PrimitiveShadow, *Origin; |
| std::tie(PrimitiveShadow, Origin) = |
| DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); |
| const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
| if (ShouldTrackOrigins) { |
| Shadows.push_back(PrimitiveShadow); |
| Origins.push_back(Origin); |
| } |
| if (ClCombinePointerLabelsOnLoad) { |
| Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); |
| PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); |
| if (ShouldTrackOrigins) { |
| Shadows.push_back(PtrShadow); |
| Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); |
| } |
| } |
| if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) |
| DFSF.NonZeroChecks.push_back(PrimitiveShadow); |
| |
| Value *Shadow = |
| DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); |
| DFSF.setShadow(&LI, Shadow); |
| |
| if (ShouldTrackOrigins) { |
| DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); |
| } |
| |
| if (ClEventCallbacks) { |
| IRBuilder<> IRB(Pos); |
| Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); |
| IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); |
| } |
| } |
| |
| Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, |
| IRBuilder<> &IRB) { |
| assert(DFS.shouldTrackOrigins()); |
| return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); |
| } |
| |
| Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { |
| if (!DFS.shouldTrackOrigins()) |
| return V; |
| return IRB.CreateCall(DFS.DFSanChainOriginFn, V); |
| } |
| |
| Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
| const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); |
| if (IntptrSize == OriginSize) |
| return Origin; |
| assert(IntptrSize == OriginSize * 2); |
| Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); |
| return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); |
| } |
| |
| void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, |
| Value *StoreOriginAddr, |
| uint64_t StoreOriginSize, Align Alignment) { |
| const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); |
| unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); |
| assert(IntptrAlignment >= MinOriginAlignment); |
| assert(IntptrSize >= OriginSize); |
| |
| unsigned Ofs = 0; |
| Align CurrentAlignment = Alignment; |
| if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { |
| Value *IntptrOrigin = originToIntptr(IRB, Origin); |
| Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( |
| StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); |
| for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { |
| Value *Ptr = |
| I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) |
| : IntptrStoreOriginPtr; |
| IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); |
| Ofs += IntptrSize / OriginSize; |
| CurrentAlignment = IntptrAlignment; |
| } |
| } |
| |
| for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; |
| ++I) { |
| Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) |
| : StoreOriginAddr; |
| IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); |
| CurrentAlignment = MinOriginAlignment; |
| } |
| } |
| |
| Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, |
| const Twine &Name) { |
| Type *VTy = V->getType(); |
| assert(VTy->isIntegerTy()); |
| if (VTy->getIntegerBitWidth() == 1) |
| // Just converting a bool to a bool, so do nothing. |
| return V; |
| return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); |
| } |
| |
| void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, |
| Value *Shadow, Value *Origin, |
| Value *StoreOriginAddr, Align InstAlignment) { |
| // Do not write origins for zero shadows because we do not trace origins for |
| // untainted sinks. |
| const Align OriginAlignment = getOriginAlign(InstAlignment); |
| Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); |
| IRBuilder<> IRB(Pos); |
| if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { |
| if (!ConstantShadow->isZeroValue()) |
| paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, |
| OriginAlignment); |
| return; |
| } |
| |
| if (shouldInstrumentWithCall()) { |
| IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, |
| {CollapsedShadow, |
| IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), |
| ConstantInt::get(DFS.IntptrTy, Size), Origin}); |
| } else { |
| Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); |
| Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); |
| IRBuilder<> IRBNew(CheckTerm); |
| paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, |
| OriginAlignment); |
| ++NumOriginStores; |
| } |
| } |
| |
| void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, |
| Align ShadowAlign, |
| Instruction *Pos) { |
| IRBuilder<> IRB(Pos); |
| IntegerType *ShadowTy = |
| IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); |
| Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); |
| Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); |
| Value *ExtShadowAddr = |
| IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); |
| IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); |
| // Do not write origins for 0 shadows because we do not trace origins for |
| // untainted sinks. |
| } |
| |
| void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, |
| Align InstAlignment, |
| Value *PrimitiveShadow, |
| Value *Origin, |
| Instruction *Pos) { |
| const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { |
| const auto SI = AllocaShadowMap.find(AI); |
| if (SI != AllocaShadowMap.end()) { |
| IRBuilder<> IRB(Pos); |
| IRB.CreateStore(PrimitiveShadow, SI->second); |
| |
| // Do not write origins for 0 shadows because we do not trace origins for |
| // untainted sinks. |
| if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { |
| const auto OI = AllocaOriginMap.find(AI); |
| assert(OI != AllocaOriginMap.end() && Origin); |
| IRB.CreateStore(Origin, OI->second); |
| } |
| return; |
| } |
| } |
| |
| const Align ShadowAlign = getShadowAlign(InstAlignment); |
| if (DFS.isZeroShadow(PrimitiveShadow)) { |
| storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); |
| return; |
| } |
| |
| IRBuilder<> IRB(Pos); |
| Value *ShadowAddr, *OriginAddr; |
| std::tie(ShadowAddr, OriginAddr) = |
| DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); |
| |
| const unsigned ShadowVecSize = 8; |
| assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && |
| "Shadow vector is too large!"); |
| |
| uint64_t Offset = 0; |
| uint64_t LeftSize = Size; |
| if (LeftSize >= ShadowVecSize) { |
| auto *ShadowVecTy = |
| FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); |
| Value *ShadowVec = UndefValue::get(ShadowVecTy); |
| for (unsigned I = 0; I != ShadowVecSize; ++I) { |
| ShadowVec = IRB.CreateInsertElement( |
| ShadowVec, PrimitiveShadow, |
| ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); |
| } |
| Value *ShadowVecAddr = |
| IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); |
| do { |
| Value *CurShadowVecAddr = |
| IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); |
| IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); |
| LeftSize -= ShadowVecSize; |
| ++Offset; |
| } while (LeftSize >= ShadowVecSize); |
| Offset *= ShadowVecSize; |
| } |
| while (LeftSize > 0) { |
| Value *CurShadowAddr = |
| IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); |
| IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); |
| --LeftSize; |
| ++Offset; |
| } |
| |
| if (ShouldTrackOrigins) { |
| storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, |
| InstAlignment); |
| } |
| } |
| |
| static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { |
| switch (AO) { |
| case AtomicOrdering::NotAtomic: |
| return AtomicOrdering::NotAtomic; |
| case AtomicOrdering::Unordered: |
| case AtomicOrdering::Monotonic: |
| case AtomicOrdering::Release: |
| return AtomicOrdering::Release; |
| case AtomicOrdering::Acquire: |
| case AtomicOrdering::AcquireRelease: |
| return AtomicOrdering::AcquireRelease; |
| case AtomicOrdering::SequentiallyConsistent: |
| return AtomicOrdering::SequentiallyConsistent; |
| } |
| llvm_unreachable("Unknown ordering"); |
| } |
| |
| void DFSanVisitor::visitStoreInst(StoreInst &SI) { |
| auto &DL = SI.getModule()->getDataLayout(); |
| Value *Val = SI.getValueOperand(); |
| uint64_t Size = DL.getTypeStoreSize(Val->getType()); |
| if (Size == 0) |
| return; |
| |
| // When an application store is atomic, increase atomic ordering between |
| // atomic application loads and stores to ensure happen-before order; load |
| // shadow data after application data; store zero shadow data before |
| // application data. This ensure shadow loads return either labels of the |
| // initial application data or zeros. |
| if (SI.isAtomic()) |
| SI.setOrdering(addReleaseOrdering(SI.getOrdering())); |
| |
| const bool ShouldTrackOrigins = |
| DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); |
| std::vector<Value *> Shadows; |
| std::vector<Value *> Origins; |
| |
| Value *Shadow = |
| SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); |
| |
| if (ShouldTrackOrigins) { |
| Shadows.push_back(Shadow); |
| Origins.push_back(DFSF.getOrigin(Val)); |
| } |
| |
| Value *PrimitiveShadow; |
| if (ClCombinePointerLabelsOnStore) { |
| Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); |
| if (ShouldTrackOrigins) { |
| Shadows.push_back(PtrShadow); |
| Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); |
| } |
| PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); |
| } else { |
| PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); |
| } |
| Value *Origin = nullptr; |
| if (ShouldTrackOrigins) |
| Origin = DFSF.combineOrigins(Shadows, Origins, &SI); |
| DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), |
| PrimitiveShadow, Origin, &SI); |
| if (ClEventCallbacks) { |
| IRBuilder<> IRB(&SI); |
| Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); |
| IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); |
| } |
| } |
| |
| void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { |
| assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
| |
| Value *Val = I.getOperand(1); |
| const auto &DL = I.getModule()->getDataLayout(); |
| uint64_t Size = DL.getTypeStoreSize(Val->getType()); |
| if (Size == 0) |
| return; |
| |
| // Conservatively set data at stored addresses and return with zero shadow to |
| // prevent shadow data races. |
| IRBuilder<> IRB(&I); |
| Value *Addr = I.getOperand(0); |
| const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); |
| DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); |
| DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); |
| DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); |
| } |
| |
| void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { |
| visitCASOrRMW(I.getAlign(), I); |
| // TODO: The ordering change follows MSan. It is possible not to change |
| // ordering because we always set and use 0 shadows. |
| I.setOrdering(addReleaseOrdering(I.getOrdering())); |
| } |
| |
| void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
| visitCASOrRMW(I.getAlign(), I); |
| // TODO: The ordering change follows MSan. It is possible not to change |
| // ordering because we always set and use 0 shadows. |
| I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); |
| } |
| |
| void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { |
| visitInstOperands(UO); |
| } |
| |
| void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { |
| visitInstOperands(BO); |
| } |
| |
| void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { |
| // Special case: if this is the bitcast (there is exactly 1 allowed) between |
| // a musttail call and a ret, don't instrument. New instructions are not |
| // allowed after a musttail call. |
| if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) |
| if (CI->isMustTailCall()) |
| return; |
| visitInstOperands(BCI); |
| } |
| |
| void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } |
| |
| void DFSanVisitor::visitCmpInst(CmpInst &CI) { |
| visitInstOperands(CI); |
| if (ClEventCallbacks) { |
| IRBuilder<> IRB(&CI); |
| Value *CombinedShadow = DFSF.getShadow(&CI); |
| IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); |
| } |
| } |
| |
| void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { |
| // We do not need to track data through LandingPadInst. |
| // |
| // For the C++ exceptions, if a value is thrown, this value will be stored |
| // in a memory location provided by __cxa_allocate_exception(...) (on the |
| // throw side) or __cxa_begin_catch(...) (on the catch side). |
| // This memory will have a shadow, so with the loads and stores we will be |
| // able to propagate labels on data thrown through exceptions, without any |
| // special handling of the LandingPadInst. |
| // |
| // The second element in the pair result of the LandingPadInst is a |
| // register value, but it is for a type ID and should never be tainted. |
| DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); |
| DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); |
| } |
| |
| void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| if (ClCombineOffsetLabelsOnGEP) { |
| visitInstOperands(GEPI); |
| return; |
| } |
| |
| // Only propagate shadow/origin of base pointer value but ignore those of |
| // offset operands. |
| Value *BasePointer = GEPI.getPointerOperand(); |
| DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); |
| if (DFSF.DFS.shouldTrackOrigins()) |
| DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); |
| } |
| |
| void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { |
| visitInstOperands(I); |
| } |
| |
| void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { |
| visitInstOperands(I); |
| } |
| |
| void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { |
| visitInstOperands(I); |
| } |
| |
| void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *Agg = I.getAggregateOperand(); |
| Value *AggShadow = DFSF.getShadow(Agg); |
| Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); |
| DFSF.setShadow(&I, ResShadow); |
| visitInstOperandOrigins(I); |
| } |
| |
| void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); |
| Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); |
| Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); |
| DFSF.setShadow(&I, Res); |
| visitInstOperandOrigins(I); |
| } |
| |
| void DFSanVisitor::visitAllocaInst(AllocaInst &I) { |
| bool AllLoadsStores = true; |
| for (User *U : I.users()) { |
| if (isa<LoadInst>(U)) |
| continue; |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(U)) { |
| if (SI->getPointerOperand() == &I) |
| continue; |
| } |
| |
| AllLoadsStores = false; |
| break; |
| } |
| if (AllLoadsStores) { |
| IRBuilder<> IRB(&I); |
| DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); |
| if (DFSF.DFS.shouldTrackOrigins()) { |
| DFSF.AllocaOriginMap[&I] = |
| IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); |
| } |
| } |
| DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); |
| DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); |
| } |
| |
| void DFSanVisitor::visitSelectInst(SelectInst &I) { |
| Value *CondShadow = DFSF.getShadow(I.getCondition()); |
| Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); |
| Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); |
| Value *ShadowSel = nullptr; |
| const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
| std::vector<Value *> Shadows; |
| std::vector<Value *> Origins; |
| Value *TrueOrigin = |
| ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; |
| Value *FalseOrigin = |
| ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; |
| |
| if (isa<VectorType>(I.getCondition()->getType())) { |
| ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, |
| FalseShadow, &I); |
| if (ShouldTrackOrigins) { |
| Shadows.push_back(TrueShadow); |
| Shadows.push_back(FalseShadow); |
| Origins.push_back(TrueOrigin); |
| Origins.push_back(FalseOrigin); |
| } |
| } else { |
| if (TrueShadow == FalseShadow) { |
| ShadowSel = TrueShadow; |
| if (ShouldTrackOrigins) { |
| Shadows.push_back(TrueShadow); |
| Origins.push_back(TrueOrigin); |
| } |
| } else { |
|