| //===- AddressSanitizer.cpp - memory error detector -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of AddressSanitizer, an address basic correctness |
| // checker. |
| // Details of the algorithm: |
| // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm |
| // |
| // FIXME: This sanitizer does not yet handle scalable vectors |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/StackSafetyAnalysis.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/BinaryFormat/MachO.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" |
| #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" |
| #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iomanip> |
| #include <limits> |
| #include <memory> |
| #include <sstream> |
| #include <string> |
| #include <tuple> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "asan" |
| |
| static const uint64_t kDefaultShadowScale = 3; |
| static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; |
| static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; |
| static const uint64_t kDynamicShadowSentinel = |
| std::numeric_limits<uint64_t>::max(); |
| static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. |
| static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; |
| static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; |
| static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; |
| static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; |
| static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; |
| static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; |
| static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; |
| static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; |
| static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; |
| static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; |
| static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; |
| static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; |
| static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; |
| static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; |
| static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; |
| static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; |
| static const uint64_t kEmscriptenShadowOffset = 0; |
| |
| // The shadow memory space is dynamically allocated. |
| static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; |
| |
| static const size_t kMinStackMallocSize = 1 << 6; // 64B |
| static const size_t kMaxStackMallocSize = 1 << 16; // 64K |
| static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; |
| static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; |
| |
| const char kAsanModuleCtorName[] = "asan.module_ctor"; |
| const char kAsanModuleDtorName[] = "asan.module_dtor"; |
| static const uint64_t kAsanCtorAndDtorPriority = 1; |
| // On Emscripten, the system needs more than one priorities for constructors. |
| static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; |
| const char kAsanReportErrorTemplate[] = "__asan_report_"; |
| const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; |
| const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; |
| const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; |
| const char kAsanUnregisterImageGlobalsName[] = |
| "__asan_unregister_image_globals"; |
| const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; |
| const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; |
| const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; |
| const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; |
| const char kAsanInitName[] = "__asan_init"; |
| const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; |
| const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; |
| const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; |
| const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; |
| static const int kMaxAsanStackMallocSizeClass = 10; |
| const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; |
| const char kAsanStackMallocAlwaysNameTemplate[] = |
| "__asan_stack_malloc_always_"; |
| const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; |
| const char kAsanGenPrefix[] = "___asan_gen_"; |
| const char kODRGenPrefix[] = "__odr_asan_gen_"; |
| const char kSanCovGenPrefix[] = "__sancov_gen_"; |
| const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; |
| const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; |
| const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; |
| |
| // ASan version script has __asan_* wildcard. Triple underscore prevents a |
| // linker (gold) warning about attempting to export a local symbol. |
| const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; |
| |
| const char kAsanOptionDetectUseAfterReturn[] = |
| "__asan_option_detect_stack_use_after_return"; |
| |
| const char kAsanShadowMemoryDynamicAddress[] = |
| "__asan_shadow_memory_dynamic_address"; |
| |
| const char kAsanAllocaPoison[] = "__asan_alloca_poison"; |
| const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; |
| |
| const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; |
| const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; |
| |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| static const size_t kNumberOfAccessSizes = 5; |
| |
| static const uint64_t kAllocaRzSize = 32; |
| |
| // ASanAccessInfo implementation constants. |
| constexpr size_t kCompileKernelShift = 0; |
| constexpr size_t kCompileKernelMask = 0x1; |
| constexpr size_t kAccessSizeIndexShift = 1; |
| constexpr size_t kAccessSizeIndexMask = 0xf; |
| constexpr size_t kIsWriteShift = 5; |
| constexpr size_t kIsWriteMask = 0x1; |
| |
| // Command-line flags. |
| |
| static cl::opt<bool> ClEnableKasan( |
| "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClRecover( |
| "asan-recover", |
| cl::desc("Enable recovery mode (continue-after-error)."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClInsertVersionCheck( |
| "asan-guard-against-version-mismatch", |
| cl::desc("Guard against compiler/runtime version mismatch."), |
| cl::Hidden, cl::init(true)); |
| |
| // This flag may need to be replaced with -f[no-]asan-reads. |
| static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", |
| cl::desc("instrument read instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentWrites( |
| "asan-instrument-writes", cl::desc("instrument write instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), |
| cl::Hidden, cl::desc("Use Stack Safety analysis results"), |
| cl::Optional); |
| |
| static cl::opt<bool> ClInstrumentAtomics( |
| "asan-instrument-atomics", |
| cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| ClInstrumentByval("asan-instrument-byval", |
| cl::desc("instrument byval call arguments"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClAlwaysSlowPath( |
| "asan-always-slow-path", |
| cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> ClForceDynamicShadow( |
| "asan-force-dynamic-shadow", |
| cl::desc("Load shadow address into a local variable for each function"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClWithIfunc("asan-with-ifunc", |
| cl::desc("Access dynamic shadow through an ifunc global on " |
| "platforms that support this"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClWithIfuncSuppressRemat( |
| "asan-with-ifunc-suppress-remat", |
| cl::desc("Suppress rematerialization of dynamic shadow address by passing " |
| "it through inline asm in prologue."), |
| cl::Hidden, cl::init(true)); |
| |
| // This flag limits the number of instructions to be instrumented |
| // in any given BB. Normally, this should be set to unlimited (INT_MAX), |
| // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary |
| // set it to 10000. |
| static cl::opt<int> ClMaxInsnsToInstrumentPerBB( |
| "asan-max-ins-per-bb", cl::init(10000), |
| cl::desc("maximal number of instructions to instrument in any given BB"), |
| cl::Hidden); |
| |
| // This flag may need to be replaced with -f[no]asan-stack. |
| static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), |
| cl::Hidden, cl::init(true)); |
| static cl::opt<uint32_t> ClMaxInlinePoisoningSize( |
| "asan-max-inline-poisoning-size", |
| cl::desc( |
| "Inline shadow poisoning for blocks up to the given size in bytes."), |
| cl::Hidden, cl::init(64)); |
| |
| static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( |
| "asan-use-after-return", |
| cl::desc("Sets the mode of detection for stack-use-after-return."), |
| cl::values( |
| clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", |
| "Never detect stack use after return."), |
| clEnumValN( |
| AsanDetectStackUseAfterReturnMode::Runtime, "runtime", |
| "Detect stack use after return if " |
| "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), |
| clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", |
| "Always detect stack use after return.")), |
| cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); |
| |
| static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", |
| cl::desc("Create redzones for byval " |
| "arguments (extra copy " |
| "required)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", |
| cl::desc("Check stack-use-after-scope"), |
| cl::Hidden, cl::init(false)); |
| |
| // This flag may need to be replaced with -f[no]asan-globals. |
| static cl::opt<bool> ClGlobals("asan-globals", |
| cl::desc("Handle global objects"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClInitializers("asan-initialization-order", |
| cl::desc("Handle C++ initializer order"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInvalidPointerPairs( |
| "asan-detect-invalid-pointer-pair", |
| cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> ClInvalidPointerCmp( |
| "asan-detect-invalid-pointer-cmp", |
| cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> ClInvalidPointerSub( |
| "asan-detect-invalid-pointer-sub", |
| cl::desc("Instrument - operations with pointer operands"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<unsigned> ClRealignStack( |
| "asan-realign-stack", |
| cl::desc("Realign stack to the value of this flag (power of two)"), |
| cl::Hidden, cl::init(32)); |
| |
| static cl::opt<int> ClInstrumentationWithCallsThreshold( |
| "asan-instrumentation-with-call-threshold", |
| cl::desc( |
| "If the function being instrumented contains more than " |
| "this number of memory accesses, use callbacks instead of " |
| "inline checks (-1 means never use callbacks)."), |
| cl::Hidden, cl::init(7000)); |
| |
| static cl::opt<std::string> ClMemoryAccessCallbackPrefix( |
| "asan-memory-access-callback-prefix", |
| cl::desc("Prefix for memory access callbacks"), cl::Hidden, |
| cl::init("__asan_")); |
| |
| static cl::opt<bool> |
| ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", |
| cl::desc("instrument dynamic allocas"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClSkipPromotableAllocas( |
| "asan-skip-promotable-allocas", |
| cl::desc("Do not instrument promotable allocas"), cl::Hidden, |
| cl::init(true)); |
| |
| // These flags allow to change the shadow mapping. |
| // The shadow mapping looks like |
| // Shadow = (Mem >> scale) + offset |
| |
| static cl::opt<int> ClMappingScale("asan-mapping-scale", |
| cl::desc("scale of asan shadow mapping"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<uint64_t> |
| ClMappingOffset("asan-mapping-offset", |
| cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), |
| cl::Hidden, cl::init(0)); |
| |
| // Optimization flags. Not user visible, used mostly for testing |
| // and benchmarking the tool. |
| |
| static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", |
| cl::desc("Optimize callbacks"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClOptSameTemp( |
| "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClOptGlobals("asan-opt-globals", |
| cl::desc("Don't instrument scalar globals"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClOptStack( |
| "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClDynamicAllocaStack( |
| "asan-stack-dynamic-alloca", |
| cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<uint32_t> ClForceExperiment( |
| "asan-force-experiment", |
| cl::desc("Force optimization experiment (for testing)"), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<bool> |
| ClUsePrivateAlias("asan-use-private-alias", |
| cl::desc("Use private aliases for global variables"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClUseOdrIndicator("asan-use-odr-indicator", |
| cl::desc("Use odr indicators to improve ODR reporting"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClUseGlobalsGC("asan-globals-live-support", |
| cl::desc("Use linker features to support dead " |
| "code stripping of globals"), |
| cl::Hidden, cl::init(true)); |
| |
| // This is on by default even though there is a bug in gold: |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
| static cl::opt<bool> |
| ClWithComdat("asan-with-comdat", |
| cl::desc("Place ASan constructors in comdat sections"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<AsanDtorKind> ClOverrideDestructorKind( |
| "asan-destructor-kind", |
| cl::desc("Sets the ASan destructor kind. The default is to use the value " |
| "provided to the pass constructor"), |
| cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), |
| clEnumValN(AsanDtorKind::Global, "global", |
| "Use global destructors")), |
| cl::init(AsanDtorKind::Invalid), cl::Hidden); |
| |
| // Debug flags. |
| |
| static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, |
| cl::desc("Debug func")); |
| |
| static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); |
| STATISTIC(NumOptimizedAccessesToGlobalVar, |
| "Number of optimized accesses to global vars"); |
| STATISTIC(NumOptimizedAccessesToStackVar, |
| "Number of optimized accesses to stack vars"); |
| |
| namespace { |
| |
| /// This struct defines the shadow mapping using the rule: |
| /// shadow = (mem >> Scale) ADD-or-OR Offset. |
| /// If InGlobal is true, then |
| /// extern char __asan_shadow[]; |
| /// shadow = (mem >> Scale) + &__asan_shadow |
| struct ShadowMapping { |
| int Scale; |
| uint64_t Offset; |
| bool OrShadowOffset; |
| bool InGlobal; |
| }; |
| |
| } // end anonymous namespace |
| |
| static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, |
| bool IsKasan) { |
| bool IsAndroid = TargetTriple.isAndroid(); |
| bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); |
| bool IsMacOS = TargetTriple.isMacOSX(); |
| bool IsFreeBSD = TargetTriple.isOSFreeBSD(); |
| bool IsNetBSD = TargetTriple.isOSNetBSD(); |
| bool IsPS4CPU = TargetTriple.isPS4CPU(); |
| bool IsLinux = TargetTriple.isOSLinux(); |
| bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || |
| TargetTriple.getArch() == Triple::ppc64le; |
| bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; |
| bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; |
| bool IsMIPS32 = TargetTriple.isMIPS32(); |
| bool IsMIPS64 = TargetTriple.isMIPS64(); |
| bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); |
| bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; |
| bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; |
| bool IsWindows = TargetTriple.isOSWindows(); |
| bool IsFuchsia = TargetTriple.isOSFuchsia(); |
| bool IsEmscripten = TargetTriple.isOSEmscripten(); |
| bool IsAMDGPU = TargetTriple.isAMDGPU(); |
| |
| ShadowMapping Mapping; |
| |
| Mapping.Scale = kDefaultShadowScale; |
| if (ClMappingScale.getNumOccurrences() > 0) { |
| Mapping.Scale = ClMappingScale; |
| } |
| |
| if (LongSize == 32) { |
| if (IsAndroid) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsMIPS32) |
| Mapping.Offset = kMIPS32_ShadowOffset32; |
| else if (IsFreeBSD) |
| Mapping.Offset = kFreeBSD_ShadowOffset32; |
| else if (IsNetBSD) |
| Mapping.Offset = kNetBSD_ShadowOffset32; |
| else if (IsIOS) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsWindows) |
| Mapping.Offset = kWindowsShadowOffset32; |
| else if (IsEmscripten) |
| Mapping.Offset = kEmscriptenShadowOffset; |
| else |
| Mapping.Offset = kDefaultShadowOffset32; |
| } else { // LongSize == 64 |
| // Fuchsia is always PIE, which means that the beginning of the address |
| // space is always available. |
| if (IsFuchsia) |
| Mapping.Offset = 0; |
| else if (IsPPC64) |
| Mapping.Offset = kPPC64_ShadowOffset64; |
| else if (IsSystemZ) |
| Mapping.Offset = kSystemZ_ShadowOffset64; |
| else if (IsFreeBSD && !IsMIPS64) { |
| if (IsKasan) |
| Mapping.Offset = kFreeBSDKasan_ShadowOffset64; |
| else |
| Mapping.Offset = kFreeBSD_ShadowOffset64; |
| } else if (IsNetBSD) { |
| if (IsKasan) |
| Mapping.Offset = kNetBSDKasan_ShadowOffset64; |
| else |
| Mapping.Offset = kNetBSD_ShadowOffset64; |
| } else if (IsPS4CPU) |
| Mapping.Offset = kPS4CPU_ShadowOffset64; |
| else if (IsLinux && IsX86_64) { |
| if (IsKasan) |
| Mapping.Offset = kLinuxKasan_ShadowOffset64; |
| else |
| Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
| (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
| } else if (IsWindows && IsX86_64) { |
| Mapping.Offset = kWindowsShadowOffset64; |
| } else if (IsMIPS64) |
| Mapping.Offset = kMIPS64_ShadowOffset64; |
| else if (IsIOS) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsMacOS && IsAArch64) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsAArch64) |
| Mapping.Offset = kAArch64_ShadowOffset64; |
| else if (IsRISCV64) |
| Mapping.Offset = kRISCV64_ShadowOffset64; |
| else if (IsAMDGPU) |
| Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
| (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
| else |
| Mapping.Offset = kDefaultShadowOffset64; |
| } |
| |
| if (ClForceDynamicShadow) { |
| Mapping.Offset = kDynamicShadowSentinel; |
| } |
| |
| if (ClMappingOffset.getNumOccurrences() > 0) { |
| Mapping.Offset = ClMappingOffset; |
| } |
| |
| // OR-ing shadow offset if more efficient (at least on x86) if the offset |
| // is a power of two, but on ppc64 we have to use add since the shadow |
| // offset is not necessary 1/8-th of the address space. On SystemZ, |
| // we could OR the constant in a single instruction, but it's more |
| // efficient to load it once and use indexed addressing. |
| Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && |
| !IsRISCV64 && |
| !(Mapping.Offset & (Mapping.Offset - 1)) && |
| Mapping.Offset != kDynamicShadowSentinel; |
| bool IsAndroidWithIfuncSupport = |
| IsAndroid && !TargetTriple.isAndroidVersionLT(21); |
| Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; |
| |
| return Mapping; |
| } |
| |
| namespace llvm { |
| void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, |
| bool IsKasan, uint64_t *ShadowBase, |
| int *MappingScale, bool *OrShadowOffset) { |
| auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); |
| *ShadowBase = Mapping.Offset; |
| *MappingScale = Mapping.Scale; |
| *OrShadowOffset = Mapping.OrShadowOffset; |
| } |
| |
| ASanAccessInfo::ASanAccessInfo(int32_t Packed) |
| : Packed(Packed), |
| AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), |
| IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), |
| CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} |
| |
| ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, |
| uint8_t AccessSizeIndex) |
| : Packed((IsWrite << kIsWriteShift) + |
| (CompileKernel << kCompileKernelShift) + |
| (AccessSizeIndex << kAccessSizeIndexShift)), |
| AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), |
| CompileKernel(CompileKernel) {} |
| |
| } // namespace llvm |
| |
| static uint64_t getRedzoneSizeForScale(int MappingScale) { |
| // Redzone used for stack and globals is at least 32 bytes. |
| // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. |
| return std::max(32U, 1U << MappingScale); |
| } |
| |
| static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { |
| if (TargetTriple.isOSEmscripten()) { |
| return kAsanEmscriptenCtorAndDtorPriority; |
| } else { |
| return kAsanCtorAndDtorPriority; |
| } |
| } |
| |
| namespace { |
| |
| /// Module analysis for getting various metadata about the module. |
| class ASanGlobalsMetadataWrapperPass : public ModulePass { |
| public: |
| static char ID; |
| |
| ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { |
| initializeASanGlobalsMetadataWrapperPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override { |
| GlobalsMD = GlobalsMetadata(M); |
| return false; |
| } |
| |
| StringRef getPassName() const override { |
| return "ASanGlobalsMetadataWrapperPass"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| } |
| |
| GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } |
| |
| private: |
| GlobalsMetadata GlobalsMD; |
| }; |
| |
| char ASanGlobalsMetadataWrapperPass::ID = 0; |
| |
| /// AddressSanitizer: instrument the code in module to find memory bugs. |
| struct AddressSanitizer { |
| AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, |
| const StackSafetyGlobalInfo *SSGI, |
| bool CompileKernel = false, bool Recover = false, |
| bool UseAfterScope = false, |
| AsanDetectStackUseAfterReturnMode UseAfterReturn = |
| AsanDetectStackUseAfterReturnMode::Runtime) |
| : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan |
| : CompileKernel), |
| Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), |
| UseAfterScope(UseAfterScope || ClUseAfterScope), |
| UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn |
| : UseAfterReturn), |
| GlobalsMD(*GlobalsMD), SSGI(SSGI) { |
| C = &(M.getContext()); |
| LongSize = M.getDataLayout().getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| Int8PtrTy = Type::getInt8PtrTy(*C); |
| Int32Ty = Type::getInt32Ty(*C); |
| TargetTriple = Triple(M.getTargetTriple()); |
| |
| Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); |
| |
| assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); |
| } |
| |
| uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { |
| uint64_t ArraySize = 1; |
| if (AI.isArrayAllocation()) { |
| const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); |
| assert(CI && "non-constant array size"); |
| ArraySize = CI->getZExtValue(); |
| } |
| Type *Ty = AI.getAllocatedType(); |
| uint64_t SizeInBytes = |
| AI.getModule()->getDataLayout().getTypeAllocSize(Ty); |
| return SizeInBytes * ArraySize; |
| } |
| |
| /// Check if we want (and can) handle this alloca. |
| bool isInterestingAlloca(const AllocaInst &AI); |
| |
| bool ignoreAccess(Instruction *Inst, Value *Ptr); |
| void getInterestingMemoryOperands( |
| Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); |
| |
| void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
| InterestingMemoryOperand &O, bool UseCalls, |
| const DataLayout &DL); |
| void instrumentPointerComparisonOrSubtraction(Instruction *I); |
| void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
| Value *Addr, uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, uint32_t Exp); |
| Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, |
| Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument); |
| void instrumentUnusualSizeOrAlignment(Instruction *I, |
| Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, |
| uint32_t Exp); |
| Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| Value *ShadowValue, uint32_t TypeSize); |
| Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, |
| bool IsWrite, size_t AccessSizeIndex, |
| Value *SizeArgument, uint32_t Exp); |
| void instrumentMemIntrinsic(MemIntrinsic *MI); |
| Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| bool suppressInstrumentationSiteForDebug(int &Instrumented); |
| bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); |
| bool maybeInsertAsanInitAtFunctionEntry(Function &F); |
| bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); |
| void markEscapedLocalAllocas(Function &F); |
| |
| private: |
| friend struct FunctionStackPoisoner; |
| |
| void initializeCallbacks(Module &M); |
| |
| bool LooksLikeCodeInBug11395(Instruction *I); |
| bool GlobalIsLinkerInitialized(GlobalVariable *G); |
| bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, |
| uint64_t TypeSize) const; |
| |
| /// Helper to cleanup per-function state. |
| struct FunctionStateRAII { |
| AddressSanitizer *Pass; |
| |
| FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { |
| assert(Pass->ProcessedAllocas.empty() && |
| "last pass forgot to clear cache"); |
| assert(!Pass->LocalDynamicShadow); |
| } |
| |
| ~FunctionStateRAII() { |
| Pass->LocalDynamicShadow = nullptr; |
| Pass->ProcessedAllocas.clear(); |
| } |
| }; |
| |
| LLVMContext *C; |
| Triple TargetTriple; |
| int LongSize; |
| bool CompileKernel; |
| bool Recover; |
| bool UseAfterScope; |
| AsanDetectStackUseAfterReturnMode UseAfterReturn; |
| Type *IntptrTy; |
| Type *Int8PtrTy; |
| Type *Int32Ty; |
| ShadowMapping Mapping; |
| FunctionCallee AsanHandleNoReturnFunc; |
| FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; |
| Constant *AsanShadowGlobal; |
| |
| // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). |
| FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; |
| FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; |
| |
| // These arrays is indexed by AccessIsWrite and Experiment. |
| FunctionCallee AsanErrorCallbackSized[2][2]; |
| FunctionCallee AsanMemoryAccessCallbackSized[2][2]; |
| |
| FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; |
| Value *LocalDynamicShadow = nullptr; |
| const GlobalsMetadata &GlobalsMD; |
| const StackSafetyGlobalInfo *SSGI; |
| DenseMap<const AllocaInst *, bool> ProcessedAllocas; |
| |
| FunctionCallee AMDGPUAddressShared; |
| FunctionCallee AMDGPUAddressPrivate; |
| }; |
| |
| class AddressSanitizerLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| |
| explicit AddressSanitizerLegacyPass( |
| bool CompileKernel = false, bool Recover = false, |
| bool UseAfterScope = false, |
| AsanDetectStackUseAfterReturnMode UseAfterReturn = |
| AsanDetectStackUseAfterReturnMode::Runtime) |
| : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), |
| UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { |
| initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { |
| return "AddressSanitizerFunctionPass"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ASanGlobalsMetadataWrapperPass>(); |
| if (ClUseStackSafety) |
| AU.addRequired<StackSafetyGlobalInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| GlobalsMetadata &GlobalsMD = |
| getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); |
| const StackSafetyGlobalInfo *const SSGI = |
| ClUseStackSafety |
| ? &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult() |
| : nullptr; |
| const TargetLibraryInfo *TLI = |
| &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel, |
| Recover, UseAfterScope, UseAfterReturn); |
| return ASan.instrumentFunction(F, TLI); |
| } |
| |
| private: |
| bool CompileKernel; |
| bool Recover; |
| bool UseAfterScope; |
| AsanDetectStackUseAfterReturnMode UseAfterReturn; |
| }; |
| |
| class ModuleAddressSanitizer { |
| public: |
| ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, |
| bool CompileKernel = false, bool Recover = false, |
| bool UseGlobalsGC = true, bool UseOdrIndicator = false, |
| AsanDtorKind DestructorKind = AsanDtorKind::Global) |
| : GlobalsMD(*GlobalsMD), |
| CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan |
| : CompileKernel), |
| Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), |
| UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), |
| // Enable aliases as they should have no downside with ODR indicators. |
| UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), |
| UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), |
| // Not a typo: ClWithComdat is almost completely pointless without |
| // ClUseGlobalsGC (because then it only works on modules without |
| // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; |
| // and both suffer from gold PR19002 for which UseGlobalsGC constructor |
| // argument is designed as workaround. Therefore, disable both |
| // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to |
| // do globals-gc. |
| UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), |
| DestructorKind(DestructorKind) { |
| C = &(M.getContext()); |
| int LongSize = M.getDataLayout().getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| TargetTriple = Triple(M.getTargetTriple()); |
| Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); |
| |
| if (ClOverrideDestructorKind != AsanDtorKind::Invalid) |
| this->DestructorKind = ClOverrideDestructorKind; |
| assert(this->DestructorKind != AsanDtorKind::Invalid); |
| } |
| |
| bool instrumentModule(Module &); |
| |
| private: |
| void initializeCallbacks(Module &M); |
| |
| bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); |
| void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers); |
| void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers, |
| const std::string &UniqueModuleId); |
| void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers); |
| void |
| InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers); |
| |
| GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, |
| StringRef OriginalName); |
| void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, |
| StringRef InternalSuffix); |
| Instruction *CreateAsanModuleDtor(Module &M); |
| |
| const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; |
| bool shouldInstrumentGlobal(GlobalVariable *G) const; |
| bool ShouldUseMachOGlobalsSection() const; |
| StringRef getGlobalMetadataSection() const; |
| void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); |
| void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); |
| uint64_t getMinRedzoneSizeForGlobal() const { |
| return getRedzoneSizeForScale(Mapping.Scale); |
| } |
| uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; |
| int GetAsanVersion(const Module &M) const; |
| |
| const GlobalsMetadata &GlobalsMD; |
| bool CompileKernel; |
| bool Recover; |
| bool UseGlobalsGC; |
| bool UsePrivateAlias; |
| bool UseOdrIndicator; |
| bool UseCtorComdat; |
| AsanDtorKind DestructorKind; |
| Type *IntptrTy; |
| LLVMContext *C; |
| Triple TargetTriple; |
| ShadowMapping Mapping; |
| FunctionCallee AsanPoisonGlobals; |
| FunctionCallee AsanUnpoisonGlobals; |
| FunctionCallee AsanRegisterGlobals; |
| FunctionCallee AsanUnregisterGlobals; |
| FunctionCallee AsanRegisterImageGlobals; |
| FunctionCallee AsanUnregisterImageGlobals; |
| FunctionCallee AsanRegisterElfGlobals; |
| FunctionCallee AsanUnregisterElfGlobals; |
| |
| Function *AsanCtorFunction = nullptr; |
| Function *AsanDtorFunction = nullptr; |
| }; |
| |
| class ModuleAddressSanitizerLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| |
| explicit ModuleAddressSanitizerLegacyPass( |
| bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, |
| bool UseOdrIndicator = false, |
| AsanDtorKind DestructorKind = AsanDtorKind::Global) |
| : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), |
| UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), |
| DestructorKind(DestructorKind) { |
| initializeModuleAddressSanitizerLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "ModuleAddressSanitizer"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ASanGlobalsMetadataWrapperPass>(); |
| } |
| |
| bool runOnModule(Module &M) override { |
| GlobalsMetadata &GlobalsMD = |
| getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); |
| ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, |
| UseGlobalGC, UseOdrIndicator, |
| DestructorKind); |
| return ASanModule.instrumentModule(M); |
| } |
| |
| private: |
| bool CompileKernel; |
| bool Recover; |
| bool UseGlobalGC; |
| bool UseOdrIndicator; |
| AsanDtorKind DestructorKind; |
| }; |
| |
| // Stack poisoning does not play well with exception handling. |
| // When an exception is thrown, we essentially bypass the code |
| // that unpoisones the stack. This is why the run-time library has |
| // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire |
| // stack in the interceptor. This however does not work inside the |
| // actual function which catches the exception. Most likely because the |
| // compiler hoists the load of the shadow value somewhere too high. |
| // This causes asan to report a non-existing bug on 453.povray. |
| // It sounds like an LLVM bug. |
| struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { |
| Function &F; |
| AddressSanitizer &ASan; |
| DIBuilder DIB; |
| LLVMContext *C; |
| Type *IntptrTy; |
| Type *IntptrPtrTy; |
| ShadowMapping Mapping; |
| |
| SmallVector<AllocaInst *, 16> AllocaVec; |
| SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; |
| SmallVector<Instruction *, 8> RetVec; |
| |
| FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], |
| AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; |
| FunctionCallee AsanSetShadowFunc[0x100] = {}; |
| FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; |
| FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; |
| |
| // Stores a place and arguments of poisoning/unpoisoning call for alloca. |
| struct AllocaPoisonCall { |
| IntrinsicInst *InsBefore; |
| AllocaInst *AI; |
| uint64_t Size; |
| bool DoPoison; |
| }; |
| SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; |
| SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; |
| bool HasUntracedLifetimeIntrinsic = false; |
| |
| SmallVector<AllocaInst *, 1> DynamicAllocaVec; |
| SmallVector<IntrinsicInst *, 1> StackRestoreVec; |
| AllocaInst *DynamicAllocaLayout = nullptr; |
| IntrinsicInst *LocalEscapeCall = nullptr; |
| |
| bool HasInlineAsm = false; |
| bool HasReturnsTwiceCall = false; |
| bool PoisonStack; |
| |
| FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) |
| : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), |
| C(ASan.C), IntptrTy(ASan.IntptrTy), |
| IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), |
| PoisonStack(ClStack && |
| !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} |
| |
| bool runOnFunction() { |
| if (!PoisonStack) |
| return false; |
| |
| if (ClRedzoneByvalArgs) |
| copyArgsPassedByValToAllocas(); |
| |
| // Collect alloca, ret, lifetime instructions etc. |
| for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); |
| |
| if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; |
| |
| initializeCallbacks(*F.getParent()); |
| |
| if (HasUntracedLifetimeIntrinsic) { |
| // If there are lifetime intrinsics which couldn't be traced back to an |
| // alloca, we may not know exactly when a variable enters scope, and |
| // therefore should "fail safe" by not poisoning them. |
| StaticAllocaPoisonCallVec.clear(); |
| DynamicAllocaPoisonCallVec.clear(); |
| } |
| |
| processDynamicAllocas(); |
| processStaticAllocas(); |
| |
| if (ClDebugStack) { |
| LLVM_DEBUG(dbgs() << F); |
| } |
| return true; |
| } |
| |
| // Arguments marked with the "byval" attribute are implicitly copied without |
| // using an alloca instruction. To produce redzones for those arguments, we |
| // copy them a second time into memory allocated with an alloca instruction. |
| void copyArgsPassedByValToAllocas(); |
| |
| // Finds all Alloca instructions and puts |
| // poisoned red zones around all of them. |
| // Then unpoison everything back before the function returns. |
| void processStaticAllocas(); |
| void processDynamicAllocas(); |
| |
| void createDynamicAllocasInitStorage(); |
| |
| // ----------------------- Visitors. |
| /// Collect all Ret instructions, or the musttail call instruction if it |
| /// precedes the return instruction. |
| void visitReturnInst(ReturnInst &RI) { |
| if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) |
| RetVec.push_back(CI); |
| else |
| RetVec.push_back(&RI); |
| } |
| |
| /// Collect all Resume instructions. |
| void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } |
| |
| /// Collect all CatchReturnInst instructions. |
| void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } |
| |
| void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, |
| Value *SavedStack) { |
| IRBuilder<> IRB(InstBefore); |
| Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); |
| // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we |
| // need to adjust extracted SP to compute the address of the most recent |
| // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for |
| // this purpose. |
| if (!isa<ReturnInst>(InstBefore)) { |
| Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( |
| InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, |
| {IntptrTy}); |
| |
| Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); |
| |
| DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), |
| DynamicAreaOffset); |
| } |
| |
| IRB.CreateCall( |
| AsanAllocasUnpoisonFunc, |
| {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); |
| } |
| |
| // Unpoison dynamic allocas redzones. |
| void unpoisonDynamicAllocas() { |
| for (Instruction *Ret : RetVec) |
| unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); |
| |
| for (Instruction *StackRestoreInst : StackRestoreVec) |
| unpoisonDynamicAllocasBeforeInst(StackRestoreInst, |
| StackRestoreInst->getOperand(0)); |
| } |
| |
| // Deploy and poison redzones around dynamic alloca call. To do this, we |
| // should replace this call with another one with changed parameters and |
| // replace all its uses with new address, so |
| // addr = alloca type, old_size, align |
| // is replaced by |
| // new_size = (old_size + additional_size) * sizeof(type) |
| // tmp = alloca i8, new_size, max(align, 32) |
| // addr = tmp + 32 (first 32 bytes are for the left redzone). |
| // Additional_size is added to make new memory allocation contain not only |
| // requested memory, but also left, partial and right redzones. |
| void handleDynamicAllocaCall(AllocaInst *AI); |
| |
| /// Collect Alloca instructions we want (and can) handle. |
| void visitAllocaInst(AllocaInst &AI) { |
| if (!ASan.isInterestingAlloca(AI)) { |
| if (AI.isStaticAlloca()) { |
| // Skip over allocas that are present *before* the first instrumented |
| // alloca, we don't want to move those around. |
| if (AllocaVec.empty()) |
| return; |
| |
| StaticAllocasToMoveUp.push_back(&AI); |
| } |
| return; |
| } |
| |
| if (!AI.isStaticAlloca()) |
| DynamicAllocaVec.push_back(&AI); |
| else |
| AllocaVec.push_back(&AI); |
| } |
| |
| /// Collect lifetime intrinsic calls to check for use-after-scope |
| /// errors. |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| Intrinsic::ID ID = II.getIntrinsicID(); |
| if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); |
| if (ID == Intrinsic::localescape) LocalEscapeCall = &II; |
| if (!ASan.UseAfterScope) |
| return; |
| if (!II.isLifetimeStartOrEnd()) |
| return; |
| // Found lifetime intrinsic, add ASan instrumentation if necessary. |
| auto *Size = cast<ConstantInt>(II.getArgOperand(0)); |
| // If size argument is undefined, don't do anything. |
| if (Size->isMinusOne()) return; |
| // Check that size doesn't saturate uint64_t and can |
| // be stored in IntptrTy. |
| const uint64_t SizeValue = Size->getValue().getLimitedValue(); |
| if (SizeValue == ~0ULL || |
| !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) |
| return; |
| // Find alloca instruction that corresponds to llvm.lifetime argument. |
| // Currently we can only handle lifetime markers pointing to the |
| // beginning of the alloca. |
| AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); |
| if (!AI) { |
| HasUntracedLifetimeIntrinsic = true; |
| return; |
| } |
| // We're interested only in allocas we can handle. |
| if (!ASan.isInterestingAlloca(*AI)) |
| return; |
| bool DoPoison = (ID == Intrinsic::lifetime_end); |
| AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; |
| if (AI->isStaticAlloca()) |
| StaticAllocaPoisonCallVec.push_back(APC); |
| else if (ClInstrumentDynamicAllocas) |
| DynamicAllocaPoisonCallVec.push_back(APC); |
| } |
| |
| void visitCallBase(CallBase &CB) { |
| if (CallInst *CI = dyn_cast<CallInst>(&CB)) { |
| HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; |
| HasReturnsTwiceCall |= CI->canReturnTwice(); |
| } |
| } |
| |
| // ---------------------- Helpers. |
| void initializeCallbacks(Module &M); |
| |
| // Copies bytes from ShadowBytes into shadow memory for indexes where |
| // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that |
| // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. |
| void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
| IRBuilder<> &IRB, Value *ShadowBase); |
| void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
| size_t Begin, size_t End, IRBuilder<> &IRB, |
| Value *ShadowBase); |
| void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
| ArrayRef<uint8_t> ShadowBytes, size_t Begin, |
| size_t End, IRBuilder<> &IRB, Value *ShadowBase); |
| |
| void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); |
| |
| Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, |
| bool Dynamic); |
| PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, |
| Instruction *ThenTerm, Value *ValueIfFalse); |
| }; |
| |
| } // end anonymous namespace |
| |
| void LocationMetadata::parse(MDNode *MDN) { |
| assert(MDN->getNumOperands() == 3); |
| MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); |
| Filename = DIFilename->getString(); |
| LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); |
| ColumnNo = |
| mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); |
| } |
| |
| // FIXME: It would be cleaner to instead attach relevant metadata to the globals |
| // we want to sanitize instead and reading this metadata on each pass over a |
| // function instead of reading module level metadata at first. |
| GlobalsMetadata::GlobalsMetadata(Module &M) { |
| NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); |
| if (!Globals) |
| return; |
| for (auto MDN : Globals->operands()) { |
| // Metadata node contains the global and the fields of "Entry". |
| assert(MDN->getNumOperands() == 5); |
| auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); |
| // The optimizer may optimize away a global entirely. |
| if (!V) |
| continue; |
| auto *StrippedV = V->stripPointerCasts(); |
| auto *GV = dyn_cast<GlobalVariable>(StrippedV); |
| if (!GV) |
| continue; |
| // We can already have an entry for GV if it was merged with another |
| // global. |
| Entry &E = Entries[GV]; |
| if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) |
| E.SourceLoc.parse(Loc); |
| if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) |
| E.Name = Name->getString(); |
| ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); |
| E.IsDynInit |= IsDynInit->isOne(); |
| ConstantInt *IsExcluded = |
| mdconst::extract<ConstantInt>(MDN->getOperand(4)); |
| E.IsExcluded |= IsExcluded->isOne(); |
| } |
| } |
| |
| AnalysisKey ASanGlobalsMetadataAnalysis::Key; |
| |
| GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| return GlobalsMetadata(M); |
| } |
| |
| PreservedAnalyses AddressSanitizerPass::run(Function &F, |
| AnalysisManager<Function> &AM) { |
| auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); |
| Module &M = *F.getParent(); |
| if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { |
| const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); |
| AddressSanitizer Sanitizer(M, R, nullptr, Options.CompileKernel, |
| Options.Recover, Options.UseAfterScope, |
| Options.UseAfterReturn); |
| if (Sanitizer.instrumentFunction(F, TLI)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| report_fatal_error( |
| "The ASanGlobalsMetadataAnalysis is required to run before " |
| "AddressSanitizer can run"); |
| return PreservedAnalyses::all(); |
| } |
| |
| void AddressSanitizerPass::printPipeline( |
| raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( |
| OS, MapClassName2PassName); |
| OS << "<"; |
| if (Options.CompileKernel) |
| OS << "kernel"; |
| OS << ">"; |
| } |
| |
| void ModuleAddressSanitizerPass::printPipeline( |
| raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( |
| OS, MapClassName2PassName); |
| OS << "<"; |
| if (Options.CompileKernel) |
| OS << "kernel"; |
| OS << ">"; |
| } |
| |
| ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( |
| const AddressSanitizerOptions &Options, bool UseGlobalGC, |
| bool UseOdrIndicator, AsanDtorKind DestructorKind) |
| : Options(Options), UseGlobalGC(UseGlobalGC), |
| UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} |
| |
| PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, |
| ModuleAnalysisManager &MAM) { |
| GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M); |
| ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel, |
| Options.Recover, UseGlobalGC, |
| UseOdrIndicator, DestructorKind); |
| bool Modified = false; |
| auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| const StackSafetyGlobalInfo *const SSGI = |
| ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; |
| for (Function &F : M) { |
| AddressSanitizer FunctionSanitizer( |
| M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover, |
| Options.UseAfterScope, Options.UseAfterReturn); |
| const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); |
| Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); |
| } |
| Modified |= ModuleSanitizer.instrumentModule(M); |
| return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| } |
| |
| INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", |
| "Read metadata to mark which globals should be instrumented " |
| "when running ASan.", |
| false, true) |
| |
| char AddressSanitizerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN( |
| AddressSanitizerLegacyPass, "asan", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END( |
| AddressSanitizerLegacyPass, "asan", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, |
| false) |
| |
| FunctionPass *llvm::createAddressSanitizerFunctionPass( |
| bool CompileKernel, bool Recover, bool UseAfterScope, |
| AsanDetectStackUseAfterReturnMode UseAfterReturn) { |
| assert(!CompileKernel || Recover); |
| return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, |
| UseAfterReturn); |
| } |
| |
| char ModuleAddressSanitizerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS( |
| ModuleAddressSanitizerLegacyPass, "asan-module", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs." |
| "ModulePass", |
| false, false) |
| |
| ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( |
| bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, |
| AsanDtorKind Destructor) { |
| assert(!CompileKernel || Recover); |
| return new ModuleAddressSanitizerLegacyPass( |
| CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); |
| } |
| |
| static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { |
| size_t Res = countTrailingZeros(TypeSize / 8); |
| assert(Res < kNumberOfAccessSizes); |
| return Res; |
| } |
| |
| /// Create a global describing a source location. |
| static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, |
| LocationMetadata MD) { |
| Constant *LocData[] = { |
| createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), |
| ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), |
| ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), |
| }; |
| auto LocStruct = ConstantStruct::getAnon(LocData); |
| auto GV = new GlobalVariable(M, LocStruct->getType(), true, |
| GlobalValue::PrivateLinkage, LocStruct, |
| kAsanGenPrefix); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| return GV; |
| } |
| |
| /// Check if \p G has been created by a trusted compiler pass. |
| static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { |
| // Do not instrument @llvm.global_ctors, @llvm.used, etc. |
| if (G->getName().startswith("llvm.")) |
| return true; |
| |
| // Do not instrument asan globals. |
| if (G->getName().startswith(kAsanGenPrefix) || |
| G->getName().startswith(kSanCovGenPrefix) || |
| G->getName().startswith(kODRGenPrefix)) |
| return true; |
| |
| // Do not instrument gcov counter arrays. |
| if (G->getName() == "__llvm_gcov_ctr") |
| return true; |
| |
| return false; |
| } |
| |
| static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { |
| Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); |
| unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); |
| if (AddrSpace == 3 || AddrSpace == 5) |
| return true; |
| return false; |
| } |
| |
| Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
| // Shadow >> scale |
| Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); |
| if (Mapping.Offset == 0) return Shadow; |
| // (Shadow >> scale) | offset |
| Value *ShadowBase; |
| if (LocalDynamicShadow) |
| ShadowBase = LocalDynamicShadow; |
| else |
| ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); |
| if (Mapping.OrShadowOffset) |
| return IRB.CreateOr(Shadow, ShadowBase); |
| else |
| return IRB.CreateAdd(Shadow, ShadowBase); |
| } |
| |
| // Instrument memset/memmove/memcpy |
| void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| IRBuilder<> IRB(MI); |
| if (isa<MemTransferInst>(MI)) { |
| IRB.CreateCall( |
| isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } else if (isa<MemSetInst>(MI)) { |
| IRB.CreateCall( |
| AsanMemset, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } |
| MI->eraseFromParent(); |
| } |
| |
| /// Check if we want (and can) handle this alloca. |
| bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { |
| auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); |
| |
| if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) |
| return PreviouslySeenAllocaInfo->getSecond(); |
| |
| bool IsInteresting = |
| (AI.getAllocatedType()->isSized() && |
| // alloca() may be called with 0 size, ignore it. |
| ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && |
| // We are only interested in allocas not promotable to registers. |
| // Promotable allocas are common under -O0. |
| (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && |
| // inalloca allocas are not treated as static, and we don't want |
| // dynamic alloca instrumentation for them as well. |
| !AI.isUsedWithInAlloca() && |
| // swifterror allocas are register promoted by ISel |
| !AI.isSwiftError()); |
| |
| ProcessedAllocas[&AI] = IsInteresting; |
| return IsInteresting; |
| } |
| |
| bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { |
| // Instrument acesses from different address spaces only for AMDGPU. |
| Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| if (PtrTy->getPointerAddressSpace() != 0 && |
| !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) |
| return true; |
| |
| // Ignore swifterror addresses. |
| // swifterror memory addresses are mem2reg promoted by instruction |
| // selection. As such they cannot have regular uses like an instrumentation |
| // function and it makes no sense to track them as memory. |
| if (Ptr->isSwiftError()) |
| return true; |
| |
| // Treat memory accesses to promotable allocas as non-interesting since they |
| // will not cause memory violations. This greatly speeds up the instrumented |
| // executable at -O0. |
| if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) |
| if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) |
| return true; |
| |
| if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && |
| findAllocaForValue(Ptr)) |
| return true; |
| |
| return false; |
| } |
| |
| void AddressSanitizer::getInterestingMemoryOperands( |
| Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { |
| // Skip memory accesses inserted by another instrumentation. |
| if (I->hasMetadata("nosanitize")) |
| return; |
| |
| // Do not instrument the load fetching the dynamic shadow address. |
| if (LocalDynamicShadow == I) |
| return; |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!ClInstrumentReads || ignoreAccess(LI, LI->getPointerOperand())) |
| return; |
| Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, |
| LI->getType(), LI->getAlign()); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!ClInstrumentWrites || ignoreAccess(LI, SI->getPointerOperand())) |
| return; |
| Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, |
| SI->getValueOperand()->getType(), SI->getAlign()); |
| } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| if (!ClInstrumentAtomics || ignoreAccess(LI, RMW->getPointerOperand())) |
| return; |
| Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, |
| RMW->getValOperand()->getType(), None); |
| } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { |
| if (!ClInstrumentAtomics || ignoreAccess(LI, XCHG->getPointerOperand())) |
| return; |
| Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, |
| XCHG->getCompareOperand()->getType(), None); |
| } else if (auto CI = dyn_cast<CallInst>(I)) { |
| auto *F = CI->getCalledFunction(); |
| if (F && (F->getName().startswith("llvm.masked.load.") || |
| F->getName().startswith("llvm.masked.store."))) { |
| bool IsWrite = F->getName().startswith("llvm.masked.store."); |
| // Masked store has an initial operand for the value. |
| unsigned OpOffset = IsWrite ? 1 : 0; |
| if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
| return; |
| |
| auto BasePtr = CI->getOperand(OpOffset); |
| if (ignoreAccess(LI, BasePtr)) |
| return; |
| auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); |
| MaybeAlign Alignment = Align(1); |
| // Otherwise no alignment guarantees. We probably got Undef. |
| if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) |
| Alignment = Op->getMaybeAlignValue(); |
| Value *Mask = CI->getOperand(2 + OpOffset); |
| Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); |
| } else { |
| for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { |
| if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || |
| ignoreAccess(LI, CI->getArgOperand(ArgNo))) |
| continue; |
| Type *Ty = CI->getParamByValType(ArgNo); |
| Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); |
| } |
| } |
| } |
| } |
| |
| static bool isPointerOperand(Value *V) { |
| return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); |
| } |
| |
| // This is a rough heuristic; it may cause both false positives and |
| // false negatives. The proper implementation requires cooperation with |
| // the frontend. |
| static bool isInterestingPointerComparison(Instruction *I) { |
| if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { |
| if (!Cmp->isRelational()) |
| return false; |
| } else { |
| return false; |
| } |
| return isPointerOperand(I->getOperand(0)) && |
| isPointerOperand(I->getOperand(1)); |
| } |
| |
| // This is a rough heuristic; it may cause both false positives and |
| // false negatives. The proper implementation requires cooperation with |
| // the frontend. |
| static bool isInterestingPointerSubtraction(Instruction *I) { |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { |
| if (BO->getOpcode() != Instruction::Sub) |
| return false; |
| } else { |
| return false; |
| } |
| return isPointerOperand(I->getOperand(0)) && |
| isPointerOperand(I->getOperand(1)); |
| } |
| |
| bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { |
| // If a global variable does not have dynamic initialization we don't |
| // have to instrument it. However, if a global does not have initializer |
| // at all, we assume it has dynamic initializer (in other TU). |
| // |
| // FIXME: Metadata should be attched directly to the global directly instead |
| // of being added to llvm.asan.globals. |
| return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; |
| } |
| |
| void AddressSanitizer::instrumentPointerComparisonOrSubtraction( |
| Instruction *I) { |
| IRBuilder<> IRB(I); |
| FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; |
| Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; |
| for (Value *&i : Param) { |
| if (i->getType()->isPointerTy()) |
| i = IRB.CreatePointerCast(i, IntptrTy); |
| } |
| IRB.CreateCall(F, Param); |
| } |
| |
| static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, |
| Instruction *InsertBefore, Value *Addr, |
| MaybeAlign Alignment, unsigned Granularity, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, |
| uint32_t Exp) { |
| // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check |
| // if the data is properly aligned. |
| if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || |
| TypeSize == 128) && |
| (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) |
| return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, |
| nullptr, UseCalls, Exp); |
| Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, |
| IsWrite, nullptr, UseCalls, Exp); |
| } |
| |
| static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, |
| const DataLayout &DL, Type *IntptrTy, |
| Value *Mask, Instruction *I, |
| Value *Addr, MaybeAlign Alignment, |
| unsigned Granularity, uint32_t TypeSize, |
| bool IsWrite, Value *SizeArgument, |
| bool UseCalls, uint32_t Exp) { |
| auto *VTy = cast<FixedVectorType>( |
| cast<PointerType>(Addr->getType())->getElementType()); |
| uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); |
| unsigned Num = VTy->getNumElements(); |
| auto Zero = ConstantInt::get(IntptrTy, 0); |
| for (unsigned Idx = 0; Idx < Num; ++Idx) { |
| Value *InstrumentedAddress = nullptr; |
| Instruction *InsertBefore = I; |
| if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { |
| // dyn_cast as we might get UndefValue |
| if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { |
| if (Masked->isZero()) |
| // Mask is constant false, so no instrumentation needed. |
| continue; |
| // If we have a true or undef value, fall through to doInstrumentAddress |
| // with InsertBefore == I |
| } |
| } else { |
| IRBuilder<> IRB(I); |
| Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); |
| Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); |
| InsertBefore = ThenTerm; |
| } |
| |
| IRBuilder<> IRB(InsertBefore); |
| InstrumentedAddress = |
| IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); |
| doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, |
| Granularity, ElemTypeSize, IsWrite, SizeArgument, |
| UseCalls, Exp); |
| } |
| } |
| |
| void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
| InterestingMemoryOperand &O, bool UseCalls, |
| const DataLayout &DL) { |
| Value *Addr = O.getPtr(); |
| |
| // Optimization experiments. |
| // The experiments can be used to evaluate potential optimizations that remove |
| // instrumentation (assess false negatives). Instead of completely removing |
| // some instrumentation, you set Exp to a non-zero value (mask of optimization |
| // experiments that want to remove instrumentation of this instruction). |
| // If Exp is non-zero, this pass will emit special calls into runtime |
| // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls |
| // make runtime terminate the program in a special way (with a different |
| // exit status). Then you run the new compiler on a buggy corpus, collect |
| // the special terminations (ideally, you don't see them at all -- no false |
| // negatives) and make the decision on the optimization. |
| uint32_t Exp = ClForceExperiment; |
| |
| if (ClOpt && ClOptGlobals) { |
| // If initialization order checking is disabled, a simple access to a |
| // dynamically initialized global is always valid. |
| GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); |
| if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && |
| isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { |
| NumOptimizedAccessesToGlobalVar++; |
| return; |
| } |
| } |
| |
| if (ClOpt && ClOptStack) { |
| // A direct inbounds access to a stack variable is always valid. |
| if (isa<AllocaInst>(getUnderlyingObject(Addr)) && |
| isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { |
| NumOptimizedAccessesToStackVar++; |
| return; |
| } |
| } |
| |
| if (O.IsWrite) |
| NumInstrumentedWrites++; |
| else |
| NumInstrumentedReads++; |
| |
| unsigned Granularity = 1 << Mapping.Scale; |
| if (O.MaybeMask) { |
| instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), |
| Addr, O.Alignment, Granularity, O.TypeSize, |
| O.IsWrite, nullptr, UseCalls, Exp); |
| } else { |
| doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, |
| Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, |
| Exp); |
| } |
| } |
| |
| Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, |
| Value *Addr, bool IsWrite, |
| size_t AccessSizeIndex, |
| Value *SizeArgument, |
| uint32_t Exp) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); |
| CallInst *Call = nullptr; |
| if (SizeArgument) { |
| if (Exp == 0) |
| Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], |
| {Addr, SizeArgument}); |
| else |
| Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], |
| {Addr, SizeArgument, ExpVal}); |
| } else { |
| if (Exp == 0) |
| Call = |
| IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); |
| else |
| Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], |
| {Addr, ExpVal}); |
| } |
| |
| Call->setCannotMerge(); |
| return Call; |
| } |
| |
| Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| Value *ShadowValue, |
| uint32_t TypeSize) { |
| size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; |
| // Addr & (Granularity - 1) |
| Value *LastAccessedByte = |
| IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); |
| // (Addr & (Granularity - 1)) + size - 1 |
| if (TypeSize / 8 > 1) |
| LastAccessedByte = IRB.CreateAdd( |
| LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); |
| // (uint8_t) ((Addr & (Granularity-1)) + size - 1) |
| LastAccessedByte = |
| IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); |
| // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue |
| return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); |
| } |
| |
| Instruction *AddressSanitizer::instrumentAMDGPUAddress( |
| Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { |
| // Do not instrument unsupported addrspaces. |
| if (isUnsupportedAMDGPUAddrspace(Addr)) |
| return nullptr; |
| Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); |
| // Follow host instrumentation for global and constant addresses. |
| if (PtrTy->getPointerAddressSpace() != 0) |
| return InsertBefore; |
| // Instrument generic addresses in supported addressspaces. |
| IRBuilder<> IRB(InsertBefore); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); |
| Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); |
| Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); |
| Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); |
| Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); |
| Value *AddrSpaceZeroLanding = |
| SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); |
| InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); |
| return InsertBefore; |
| } |
| |
| void AddressSanitizer::instrumentAddress(Instruction *OrigIns, |
| Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, |
| uint32_t Exp) { |
| if (TargetTriple.isAMDGPU()) { |
| InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, |
| TypeSize, IsWrite, SizeArgument); |
| if (!InsertBefore) |
| return; |
| } |
| |
| IRBuilder<> IRB(InsertBefore); |
| size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); |
| const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); |
| |
| if (UseCalls && ClOptimizeCallbacks) { |
| const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| IRB.CreateCall( |
| Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), |
| {IRB.CreatePointerCast(Addr, Int8PtrTy), |
| ConstantInt::get(Int32Ty, AccessInfo.Packed)}); |
| return; |
| } |
| |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| if (UseCalls) { |
| if (Exp == 0) |
| IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], |
| AddrLong); |
| else |
| IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], |
| {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); |
| return; |
| } |
| |
| Type *ShadowTy = |
| IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); |
| Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); |
| Value *ShadowPtr = memToShadow(AddrLong, IRB); |
| Value *CmpVal = Constant::getNullValue(ShadowTy); |
| Value *ShadowValue = |
| IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); |
| |
| Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); |
| size_t Granularity = 1ULL << Mapping.Scale; |
| Instruction *CrashTerm = nullptr; |
| |
| if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { |
| // We use branch weights for the slow path check, to indicate that the slow |
| // path is rarely taken. This seems to be the case for SPEC benchmarks. |
| Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); |
| assert(cast<BranchInst>(CheckTerm)->isUnconditional()); |
| BasicBlock *NextBB = CheckTerm->getSuccessor(0); |
| IRB.SetInsertPoint(CheckTerm); |
| Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); |
| if (Recover) { |
| CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); |
| } else { |
| BasicBlock *CrashBlock = |
| BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); |
| CrashTerm = new UnreachableInst(*C, CrashBlock); |
| BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); |
| ReplaceInstWithInst(CheckTerm, NewTerm); |
| } |
| } else { |
| CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); |
| } |
| |
| Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, |
| AccessSizeIndex, SizeArgument, Exp); |
| Crash->setDebugLoc(OrigIns->getDebugLoc()); |
| } |
| |
| // Instrument unusual size or unusual alignment. |
| // We can not do it with a single check, so we do 1-byte check for the first |
| // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able |
| // to report the actual access size. |
| void AddressSanitizer::instrumentUnusualSizeOrAlignment( |
| Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, |
| bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| if (UseCalls) { |
| if (Exp == 0) |
| IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], |
| {AddrLong, Size}); |
| else |
| IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], |
| {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); |
| } else { |
| Value *LastByte = IRB.CreateIntToPtr( |
| IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), |
| Addr->getType()); |
| instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); |
| instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); |
| } |
| } |
| |
| void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, |
| GlobalValue *ModuleName) { |
| // Set up the arguments to our poison/unpoison functions. |
| IRBuilder<> IRB(&GlobalInit.front(), |
| GlobalInit.front().getFirstInsertionPt()); |
| |
| // Add a call to poison all external globals before the given function starts. |
| Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); |
| IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); |
| |
| // Add calls to unpoison all globals before each return instruction. |
| for (auto &BB : GlobalInit.getBasicBlockList()) |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) |
| CallInst::Create(AsanUnpoisonGlobals, "", RI); |
| } |
| |
| void ModuleAddressSanitizer::createInitializerPoisonCalls( |
| Module &M, GlobalValue *ModuleName) { |
| GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); |
| if (!GV) |
| return; |
| |
| ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); |
| if (!CA) |
| return; |
| |
| for (Use &OP : CA->operands()) { |
| if (isa<ConstantAggregateZero>(OP)) continue; |
| ConstantStruct *CS = cast<ConstantStruct>(OP); |
| |
| // Must have a function or null ptr. |
| if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { |
| if (F->getName() == kAsanModuleCtorName) continue; |
| auto *Priority = cast<ConstantInt>(CS->getOperand(0)); |
| // Don't instrument CTORs that will run before asan.module_ctor. |
| if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) |
| continue; |
| poisonOneInitializer(*F, ModuleName); |
| } |
| } |
| } |
| |
| const GlobalVariable * |
| ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { |
| // In case this function should be expanded to include rules that do not just |
| // apply when CompileKernel is true, either guard all existing rules with an |
| // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules |
| // should also apply to user space. |
| assert(CompileKernel && "Only expecting to be called when compiling kernel"); |
| |
| const Constant *C = GA.getAliasee(); |
| |
| // When compiling the kernel, globals that are aliased by symbols prefixed |
| // by "__" are special and cannot be padded with a redzone. |
| if (GA.getName().startswith("__")) |
| return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); |
| |
| return nullptr; |
| } |
| |
| bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { |
| Type *Ty = G->getValueType(); |
| LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); |
| |
| // FIXME: Metadata should be attched directly to the global directly instead |
| // of being added to llvm.asan.globals. |
| if (GlobalsMD.get(G).IsExcluded) return false; |
| if (!Ty->isSized()) return false; |
| if (!G->hasInitializer()) return false; |
| // Globals in address space 1 and 4 are supported for AMDGPU. |
| if (G->getAddressSpace() && |
| !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) |
| return false; |
| if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. |
| // Two problems with thread-locals: |
| // - The address of the main thread's copy can't be computed at link-time. |
| // - Need to poison all copies, not just the main thread's one. |
| if (G->isThreadLocal()) return false; |
| // For now, just ignore this Global if the alignment is large. |
| if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; |
| |
| // For non-COFF targets, only instrument globals known to be defined by this |
| // TU. |
| // FIXME: We can instrument comdat globals on ELF if we are using the |
| // GC-friendly metadata scheme. |
| if (!TargetTriple.isOSBinFormatCOFF()) { |
| if (!G->hasExactDefinition() || G->hasComdat()) |
| return false; |
| } else { |
| // On COFF, don't instrument non-ODR linkages. |
| if (G->isInterposable()) |
| return false; |
| } |
| |
| // If a comdat is present, it must have a selection kind that implies ODR |
| // semantics: no duplicates, any, or exact match. |
| if (Comdat *C = G->getComdat()) { |
| switch (C->getSelectionKind()) { |
| case Comdat::Any: |
| case Comdat::ExactMatch: |
| case Comdat::NoDeduplicate: |
| break; |
| case Comdat::Largest: |
| case Comdat::SameSize: |
| return false; |
| } |
| } |
| |
| if (G->hasSection()) { |
| // The kernel uses explicit sections for mostly special global variables |
| // that we should not instrument. E.g. the kernel may rely on their layout |
| // without redzones, or remove them at link time ("discard.*"), etc. |
| if (CompileKernel) |
| return false; |
| |
| StringRef Section = G->getSection(); |
| |
| // Globals from llvm.metadata aren't emitted, do not instrument them. |
| if (Section == "llvm.metadata") return false; |
| // Do not instrument globals from special LLVM sections. |
| if (Section.contains("__llvm") || Section.contains("__LLVM")) |
| return false; |
| |
| // Do not instrument function pointers to initialization and termination |
| // routines: dynamic linker will not properly handle redzones. |
| if (Section.startswith(".preinit_array") || |
| Section.startswith(".init_array") || |
| Section.startswith(".fini_array")) { |
| return false; |
| } |
| |
| // Do not instrument user-defined sections (with names resembling |
| // valid C identifiers) |
| if (TargetTriple.isOSBinFormatELF()) { |
| if (llvm::all_of(Section, |
| [](char c) { return llvm::isAlnum(c) || c == '_'; })) |
| return false; |
| } |
| |
| // On COFF, if the section name contains '$', it is highly likely that the |
| // user is using section sorting to create an array of globals similar to |
| // the way initialization callbacks are registered in .init_array and |
| // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones |
| // to such globals is counterproductive, because the intent is that they |
| // will form an array, and out-of-bounds accesses are expected. |
| // See https://github.com/google/sanitizers/issues/305 |
| // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx |
| if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { |
| LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " |
| << *G << "\n"); |
| return false; |
| } |
| |
| if (TargetTriple.isOSBinFormatMachO()) { |
| StringRef ParsedSegment, ParsedSection; |
| unsigned TAA = 0, StubSize = 0; |
| bool TAAParsed; |
| cantFail(MCSectionMachO::ParseSectionSpecifier( |
| Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); |
| |
| // Ignore the globals from the __OBJC section. The ObjC runtime assumes |
| // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to |
| // them. |
| if (ParsedSegment == "__OBJC" || |
| (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { |
| LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); |
| return false; |
| } |
| // See https://github.com/google/sanitizers/issues/32 |
| // Constant CFString instances are compiled in the following way: |
| // -- the string buffer is emitted into |
| // __TEXT,__cstring,cstring_literals |
| // -- the constant NSConstantString structure referencing that buffer |
| // is placed into __DATA,__cfstring |
| // Therefore there's no point in placing redzones into __DATA,__cfstring. |
| // Moreover, it causes the linker to crash on OS X 10.7 |
| if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { |
| LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); |
| return false; |
| } |
| // The linker merges the contents of cstring_literals and removes the |
| // trailing zeroes. |
| if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { |
| LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); |
| return false; |
| } |
| } |
| } |
| |
| if (CompileKernel) { |
| // Globals that prefixed by "__" are special and cannot be padded with a |
| // redzone. |
| if (G->getName().startswith("__")) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // On Mach-O platforms, we emit global metadata in a separate section of the |
| // binary in order to allow the linker to properly dead strip. This is only |
| // supported on recent versions of ld64. |
| bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { |
| if (!TargetTriple.isOSBinFormatMachO()) |
| return false; |
| |
| if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) |
| return true; |
| if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) |
| return true; |
| if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) |
| return true; |
| |
| return false; |
| } |
| |
| StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { |
| switch (TargetTriple.getObjectFormat()) { |
| case Triple::COFF: return ".ASAN$GL"; |
| case Triple::ELF: return "asan_globals"; |
| case Triple::MachO: return "__DATA,__asan_globals,regular"; |
| case Triple::Wasm: |
| case Triple::GOFF: |
| case Triple::XCOFF: |
| report_fatal_error( |
| "ModuleAddressSanitizer not implemented for object file format"); |
| case Triple::UnknownObjectFormat: |
| break; |
| } |
| llvm_unreachable("unsupported object format"); |
| } |
| |
| void ModuleAddressSanitizer::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| |
| // Declare our poisoning and unpoisoning functions. |
| AsanPoisonGlobals = |
| M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); |
| AsanUnpoisonGlobals = |
| M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); |
| |
| // Declare functions that register/unregister globals. |
| AsanRegisterGlobals = M.getOrInsertFunction( |
| kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| AsanUnregisterGlobals = M.getOrInsertFunction( |
| kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| |
| // Declare the functions that find globals in a shared object and then invoke |
| // the (un)register function on them. |
| AsanRegisterImageGlobals = M.getOrInsertFunction( |
| kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); |
| AsanUnregisterImageGlobals = M.getOrInsertFunction( |
| kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); |
| |
| AsanRegisterElfGlobals = |
| M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), |
| IntptrTy, IntptrTy, IntptrTy); |
| AsanUnregisterElfGlobals = |
| M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), |
| IntptrTy, IntptrTy, IntptrTy); |
| } |
| |
| // Put the metadata and the instrumented global in the same group. This ensures |
| // that the metadata is discarded if the instrumented global is discarded. |
| void ModuleAddressSanitizer::SetComdatForGlobalMetadata( |
| GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { |
| Module &M = *G->getParent(); |
| Comdat *C = G->getComdat(); |
| if (!C) { |
| if (!G->hasName()) { |
| // If G is unnamed, it must be internal. Give it an artificial name |
| // so we can put it in a comdat. |
| assert(G->hasLocalLinkage()); |
| G->setName(Twine(kAsanGenPrefix) + "_anon_global"); |
| } |
| |
| if (!InternalSuffix.empty() && G->hasLocalLinkage()) { |
| std::string Name = std::string(G->getName()); |
| Name += InternalSuffix; |
| C = M.getOrInsertComdat(Name); |
| } else { |
| C = M.getOrInsertComdat(G->getName()); |
| } |
| |
| // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private |
| // linkage to internal linkage so that a symbol table entry is emitted. This |
| // is necessary in order to create the comdat group. |
| if (TargetTriple.isOSBinFormatCOFF()) { |
| C->setSelectionKind(Comdat::NoDeduplicate); |
| if (G->hasPrivateLinkage()) |
| G->setLinkage(GlobalValue::InternalLinkage); |
| } |
| G->setComdat(C); |
| } |
| |
| assert(G->hasComdat()); |
| Metadata->setComdat(G->getComdat()); |
| } |
| |
| // Create a separate metadata global and put it in the appropriate ASan |
| // global registration section. |
| GlobalVariable * |
| ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, |
| StringRef OriginalName) { |
| auto Linkage = TargetTriple.isOSBinFormatMachO() |
| ? GlobalVariable::InternalLinkage |
| : GlobalVariable::PrivateLinkage; |
| GlobalVariable *Metadata = new GlobalVariable( |
| M, Initializer->getType(), false, Linkage, Initializer, |
| Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); |
| Metadata->setSection(getGlobalMetadataSection()); |
| return Metadata; |
| } |
| |
| Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { |
| AsanDtorFunction = Function::createWithDefaultAttr( |
| FunctionType::get(Type::getVoidTy(*C), false), |
| GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); |
| AsanDtorFunction->addFnAttr(Attribute::NoUnwind); |
| // Ensure Dtor cannot be discarded, even if in a comdat. |
| appendToUsed(M, {AsanDtorFunction}); |
| BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); |
| |
| return ReturnInst::Create(*C, AsanDtorBB); |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsCOFF( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| auto &DL = M.getDataLayout(); |
| |
| SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
| for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| Constant *Initializer = MetadataInitializers[i]; |
| GlobalVariable *G = ExtendedGlobals[i]; |
| GlobalVariable *Metadata = |
| CreateMetadataGlobal(M, Initializer, G->getName()); |
| MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); |
| Metadata->setMetadata(LLVMContext::MD_associated, MD); |
| MetadataGlobals[i] = Metadata; |
| |
| // The MSVC linker always inserts padding when linking incrementally. We |
| // cope with that by aligning each struct to its size, which must be a power |
| // of two. |
| unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); |
| assert(isPowerOf2_32(SizeOfGlobalStruct) && |
| "global metadata will not be padded appropriately"); |
| Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); |
| |
| SetComdatForGlobalMetadata(G, Metadata, ""); |
| } |
| |
| // Update llvm.compiler.used, adding the new metadata globals. This is |
| // needed so that during LTO these variables stay alive. |
| if (!MetadataGlobals.empty()) |
| appendToCompilerUsed(M, MetadataGlobals); |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsELF( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers, |
| const std::string &UniqueModuleId) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| |
| // Putting globals in a comdat changes the semantic and potentially cause |
| // false negative odr violations at link time. If odr indicators are used, we |
| // keep the comdat sections, as link time odr violations will be dectected on |
| // the odr indicator symbols. |
| bool UseComdatForGlobalsGC = UseOdrIndicator; |
| |
| SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
| for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| GlobalVariable *G = ExtendedGlobals[i]; |
| GlobalVariable *Metadata = |
| CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); |
| MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); |
| Metadata->setMetadata(LLVMContext::MD_associated, MD); |
| MetadataGlobals[i] = Metadata; |
| |
| if (UseComdatForGlobalsGC) |
| SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); |
| } |
| |
| // Update llvm.compiler.used, adding the new metadata globals. This is |
| // needed so that during LTO these variables stay alive. |
| if (!MetadataGlobals.empty()) |
| appendToCompilerUsed(M, MetadataGlobals); |
| |
| // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
| // to look up the loaded image that contains it. Second, we can store in it |
| // whether registration has already occurred, to prevent duplicate |
| // registration. |
| // |
| // Common linkage ensures that there is only one global per shared library. |
| GlobalVariable *RegisteredFlag = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::CommonLinkage, |
| ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); |
| RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
| |
| // Create start and stop symbols. |
| GlobalVariable *StartELFMetadata = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
| "__start_" + getGlobalMetadataSection()); |
| StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
| GlobalVariable *StopELFMetadata = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
| "__stop_" + getGlobalMetadataSection()); |
| StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
| |
| // Create a call to register the globals with the runtime. |
| IRB.CreateCall(AsanRegisterElfGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), |
| IRB.CreatePointerCast(StartELFMetadata, IntptrTy), |
| IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); |
| |
| // We also need to unregister globals at the end, e.g., when a shared library |
| // gets closed. |
| if (DestructorKind != AsanDtorKind::None) { |
| IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); |
| IrbDtor.CreateCall(AsanUnregisterElfGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), |
| IRB.CreatePointerCast(StartELFMetadata, IntptrTy), |
| IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); |
| } |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsMachO( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| |
| // On recent Mach-O platforms, use a structure which binds the liveness of |
| // the global variable to the metadata struct. Keep the list of "Liveness" GV |
| // created to be added to llvm.compiler.used |
| StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); |
| SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); |
| |
| for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| Constant *Initializer = MetadataInitializers[i]; |
| GlobalVariable *G = ExtendedGlobals[i]; |
| GlobalVariable *Metadata = |
| CreateMetadataGlobal(M, Initializer, G->getName()); |
| |
| // On recent Mach-O platforms, we emit the global metadata in a way that |
| // allows the linker to properly strip dead globals. |
| auto LivenessBinder = |
| ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), |
| ConstantExpr::getPointerCast(Metadata, IntptrTy)); |
| GlobalVariable *Liveness = new GlobalVariable( |
| M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, |
| Twine("__asan_binder_") + G->getName()); |
| Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); |
| LivenessGlobals[i] = Liveness; |
| } |
| |
| // Update llvm.compiler.used, adding the new liveness globals. This is |
| // needed so that during LTO these variables stay alive. The alternative |
| // would be to have the linker handling the LTO symbols, but libLTO |
| // current API does not expose access to the section for each symbol. |
| if (!LivenessGlobals.empty()) |
| appendToCompilerUsed(M, LivenessGlobals); |
| |
| // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
| // to look up the loaded image that contains it. Second, we can store in it |
| // whether registration has already occurred, to prevent duplicate |
| // registration. |
| // |
| // common linkage ensures that there is only one global per shared library. |
| GlobalVariable *RegisteredFlag = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::CommonLinkage, |
| ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); |
| RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
| |
| IRB.CreateCall(AsanRegisterImageGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); |
| |
| // We also need to unregister globals at the end, e.g., when a shared library |
| // gets closed. |
| if (DestructorKind != AsanDtorKind::None) { |
| IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); |
| IrbDtor.CreateCall(AsanUnregisterImageGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); |
| } |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| unsigned N = ExtendedGlobals.size(); |
| assert(N > 0); |
| |
| // On platforms that don't have a custom metadata section, we emit an array |
| // of global metadata structures. |
| ArrayType *ArrayOfGlobalStructTy = |
| ArrayType::get(MetadataInitializers[0]->getType(), N); |
| auto AllGlobals = new GlobalVariable( |
| M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, |
| ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); |
| if (Mapping.Scale > 3) |
| AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); |
| |
| IRB.CreateCall(AsanRegisterGlobals, |
| {IRB.CreatePointerCast(AllGlobals, IntptrTy), |
| ConstantInt::get(IntptrTy, N)}); |
| |
| // We also need to unregister globals at the end, e.g., when a shared library |
| // gets closed. |
| if (DestructorKind != AsanDtorKind::None) { |
| IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); |
| IrbDtor.CreateCall(AsanUnregisterGlobals, |
| {IRB.CreatePointerCast(AllGlobals, IntptrTy), |
| ConstantInt::get(IntptrTy, N)}); |
| } |
| } |
| |
| // This function replaces all global variables with new variables that have |
| // trailing redzones. It also creates a function that poisons |
| // redzones and inserts this function into llvm.global_ctors. |
| // Sets *CtorComdat to true if the global registration code emitted into the |
| // asan constructor is comdat-compatible. |
| bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, |
| bool *CtorComdat) { |
| *CtorComdat = false; |
| |
| // Build set of globals that are aliased by some GA, where |
| // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. |
| SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; |
| if (CompileKernel) { |
| for (auto &GA : M.aliases()) { |
| if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) |
| AliasedGlobalExclusions.insert(GV); |
| } |
| } |
| |
| SmallVector<GlobalVariable *, 16> GlobalsToChange; |
| for (auto &G : M.globals()) { |
| if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) |
| GlobalsToChange.push_back(&G); |
| } |
| |
| size_t n = GlobalsToChange.size(); |
| if (n == 0) { |
| *CtorComdat = true; |
| return false; |
| } |
| |
| auto &DL = M.getDataLayout(); |
| |
| // A global is described by a structure |
| // size_t beg; |
| // size_t size; |
| // size_t size_with_redzone; |
| // const char *name; |
| // const char *module_name; |
| // size_t has_dynamic_init; |
| // void *source_location; |
| // size_t odr_indicator; |
| // We initialize an array of such structures and pass it to a run-time call. |
| StructType *GlobalStructTy = |
| StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, |
| IntptrTy, IntptrTy, IntptrTy); |
| SmallVector<GlobalVariable *, 16> NewGlobals(n); |
| SmallVector<Constant *, 16> Initializers(n); |
| |
| bool HasDynamicallyInitializedGlobals = false; |
| |
| // We shouldn't merge same module names, as this string serves as unique |
| // module ID in runtime. |
| GlobalVariable *ModuleName = createPrivateGlobalForString( |
| M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); |
| |
| for (size_t i = 0; i < n; i++) { |
| GlobalVariable *G = GlobalsToChange[i]; |
| |
| // FIXME: Metadata should be attched directly to the global directly instead |
| // of being added to llvm.asan.globals. |
| auto MD = GlobalsMD.get(G); |
| StringRef NameForGlobal = G->getName(); |
| // Create string holding the global name (use global name from metadata |
| // if it's available, otherwise just write the name of global variable). |
| GlobalVariable *Name = createPrivateGlobalForString( |
| M, MD.Name.empty() ? NameForGlobal : MD.Name, |
| /*AllowMerging*/ true, kAsanGenPrefix); |
| |
| Type *Ty = G->getValueType(); |
| const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); |
| const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); |
| Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); |
| |
| StructType *NewTy = StructType::get(Ty, RightRedZoneTy); |
| Constant *NewInitializer = ConstantStruct::get( |
| NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); |
| |
| // Create a new global variable with enough space for a redzone. |
| GlobalValue::LinkageTypes Linkage = G->getLinkage(); |
| if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) |
| Linkage = GlobalValue::InternalLinkage; |
| GlobalVariable *NewGlobal = new GlobalVariable( |
| M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, |
| G->getThreadLocalMode(), G->getAddressSpace()); |
| NewGlobal->copyAttributesFrom(G); |
| NewGlobal->setComdat(G->getComdat()); |
| NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); |
| // Don't fold globals with redzones. ODR violation detector and redzone |
| // poisoning implicitly creates a dependence on the global's address, so it |
| // is no longer valid for it to be marked unnamed_addr. |
| NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); |
| |
| // Move null-terminated C strings to "__asan_cstring" section on Darwin. |
| if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && |
| G->isConstant()) { |
| auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); |
| if (Seq && Seq->isCString()) |
| NewGlobal->setSection("__TEXT,__asan_cstring,regular"); |
| } |
| |
| // Transfer the debug info and type metadata. The payload starts at offset |
| // zero so we can copy the metadata over as is. |
| NewGlobal->copyMetadata(G, 0); |
| |
| Value *Indices2[2]; |
| Indices2[0] = IRB.getInt32(0); |
| Indices2[1] = IRB.getInt32(0); |
| |
| G->replaceAllUsesWith( |
| ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); |
| NewGlobal->takeName(G); |
| G->eraseFromParent(); |
| NewGlobals[i] = NewGlobal; |
| |
| Constant *SourceLoc; |
| if (!MD.SourceLoc.empty()) { |
| auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); |
| SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); |
| } else { |
| SourceLoc = ConstantInt::get(IntptrTy, 0); |
| } |
| |
| Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); |
| GlobalValue *InstrumentedGlobal = NewGlobal; |
| |
| bool CanUsePrivateAliases = |
| TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || |
| TargetTriple.isOSBinFormatWasm(); |
| if (CanUsePrivateAliases && UsePrivateAlias) { |
| // Create local alias for NewGlobal to avoid crash on ODR between |
| // instrumented and non-instrumented libraries. |
| InstrumentedGlobal = |
| GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); |
| } |
| |
| // ODR should not happen for local linkage. |
| if (NewGlobal->hasLocalLinkage()) { |
| ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), |
| IRB.getInt8PtrTy()); |
| } else if (UseOdrIndicator) { |
| // With local aliases, we need to provide another externally visible |
| // symbol __odr_asan_XXX to detect ODR violation. |
| auto *ODRIndicatorSym = |
| new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, |
| Constant::getNullValue(IRB.getInt8Ty()), |
| kODRGenPrefix + NameForGlobal, nullptr, |
| NewGlobal->getThreadLocalMode()); |
| |
| // Set meaningful attributes for indicator symbol. |
| ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); |
| ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); |
| ODRIndicatorSym->setAlignment(Align(1)); |
| ODRIndicator = ODRIndicatorSym; |
| } |
| |
| Constant *Initializer = ConstantStruct::get( |
| GlobalStructTy, |
| ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), |
| ConstantInt::get(IntptrTy, SizeInBytes), |
| ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), |
| ConstantExpr::getPointerCast(Name, IntptrTy), |
| ConstantExpr::getPointerCast(ModuleName, IntptrTy), |
| ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, |
| ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); |
| |
| if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; |
| |
| LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); |
|