| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // InstructionCombining - Combine instructions to form fewer, simple |
| // instructions. This pass does not modify the CFG. This pass is where |
| // algebraic simplification happens. |
| // |
| // This pass combines things like: |
| // %Y = add i32 %X, 1 |
| // %Z = add i32 %Y, 1 |
| // into: |
| // %Z = add i32 %X, 2 |
| // |
| // This is a simple worklist driven algorithm. |
| // |
| // This pass guarantees that the following canonicalizations are performed on |
| // the program: |
| // 1. If a binary operator has a constant operand, it is moved to the RHS |
| // 2. Bitwise operators with constant operands are always grouped so that |
| // shifts are performed first, then or's, then and's, then xor's. |
| // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible |
| // 4. All cmp instructions on boolean values are replaced with logical ops |
| // 5. add X, X is represented as (X*2) => (X << 1) |
| // 6. Multiplies with a power-of-two constant argument are transformed into |
| // shifts. |
| // ... etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm-c/Initialization.h" |
| #include "llvm-c/Transforms/InstCombine.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CBindingWrapping.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| STATISTIC(NumWorklistIterations, |
| "Number of instruction combining iterations performed"); |
| |
| STATISTIC(NumCombined , "Number of insts combined"); |
| STATISTIC(NumConstProp, "Number of constant folds"); |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated"); |
| STATISTIC(NumSunkInst , "Number of instructions sunk"); |
| STATISTIC(NumExpand, "Number of expansions"); |
| STATISTIC(NumFactor , "Number of factorizations"); |
| STATISTIC(NumReassoc , "Number of reassociations"); |
| DEBUG_COUNTER(VisitCounter, "instcombine-visit", |
| "Controls which instructions are visited"); |
| |
| // FIXME: these limits eventually should be as low as 2. |
| static constexpr unsigned InstCombineDefaultMaxIterations = 1000; |
| #ifndef NDEBUG |
| static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; |
| #else |
| static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; |
| #endif |
| |
| static cl::opt<bool> |
| EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), |
| cl::init(true)); |
| |
| static cl::opt<unsigned> LimitMaxIterations( |
| "instcombine-max-iterations", |
| cl::desc("Limit the maximum number of instruction combining iterations"), |
| cl::init(InstCombineDefaultMaxIterations)); |
| |
| static cl::opt<unsigned> InfiniteLoopDetectionThreshold( |
| "instcombine-infinite-loop-threshold", |
| cl::desc("Number of instruction combining iterations considered an " |
| "infinite loop"), |
| cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); |
| |
| static cl::opt<unsigned> |
| MaxArraySize("instcombine-maxarray-size", cl::init(1024), |
| cl::desc("Maximum array size considered when doing a combine")); |
| |
| // FIXME: Remove this flag when it is no longer necessary to convert |
| // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false |
| // increases variable availability at the cost of accuracy. Variables that |
| // cannot be promoted by mem2reg or SROA will be described as living in memory |
| // for their entire lifetime. However, passes like DSE and instcombine can |
| // delete stores to the alloca, leading to misleading and inaccurate debug |
| // information. This flag can be removed when those passes are fixed. |
| static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", |
| cl::Hidden, cl::init(true)); |
| |
| Optional<Instruction *> |
| InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { |
| // Handle target specific intrinsics |
| if (II.getCalledFunction()->isTargetIntrinsic()) { |
| return TTI.instCombineIntrinsic(*this, II); |
| } |
| return None; |
| } |
| |
| Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( |
| IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, |
| bool &KnownBitsComputed) { |
| // Handle target specific intrinsics |
| if (II.getCalledFunction()->isTargetIntrinsic()) { |
| return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, |
| KnownBitsComputed); |
| } |
| return None; |
| } |
| |
| Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( |
| IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, |
| APInt &UndefElts3, |
| std::function<void(Instruction *, unsigned, APInt, APInt &)> |
| SimplifyAndSetOp) { |
| // Handle target specific intrinsics |
| if (II.getCalledFunction()->isTargetIntrinsic()) { |
| return TTI.simplifyDemandedVectorEltsIntrinsic( |
| *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, |
| SimplifyAndSetOp); |
| } |
| return None; |
| } |
| |
| Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { |
| return llvm::EmitGEPOffset(&Builder, DL, GEP); |
| } |
| |
| /// Legal integers and common types are considered desirable. This is used to |
| /// avoid creating instructions with types that may not be supported well by the |
| /// the backend. |
| /// NOTE: This treats i8, i16 and i32 specially because they are common |
| /// types in frontend languages. |
| bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { |
| switch (BitWidth) { |
| case 8: |
| case 16: |
| case 32: |
| return true; |
| default: |
| return DL.isLegalInteger(BitWidth); |
| } |
| } |
| |
| /// Return true if it is desirable to convert an integer computation from a |
| /// given bit width to a new bit width. |
| /// We don't want to convert from a legal to an illegal type or from a smaller |
| /// to a larger illegal type. A width of '1' is always treated as a desirable |
| /// type because i1 is a fundamental type in IR, and there are many specialized |
| /// optimizations for i1 types. Common/desirable widths are equally treated as |
| /// legal to convert to, in order to open up more combining opportunities. |
| bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, |
| unsigned ToWidth) const { |
| bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); |
| bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); |
| |
| // Convert to desirable widths even if they are not legal types. |
| // Only shrink types, to prevent infinite loops. |
| if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) |
| return true; |
| |
| // If this is a legal integer from type, and the result would be an illegal |
| // type, don't do the transformation. |
| if (FromLegal && !ToLegal) |
| return false; |
| |
| // Otherwise, if both are illegal, do not increase the size of the result. We |
| // do allow things like i160 -> i64, but not i64 -> i160. |
| if (!FromLegal && !ToLegal && ToWidth > FromWidth) |
| return false; |
| |
| return true; |
| } |
| |
| /// Return true if it is desirable to convert a computation from 'From' to 'To'. |
| /// We don't want to convert from a legal to an illegal type or from a smaller |
| /// to a larger illegal type. i1 is always treated as a legal type because it is |
| /// a fundamental type in IR, and there are many specialized optimizations for |
| /// i1 types. |
| bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { |
| // TODO: This could be extended to allow vectors. Datalayout changes might be |
| // needed to properly support that. |
| if (!From->isIntegerTy() || !To->isIntegerTy()) |
| return false; |
| |
| unsigned FromWidth = From->getPrimitiveSizeInBits(); |
| unsigned ToWidth = To->getPrimitiveSizeInBits(); |
| return shouldChangeType(FromWidth, ToWidth); |
| } |
| |
| // Return true, if No Signed Wrap should be maintained for I. |
| // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", |
| // where both B and C should be ConstantInts, results in a constant that does |
| // not overflow. This function only handles the Add and Sub opcodes. For |
| // all other opcodes, the function conservatively returns false. |
| static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { |
| auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| if (!OBO || !OBO->hasNoSignedWrap()) |
| return false; |
| |
| // We reason about Add and Sub Only. |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| if (Opcode != Instruction::Add && Opcode != Instruction::Sub) |
| return false; |
| |
| const APInt *BVal, *CVal; |
| if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) |
| return false; |
| |
| bool Overflow = false; |
| if (Opcode == Instruction::Add) |
| (void)BVal->sadd_ov(*CVal, Overflow); |
| else |
| (void)BVal->ssub_ov(*CVal, Overflow); |
| |
| return !Overflow; |
| } |
| |
| static bool hasNoUnsignedWrap(BinaryOperator &I) { |
| auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| return OBO && OBO->hasNoUnsignedWrap(); |
| } |
| |
| static bool hasNoSignedWrap(BinaryOperator &I) { |
| auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| return OBO && OBO->hasNoSignedWrap(); |
| } |
| |
| /// Conservatively clears subclassOptionalData after a reassociation or |
| /// commutation. We preserve fast-math flags when applicable as they can be |
| /// preserved. |
| static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { |
| FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); |
| if (!FPMO) { |
| I.clearSubclassOptionalData(); |
| return; |
| } |
| |
| FastMathFlags FMF = I.getFastMathFlags(); |
| I.clearSubclassOptionalData(); |
| I.setFastMathFlags(FMF); |
| } |
| |
| /// Combine constant operands of associative operations either before or after a |
| /// cast to eliminate one of the associative operations: |
| /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) |
| /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) |
| static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, |
| InstCombinerImpl &IC) { |
| auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); |
| if (!Cast || !Cast->hasOneUse()) |
| return false; |
| |
| // TODO: Enhance logic for other casts and remove this check. |
| auto CastOpcode = Cast->getOpcode(); |
| if (CastOpcode != Instruction::ZExt) |
| return false; |
| |
| // TODO: Enhance logic for other BinOps and remove this check. |
| if (!BinOp1->isBitwiseLogicOp()) |
| return false; |
| |
| auto AssocOpcode = BinOp1->getOpcode(); |
| auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); |
| if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) |
| return false; |
| |
| Constant *C1, *C2; |
| if (!match(BinOp1->getOperand(1), m_Constant(C1)) || |
| !match(BinOp2->getOperand(1), m_Constant(C2))) |
| return false; |
| |
| // TODO: This assumes a zext cast. |
| // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 |
| // to the destination type might lose bits. |
| |
| // Fold the constants together in the destination type: |
| // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) |
| Type *DestTy = C1->getType(); |
| Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); |
| Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); |
| IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); |
| IC.replaceOperand(*BinOp1, 1, FoldedC); |
| return true; |
| } |
| |
| // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. |
| // inttoptr ( ptrtoint (x) ) --> x |
| Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { |
| auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); |
| if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == |
| DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { |
| auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); |
| Type *CastTy = IntToPtr->getDestTy(); |
| if (PtrToInt && |
| CastTy->getPointerAddressSpace() == |
| PtrToInt->getSrcTy()->getPointerAddressSpace() && |
| DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == |
| DL.getTypeSizeInBits(PtrToInt->getDestTy())) { |
| return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, |
| "", PtrToInt); |
| } |
| } |
| return nullptr; |
| } |
| |
| /// This performs a few simplifications for operators that are associative or |
| /// commutative: |
| /// |
| /// Commutative operators: |
| /// |
| /// 1. Order operands such that they are listed from right (least complex) to |
| /// left (most complex). This puts constants before unary operators before |
| /// binary operators. |
| /// |
| /// Associative operators: |
| /// |
| /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. |
| /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. |
| /// |
| /// Associative and commutative operators: |
| /// |
| /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. |
| /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. |
| /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" |
| /// if C1 and C2 are constants. |
| bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| bool Changed = false; |
| |
| do { |
| // Order operands such that they are listed from right (least complex) to |
| // left (most complex). This puts constants before unary operators before |
| // binary operators. |
| if (I.isCommutative() && getComplexity(I.getOperand(0)) < |
| getComplexity(I.getOperand(1))) |
| Changed = !I.swapOperands(); |
| |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); |
| |
| if (I.isAssociative()) { |
| // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = I.getOperand(1); |
| |
| // Does "B op C" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "A op V". |
| replaceOperand(I, 0, A); |
| replaceOperand(I, 1, V); |
| bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); |
| bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); |
| |
| // Conservatively clear all optional flags since they may not be |
| // preserved by the reassociation. Reset nsw/nuw based on the above |
| // analysis. |
| ClearSubclassDataAfterReassociation(I); |
| |
| // Note: this is only valid because SimplifyBinOp doesn't look at |
| // the operands to Op0. |
| if (IsNUW) |
| I.setHasNoUnsignedWrap(true); |
| |
| if (IsNSW) |
| I.setHasNoSignedWrap(true); |
| |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = I.getOperand(0); |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "A op B" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "V op C". |
| replaceOperand(I, 0, V); |
| replaceOperand(I, 1, C); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| } |
| |
| if (I.isAssociative() && I.isCommutative()) { |
| if (simplifyAssocCastAssoc(&I, *this)) { |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| |
| // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = I.getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "V op B". |
| replaceOperand(I, 0, V); |
| replaceOperand(I, 1, B); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = I.getOperand(0); |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "B op V". |
| replaceOperand(I, 0, B); |
| replaceOperand(I, 1, V); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" |
| // if C1 and C2 are constants. |
| Value *A, *B; |
| Constant *C1, *C2; |
| if (Op0 && Op1 && |
| Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && |
| match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && |
| match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { |
| bool IsNUW = hasNoUnsignedWrap(I) && |
| hasNoUnsignedWrap(*Op0) && |
| hasNoUnsignedWrap(*Op1); |
| BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? |
| BinaryOperator::CreateNUW(Opcode, A, B) : |
| BinaryOperator::Create(Opcode, A, B); |
| |
| if (isa<FPMathOperator>(NewBO)) { |
| FastMathFlags Flags = I.getFastMathFlags(); |
| Flags &= Op0->getFastMathFlags(); |
| Flags &= Op1->getFastMathFlags(); |
| NewBO->setFastMathFlags(Flags); |
| } |
| InsertNewInstWith(NewBO, I); |
| NewBO->takeName(Op1); |
| replaceOperand(I, 0, NewBO); |
| replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| if (IsNUW) |
| I.setHasNoUnsignedWrap(true); |
| |
| Changed = true; |
| continue; |
| } |
| } |
| |
| // No further simplifications. |
| return Changed; |
| } while (true); |
| } |
| |
| /// Return whether "X LOp (Y ROp Z)" is always equal to |
| /// "(X LOp Y) ROp (X LOp Z)". |
| static bool leftDistributesOverRight(Instruction::BinaryOps LOp, |
| Instruction::BinaryOps ROp) { |
| // X & (Y | Z) <--> (X & Y) | (X & Z) |
| // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) |
| if (LOp == Instruction::And) |
| return ROp == Instruction::Or || ROp == Instruction::Xor; |
| |
| // X | (Y & Z) <--> (X | Y) & (X | Z) |
| if (LOp == Instruction::Or) |
| return ROp == Instruction::And; |
| |
| // X * (Y + Z) <--> (X * Y) + (X * Z) |
| // X * (Y - Z) <--> (X * Y) - (X * Z) |
| if (LOp == Instruction::Mul) |
| return ROp == Instruction::Add || ROp == Instruction::Sub; |
| |
| return false; |
| } |
| |
| /// Return whether "(X LOp Y) ROp Z" is always equal to |
| /// "(X ROp Z) LOp (Y ROp Z)". |
| static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, |
| Instruction::BinaryOps ROp) { |
| if (Instruction::isCommutative(ROp)) |
| return leftDistributesOverRight(ROp, LOp); |
| |
| // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. |
| return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); |
| |
| // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", |
| // but this requires knowing that the addition does not overflow and other |
| // such subtleties. |
| } |
| |
| /// This function returns identity value for given opcode, which can be used to |
| /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). |
| static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { |
| if (isa<Constant>(V)) |
| return nullptr; |
| |
| return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); |
| } |
| |
| /// This function predicates factorization using distributive laws. By default, |
| /// it just returns the 'Op' inputs. But for special-cases like |
| /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add |
| /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to |
| /// allow more factorization opportunities. |
| static Instruction::BinaryOps |
| getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, |
| Value *&LHS, Value *&RHS) { |
| assert(Op && "Expected a binary operator"); |
| LHS = Op->getOperand(0); |
| RHS = Op->getOperand(1); |
| if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { |
| Constant *C; |
| if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { |
| // X << C --> X * (1 << C) |
| RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); |
| return Instruction::Mul; |
| } |
| // TODO: We can add other conversions e.g. shr => div etc. |
| } |
| return Op->getOpcode(); |
| } |
| |
| /// This tries to simplify binary operations by factorizing out common terms |
| /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). |
| Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, |
| Instruction::BinaryOps InnerOpcode, |
| Value *A, Value *B, Value *C, |
| Value *D) { |
| assert(A && B && C && D && "All values must be provided"); |
| |
| Value *V = nullptr; |
| Value *SimplifiedInst = nullptr; |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| |
| // Does "X op' Y" always equal "Y op' X"? |
| bool InnerCommutative = Instruction::isCommutative(InnerOpcode); |
| |
| // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? |
| if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) |
| // Does the instruction have the form "(A op' B) op (A op' D)" or, in the |
| // commutative case, "(A op' B) op (C op' A)"? |
| if (A == C || (InnerCommutative && A == D)) { |
| if (A != C) |
| std::swap(C, D); |
| // Consider forming "A op' (B op D)". |
| // If "B op D" simplifies then it can be formed with no cost. |
| V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); |
| // If "B op D" doesn't simplify then only go on if both of the existing |
| // operations "A op' B" and "C op' D" will be zapped as no longer used. |
| if (!V && LHS->hasOneUse() && RHS->hasOneUse()) |
| V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); |
| if (V) { |
| SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); |
| } |
| } |
| |
| // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? |
| if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) |
| // Does the instruction have the form "(A op' B) op (C op' B)" or, in the |
| // commutative case, "(A op' B) op (B op' D)"? |
| if (B == D || (InnerCommutative && B == C)) { |
| if (B != D) |
| std::swap(C, D); |
| // Consider forming "(A op C) op' B". |
| // If "A op C" simplifies then it can be formed with no cost. |
| V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); |
| |
| // If "A op C" doesn't simplify then only go on if both of the existing |
| // operations "A op' B" and "C op' D" will be zapped as no longer used. |
| if (!V && LHS->hasOneUse() && RHS->hasOneUse()) |
| V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); |
| if (V) { |
| SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); |
| } |
| } |
| |
| if (SimplifiedInst) { |
| ++NumFactor; |
| SimplifiedInst->takeName(&I); |
| |
| // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { |
| if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { |
| bool HasNSW = false; |
| bool HasNUW = false; |
| if (isa<OverflowingBinaryOperator>(&I)) { |
| HasNSW = I.hasNoSignedWrap(); |
| HasNUW = I.hasNoUnsignedWrap(); |
| } |
| |
| if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { |
| HasNSW &= LOBO->hasNoSignedWrap(); |
| HasNUW &= LOBO->hasNoUnsignedWrap(); |
| } |
| |
| if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { |
| HasNSW &= ROBO->hasNoSignedWrap(); |
| HasNUW &= ROBO->hasNoUnsignedWrap(); |
| } |
| |
| if (TopLevelOpcode == Instruction::Add && |
| InnerOpcode == Instruction::Mul) { |
| // We can propagate 'nsw' if we know that |
| // %Y = mul nsw i16 %X, C |
| // %Z = add nsw i16 %Y, %X |
| // => |
| // %Z = mul nsw i16 %X, C+1 |
| // |
| // iff C+1 isn't INT_MIN |
| const APInt *CInt; |
| if (match(V, m_APInt(CInt))) { |
| if (!CInt->isMinSignedValue()) |
| BO->setHasNoSignedWrap(HasNSW); |
| } |
| |
| // nuw can be propagated with any constant or nuw value. |
| BO->setHasNoUnsignedWrap(HasNUW); |
| } |
| } |
| } |
| } |
| return SimplifiedInst; |
| } |
| |
| /// This tries to simplify binary operations which some other binary operation |
| /// distributes over either by factorizing out common terms |
| /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in |
| /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). |
| /// Returns the simplified value, or null if it didn't simplify. |
| Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| |
| { |
| // Factorization. |
| Value *A, *B, *C, *D; |
| Instruction::BinaryOps LHSOpcode, RHSOpcode; |
| if (Op0) |
| LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); |
| if (Op1) |
| RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); |
| |
| // The instruction has the form "(A op' B) op (C op' D)". Try to factorize |
| // a common term. |
| if (Op0 && Op1 && LHSOpcode == RHSOpcode) |
| if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) |
| return V; |
| |
| // The instruction has the form "(A op' B) op (C)". Try to factorize common |
| // term. |
| if (Op0) |
| if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) |
| if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) |
| return V; |
| |
| // The instruction has the form "(B) op (C op' D)". Try to factorize common |
| // term. |
| if (Op1) |
| if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) |
| if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) |
| return V; |
| } |
| |
| // Expansion. |
| if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { |
| // The instruction has the form "(A op' B) op C". See if expanding it out |
| // to "(A op C) op' (B op C)" results in simplifications. |
| Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; |
| Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' |
| |
| // Disable the use of undef because it's not safe to distribute undef. |
| auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); |
| Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); |
| Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); |
| |
| // Do "A op C" and "B op C" both simplify? |
| if (L && R) { |
| // They do! Return "L op' R". |
| ++NumExpand; |
| C = Builder.CreateBinOp(InnerOpcode, L, R); |
| C->takeName(&I); |
| return C; |
| } |
| |
| // Does "A op C" simplify to the identity value for the inner opcode? |
| if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { |
| // They do! Return "B op C". |
| ++NumExpand; |
| C = Builder.CreateBinOp(TopLevelOpcode, B, C); |
| C->takeName(&I); |
| return C; |
| } |
| |
| // Does "B op C" simplify to the identity value for the inner opcode? |
| if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { |
| // They do! Return "A op C". |
| ++NumExpand; |
| C = Builder.CreateBinOp(TopLevelOpcode, A, C); |
| C->takeName(&I); |
| return C; |
| } |
| } |
| |
| if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { |
| // The instruction has the form "A op (B op' C)". See if expanding it out |
| // to "(A op B) op' (A op C)" results in simplifications. |
| Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); |
| Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' |
| |
| // Disable the use of undef because it's not safe to distribute undef. |
| auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); |
| Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); |
| Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); |
| |
| // Do "A op B" and "A op C" both simplify? |
| if (L && R) { |
| // They do! Return "L op' R". |
| ++NumExpand; |
| A = Builder.CreateBinOp(InnerOpcode, L, R); |
| A->takeName(&I); |
| return A; |
| } |
| |
| // Does "A op B" simplify to the identity value for the inner opcode? |
| if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { |
| // They do! Return "A op C". |
| ++NumExpand; |
| A = Builder.CreateBinOp(TopLevelOpcode, A, C); |
| A->takeName(&I); |
| return A; |
| } |
| |
| // Does "A op C" simplify to the identity value for the inner opcode? |
| if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { |
| // They do! Return "A op B". |
| ++NumExpand; |
| A = Builder.CreateBinOp(TopLevelOpcode, A, B); |
| A->takeName(&I); |
| return A; |
| } |
| } |
| |
| return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); |
| } |
| |
| Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, |
| Value *LHS, |
| Value *RHS) { |
| Value *A, *B, *C, *D, *E, *F; |
| bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); |
| bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); |
| if (!LHSIsSelect && !RHSIsSelect) |
| return nullptr; |
| |
| FastMathFlags FMF; |
| BuilderTy::FastMathFlagGuard Guard(Builder); |
| if (isa<FPMathOperator>(&I)) { |
| FMF = I.getFastMathFlags(); |
| Builder.setFastMathFlags(FMF); |
| } |
| |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| SimplifyQuery Q = SQ.getWithInstruction(&I); |
| |
| Value *Cond, *True = nullptr, *False = nullptr; |
| if (LHSIsSelect && RHSIsSelect && A == D) { |
| // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) |
| Cond = A; |
| True = SimplifyBinOp(Opcode, B, E, FMF, Q); |
| False = SimplifyBinOp(Opcode, C, F, FMF, Q); |
| |
| if (LHS->hasOneUse() && RHS->hasOneUse()) { |
| if (False && !True) |
| True = Builder.CreateBinOp(Opcode, B, E); |
| else if (True && !False) |
| False = Builder.CreateBinOp(Opcode, C, F); |
| } |
| } else if (LHSIsSelect && LHS->hasOneUse()) { |
| // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) |
| Cond = A; |
| True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); |
| False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); |
| } else if (RHSIsSelect && RHS->hasOneUse()) { |
| // X op (D ? E : F) -> D ? (X op E) : (X op F) |
| Cond = D; |
| True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); |
| False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); |
| } |
| |
| if (!True || !False) |
| return nullptr; |
| |
| Value *SI = Builder.CreateSelect(Cond, True, False); |
| SI->takeName(&I); |
| return SI; |
| } |
| |
| /// Freely adapt every user of V as-if V was changed to !V. |
| /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. |
| void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { |
| for (User *U : I->users()) { |
| switch (cast<Instruction>(U)->getOpcode()) { |
| case Instruction::Select: { |
| auto *SI = cast<SelectInst>(U); |
| SI->swapValues(); |
| SI->swapProfMetadata(); |
| break; |
| } |
| case Instruction::Br: |
| cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too |
| break; |
| case Instruction::Xor: |
| replaceInstUsesWith(cast<Instruction>(*U), I); |
| break; |
| default: |
| llvm_unreachable("Got unexpected user - out of sync with " |
| "canFreelyInvertAllUsersOf() ?"); |
| } |
| } |
| } |
| |
| /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a |
| /// constant zero (which is the 'negate' form). |
| Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { |
| Value *NegV; |
| if (match(V, m_Neg(m_Value(NegV)))) |
| return NegV; |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(V)) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) |
| if (C->getType()->getElementType()->isIntegerTy()) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { |
| for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| Constant *Elt = CV->getAggregateElement(i); |
| if (!Elt) |
| return nullptr; |
| |
| if (isa<UndefValue>(Elt)) |
| continue; |
| |
| if (!isa<ConstantInt>(Elt)) |
| return nullptr; |
| } |
| return ConstantExpr::getNeg(CV); |
| } |
| |
| // Negate integer vector splats. |
| if (auto *CV = dyn_cast<Constant>(V)) |
| if (CV->getType()->isVectorTy() && |
| CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) |
| return ConstantExpr::getNeg(CV); |
| |
| return nullptr; |
| } |
| |
| /// A binop with a constant operand and a sign-extended boolean operand may be |
| /// converted into a select of constants by applying the binary operation to |
| /// the constant with the two possible values of the extended boolean (0 or -1). |
| Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { |
| // TODO: Handle non-commutative binop (constant is operand 0). |
| // TODO: Handle zext. |
| // TODO: Peek through 'not' of cast. |
| Value *BO0 = BO.getOperand(0); |
| Value *BO1 = BO.getOperand(1); |
| Value *X; |
| Constant *C; |
| if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || |
| !X->getType()->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) |
| Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); |
| Constant *Zero = ConstantInt::getNullValue(BO.getType()); |
| Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); |
| Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); |
| return SelectInst::Create(X, TVal, FVal); |
| } |
| |
| static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, |
| InstCombiner::BuilderTy &Builder) { |
| if (auto *Cast = dyn_cast<CastInst>(&I)) |
| return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); |
| |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) { |
| assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && |
| "Expected constant-foldable intrinsic"); |
| Intrinsic::ID IID = II->getIntrinsicID(); |
| if (II->arg_size() == 1) |
| return Builder.CreateUnaryIntrinsic(IID, SO); |
| |
| // This works for real binary ops like min/max (where we always expect the |
| // constant operand to be canonicalized as op1) and unary ops with a bonus |
| // constant argument like ctlz/cttz. |
| // TODO: Handle non-commutative binary intrinsics as below for binops. |
| assert(II->arg_size() == 2 && "Expected binary intrinsic"); |
| assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); |
| return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); |
| } |
| |
| assert(I.isBinaryOp() && "Unexpected opcode for select folding"); |
| |
| // Figure out if the constant is the left or the right argument. |
| bool ConstIsRHS = isa<Constant>(I.getOperand(1)); |
| Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); |
| |
| if (auto *SOC = dyn_cast<Constant>(SO)) { |
| if (ConstIsRHS) |
| return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); |
| return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); |
| } |
| |
| Value *Op0 = SO, *Op1 = ConstOperand; |
| if (!ConstIsRHS) |
| std::swap(Op0, Op1); |
| |
| auto *BO = cast<BinaryOperator>(&I); |
| Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, |
| SO->getName() + ".op"); |
| auto *FPInst = dyn_cast<Instruction>(RI); |
| if (FPInst && isa<FPMathOperator>(FPInst)) |
| FPInst->copyFastMathFlags(BO); |
| return RI; |
| } |
| |
| Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, |
| SelectInst *SI) { |
| // Don't modify shared select instructions. |
| if (!SI->hasOneUse()) |
| return nullptr; |
| |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| if (!(isa<Constant>(TV) || isa<Constant>(FV))) |
| return nullptr; |
| |
| // Bool selects with constant operands can be folded to logical ops. |
| if (SI->getType()->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| // If it's a bitcast involving vectors, make sure it has the same number of |
| // elements on both sides. |
| if (auto *BC = dyn_cast<BitCastInst>(&Op)) { |
| VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); |
| VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); |
| |
| // Verify that either both or neither are vectors. |
| if ((SrcTy == nullptr) != (DestTy == nullptr)) |
| return nullptr; |
| |
| // If vectors, verify that they have the same number of elements. |
| if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) |
| return nullptr; |
| } |
| |
| // Test if a CmpInst instruction is used exclusively by a select as |
| // part of a minimum or maximum operation. If so, refrain from doing |
| // any other folding. This helps out other analyses which understand |
| // non-obfuscated minimum and maximum idioms, such as ScalarEvolution |
| // and CodeGen. And in this case, at least one of the comparison |
| // operands has at least one user besides the compare (the select), |
| // which would often largely negate the benefit of folding anyway. |
| if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { |
| if (CI->hasOneUse()) { |
| Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); |
| |
| // FIXME: This is a hack to avoid infinite looping with min/max patterns. |
| // We have to ensure that vector constants that only differ with |
| // undef elements are treated as equivalent. |
| auto areLooselyEqual = [](Value *A, Value *B) { |
| if (A == B) |
| return true; |
| |
| // Test for vector constants. |
| Constant *ConstA, *ConstB; |
| if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) |
| return false; |
| |
| // TODO: Deal with FP constants? |
| if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) |
| return false; |
| |
| // Compare for equality including undefs as equal. |
| auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); |
| const APInt *C; |
| return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); |
| }; |
| |
| if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || |
| (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) |
| return nullptr; |
| } |
| } |
| |
| Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); |
| Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); |
| return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); |
| } |
| |
| static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, |
| InstCombiner::BuilderTy &Builder) { |
| bool ConstIsRHS = isa<Constant>(I->getOperand(1)); |
| Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); |
| |
| if (auto *InC = dyn_cast<Constant>(InV)) { |
| if (ConstIsRHS) |
| return ConstantExpr::get(I->getOpcode(), InC, C); |
| return ConstantExpr::get(I->getOpcode(), C, InC); |
| } |
| |
| Value *Op0 = InV, *Op1 = C; |
| if (!ConstIsRHS) |
| std::swap(Op0, Op1); |
| |
| Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); |
| auto *FPInst = dyn_cast<Instruction>(RI); |
| if (FPInst && isa<FPMathOperator>(FPInst)) |
| FPInst->copyFastMathFlags(I); |
| return RI; |
| } |
| |
| Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { |
| unsigned NumPHIValues = PN->getNumIncomingValues(); |
| if (NumPHIValues == 0) |
| return nullptr; |
| |
| // We normally only transform phis with a single use. However, if a PHI has |
| // multiple uses and they are all the same operation, we can fold *all* of the |
| // uses into the PHI. |
| if (!PN->hasOneUse()) { |
| // Walk the use list for the instruction, comparing them to I. |
| for (User *U : PN->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| if (UI != &I && !I.isIdenticalTo(UI)) |
| return nullptr; |
| } |
| // Otherwise, we can replace *all* users with the new PHI we form. |
| } |
| |
| // Check to see if all of the operands of the PHI are simple constants |
| // (constantint/constantfp/undef). If there is one non-constant value, |
| // remember the BB it is in. If there is more than one or if *it* is a PHI, |
| // bail out. We don't do arbitrary constant expressions here because moving |
| // their computation can be expensive without a cost model. |
| BasicBlock *NonConstBB = nullptr; |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InVal = PN->getIncomingValue(i); |
| // For non-freeze, require constant operand |
| // For freeze, require non-undef, non-poison operand |
| if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) |
| continue; |
| if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) |
| continue; |
| |
| if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. |
| if (NonConstBB) return nullptr; // More than one non-const value. |
| |
| NonConstBB = PN->getIncomingBlock(i); |
| |
| // If the InVal is an invoke at the end of the pred block, then we can't |
| // insert a computation after it without breaking the edge. |
| if (isa<InvokeInst>(InVal)) |
| if (cast<Instruction>(InVal)->getParent() == NonConstBB) |
| return nullptr; |
| |
| // If the incoming non-constant value is in I's block, we will remove one |
| // instruction, but insert another equivalent one, leading to infinite |
| // instcombine. |
| if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) |
| return nullptr; |
| } |
| |
| // If there is exactly one non-constant value, we can insert a copy of the |
| // operation in that block. However, if this is a critical edge, we would be |
| // inserting the computation on some other paths (e.g. inside a loop). Only |
| // do this if the pred block is unconditionally branching into the phi block. |
| // Also, make sure that the pred block is not dead code. |
| if (NonConstBB != nullptr) { |
| BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); |
| if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) |
| return nullptr; |
| } |
| |
| // Okay, we can do the transformation: create the new PHI node. |
| PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); |
| InsertNewInstBefore(NewPN, *PN); |
| NewPN->takeName(PN); |
| |
| // If we are going to have to insert a new computation, do so right before the |
| // predecessor's terminator. |
| if (NonConstBB) |
| Builder.SetInsertPoint(NonConstBB->getTerminator()); |
| |
| // Next, add all of the operands to the PHI. |
| if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { |
| // We only currently try to fold the condition of a select when it is a phi, |
| // not the true/false values. |
| Value *TrueV = SI->getTrueValue(); |
| Value *FalseV = SI->getFalseValue(); |
| BasicBlock *PhiTransBB = PN->getParent(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| BasicBlock *ThisBB = PN->getIncomingBlock(i); |
| Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *InV = nullptr; |
| // Beware of ConstantExpr: it may eventually evaluate to getNullValue, |
| // even if currently isNullValue gives false. |
| Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); |
| // For vector constants, we cannot use isNullValue to fold into |
| // FalseVInPred versus TrueVInPred. When we have individual nonzero |
| // elements in the vector, we will incorrectly fold InC to |
| // `TrueVInPred`. |
| if (InC && isa<ConstantInt>(InC)) |
| InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; |
| else { |
| // Generate the select in the same block as PN's current incoming block. |
| // Note: ThisBB need not be the NonConstBB because vector constants |
| // which are constants by definition are handled here. |
| // FIXME: This can lead to an increase in IR generation because we might |
| // generate selects for vector constant phi operand, that could not be |
| // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For |
| // non-vector phis, this transformation was always profitable because |
| // the select would be generated exactly once in the NonConstBB. |
| Builder.SetInsertPoint(ThisBB->getTerminator()); |
| InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, |
| FalseVInPred, "phi.sel"); |
| } |
| NewPN->addIncoming(InV, ThisBB); |
| } |
| } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { |
| Constant *C = cast<Constant>(I.getOperand(1)); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV = nullptr; |
| if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) |
| InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); |
| else |
| InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), |
| C, "phi.cmp"); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), |
| Builder); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else if (isa<FreezeInst>(&I)) { |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV; |
| if (NonConstBB == PN->getIncomingBlock(i)) |
| InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); |
| else |
| InV = PN->getIncomingValue(i); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else { |
| CastInst *CI = cast<CastInst>(&I); |
| Type *RetTy = CI->getType(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) |
| InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); |
| else |
| InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), |
| I.getType(), "phi.cast"); |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } |
| |
| for (User *U : make_early_inc_range(PN->users())) { |
| Instruction *User = cast<Instruction>(U); |
| if (User == &I) continue; |
| replaceInstUsesWith(*User, NewPN); |
| eraseInstFromFunction(*User); |
| } |
| return replaceInstUsesWith(I, NewPN); |
| } |
| |
| Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { |
| if (!isa<Constant>(I.getOperand(1))) |
| return nullptr; |
| |
| if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { |
| if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) |
| return NewSel; |
| } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { |
| if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) |
| return NewPhi; |
| } |
| return nullptr; |
| } |
| |
| /// Given a pointer type and a constant offset, determine whether or not there |
| /// is a sequence of GEP indices into the pointed type that will land us at the |
| /// specified offset. If so, fill them into NewIndices and return the resultant |
| /// element type, otherwise return null. |
| Type * |
| InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, |
| SmallVectorImpl<Value *> &NewIndices) { |
| Type *Ty = PtrTy->getElementType(); |
| if (!Ty->isSized()) |
| return nullptr; |
| |
| APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); |
| SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); |
| if (!Offset.isZero()) |
| return nullptr; |
| |
| for (const APInt &Index : Indices) |
| NewIndices.push_back(Builder.getInt(Index)); |
| return Ty; |
| } |
| |
| static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { |
| // If this GEP has only 0 indices, it is the same pointer as |
| // Src. If Src is not a trivial GEP too, don't combine |
| // the indices. |
| if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && |
| !Src.hasOneUse()) |
| return false; |
| return true; |
| } |
| |
| /// Return a value X such that Val = X * Scale, or null if none. |
| /// If the multiplication is known not to overflow, then NoSignedWrap is set. |
| Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { |
| assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); |
| assert(cast<IntegerType>(Val->getType())->getBitWidth() == |
| Scale.getBitWidth() && "Scale not compatible with value!"); |
| |
| // If Val is zero or Scale is one then Val = Val * Scale. |
| if (match(Val, m_Zero()) || Scale == 1) { |
| NoSignedWrap = true; |
| return Val; |
| } |
| |
| // If Scale is zero then it does not divide Val. |
| if (Scale.isMinValue()) |
| return nullptr; |
| |
| // Look through chains of multiplications, searching for a constant that is |
| // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 |
| // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by |
| // a factor of 4 will produce X*(Y*2). The principle of operation is to bore |
| // down from Val: |
| // |
| // Val = M1 * X || Analysis starts here and works down |
| // M1 = M2 * Y || Doesn't descend into terms with more |
| // M2 = Z * 4 \/ than one use |
| // |
| // Then to modify a term at the bottom: |
| // |
| // Val = M1 * X |
| // M1 = Z * Y || Replaced M2 with Z |
| // |
| // Then to work back up correcting nsw flags. |
| |
| // Op - the term we are currently analyzing. Starts at Val then drills down. |
| // Replaced with its descaled value before exiting from the drill down loop. |
| Value *Op = Val; |
| |
| // Parent - initially null, but after drilling down notes where Op came from. |
| // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the |
| // 0'th operand of Val. |
| std::pair<Instruction *, unsigned> Parent; |
| |
| // Set if the transform requires a descaling at deeper levels that doesn't |
| // overflow. |
| bool RequireNoSignedWrap = false; |
| |
| // Log base 2 of the scale. Negative if not a power of 2. |
| int32_t logScale = Scale.exactLogBase2(); |
| |
| for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // If Op is a constant divisible by Scale then descale to the quotient. |
| APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. |
| APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); |
| if (!Remainder.isMinValue()) |
| // Not divisible by Scale. |
| return nullptr; |
| // Replace with the quotient in the parent. |
| Op = ConstantInt::get(CI->getType(), Quotient); |
| NoSignedWrap = true; |
| break; |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { |
| if (BO->getOpcode() == Instruction::Mul) { |
| // Multiplication. |
| NoSignedWrap = BO->hasNoSignedWrap(); |
| if (RequireNoSignedWrap && !NoSignedWrap) |
| return nullptr; |
| |
| // There are three cases for multiplication: multiplication by exactly |
| // the scale, multiplication by a constant different to the scale, and |
| // multiplication by something else. |
| Value *LHS = BO->getOperand(0); |
| Value *RHS = BO->getOperand(1); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // Multiplication by a constant. |
| if (CI->getValue() == Scale) { |
| // Multiplication by exactly the scale, replace the multiplication |
| // by its left-hand side in the parent. |
| Op = LHS; |
| break; |
| } |
| |
| // Otherwise drill down into the constant. |
| if (!Op->hasOneUse()) |
| return nullptr; |
| |
| Parent = std::make_pair(BO, 1); |
| continue; |
| } |
| |
| // Multiplication by something else. Drill down into the left-hand side |
| // since that's where the reassociate pass puts the good stuff. |
| if (!Op->hasOneUse()) |
| return nullptr; |
| |
| Parent = std::make_pair(BO, 0); |
| continue; |
| } |
| |
| if (logScale > 0 && BO->getOpcode() == Instruction::Shl && |
| isa<ConstantInt>(BO->getOperand(1))) { |
| // Multiplication by a power of 2. |
| NoSignedWrap = BO->hasNoSignedWrap(); |
| if (RequireNoSignedWrap && !NoSignedWrap) |
| return nullptr; |
| |
| Value *LHS = BO->getOperand(0); |
| int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> |
| getLimitedValue(Scale.getBitWidth()); |
| // Op = LHS << Amt. |
| |
| if (Amt == logScale) { |
| // Multiplication by exactly the scale, replace the multiplication |
| // by its left-hand side in the parent. |
| Op = LHS; |
| break; |
| } |
| if (Amt < logScale || !Op->hasOneUse()) |
| return nullptr; |
| |
| // Multiplication by more than the scale. Reduce the multiplying amount |
| // by the scale in the parent. |
| Parent = std::make_pair(BO, 1); |
| Op = ConstantInt::get(BO->getType(), Amt - logScale); |
| break; |
| } |
| } |
| |
| if (!Op->hasOneUse()) |
| return nullptr; |
| |
| if (CastInst *Cast = dyn_cast<CastInst>(Op)) { |
| if (Cast->getOpcode() == Instruction::SExt) { |
| // Op is sign-extended from a smaller type, descale in the smaller type. |
| unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); |
| APInt SmallScale = Scale.trunc(SmallSize); |
| // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to |
| // descale Op as (sext Y) * Scale. In order to have |
| // sext (Y * SmallScale) = (sext Y) * Scale |
| // some conditions need to hold however: SmallScale must sign-extend to |
| // Scale and the multiplication Y * SmallScale should not overflow. |
| if (SmallScale.sext(Scale.getBitWidth()) != Scale) |
| // SmallScale does not sign-extend to Scale. |
| return nullptr; |
| assert(SmallScale.exactLogBase2() == logScale); |
| // Require that Y * SmallScale must not overflow. |
| RequireNoSignedWrap = true; |
| |
| // Drill down through the cast. |
| Parent = std::make_pair(Cast, 0); |
| Scale = SmallScale; |
| continue; |
| } |
| |
| if (Cast->getOpcode() == Instruction::Trunc) { |
| // Op is truncated from a larger type, descale in the larger type. |
| // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then |
| // trunc (Y * sext Scale) = (trunc Y) * Scale |
| // always holds. However (trunc Y) * Scale may overflow even if |
| // trunc (Y * sext Scale) does not, so nsw flags need to be cleared |
| // from this point up in the expression (see later). |
| if (RequireNoSignedWrap) |
| return nullptr; |
| |
| // Drill down through the cast. |
| unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); |
| Parent = std::make_pair(Cast, 0); |
| Scale = Scale.sext(LargeSize); |
| if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) |
| logScale = -1; |
| assert(Scale.exactLogBase2() == logScale); |
| continue; |
| } |
| } |
| |
| // Unsupported expression, bail out. |
| return nullptr; |
| } |
| |
| // If Op is zero then Val = Op * Scale. |
| if (match(Op, m_Zero())) { |
| NoSignedWrap = true; |
| return Op; |
| } |
| |
| // We know that we can successfully descale, so from here on we can safely |
| // modify the IR. Op holds the descaled version of the deepest term in the |
| // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known |
| // not to overflow. |
| |
| if (!Parent.first) |
| // The expression only had one term. |
| return Op; |
| |
| // Rewrite the parent using the descaled version of its operand. |
| assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); |
| assert(Op != Parent.first->getOperand(Parent.second) && |
| "Descaling was a no-op?"); |
| replaceOperand(*Parent.first, Parent.second, Op); |
| Worklist.push(Parent.first); |
| |
| // Now work back up the expression correcting nsw flags. The logic is based |
| // on the following observation: if X * Y is known not to overflow as a signed |
| // multiplication, and Y is replaced by a value Z with smaller absolute value, |
| // then X * Z will not overflow as a signed multiplication either. As we work |
| // our way up, having NoSignedWrap 'true' means that the descaled value at the |
| // current level has strictly smaller absolute value than the original. |
| Instruction *Ancestor = Parent.first; |
| do { |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { |
| // If the multiplication wasn't nsw then we can't say anything about the |
| // value of the descaled multiplication, and we have to clear nsw flags |
| // from this point on up. |
| bool OpNoSignedWrap = BO->hasNoSignedWrap(); |
| NoSignedWrap &= OpNoSignedWrap; |
| if (NoSignedWrap != OpNoSignedWrap) { |
| BO->setHasNoSignedWrap(NoSignedWrap); |
| Worklist.push(Ancestor); |
| } |
| } else if (Ancestor->getOpcode() == Instruction::Trunc) { |
| // The fact that the descaled input to the trunc has smaller absolute |
| // value than the original input doesn't tell us anything useful about |
| // the absolute values of the truncations. |
| NoSignedWrap = false; |
| } |
| assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && |
| "Failed to keep proper track of nsw flags while drilling down?"); |
| |
| if (Ancestor == Val) |
| // Got to the top, all done! |
| return Val; |
| |
| // Move up one level in the expression. |
| assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); |
| Ancestor = Ancestor->user_back(); |
| } while (true); |
| } |
| |
| Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { |
| if (!isa<VectorType>(Inst.getType())) |
| return nullptr; |
| |
| BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); |
| Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); |
| assert(cast<VectorType>(LHS->getType())->getElementCount() == |
| cast<VectorType>(Inst.getType())->getElementCount()); |
| assert(cast<VectorType>(RHS->getType())->getElementCount() == |
| cast<VectorType>(Inst.getType())->getElementCount()); |
| |
| // If both operands of the binop are vector concatenations, then perform the |
| // narrow binop on each pair of the source operands followed by concatenation |
| // of the results. |
| Value *L0, *L1, *R0, *R1; |
| ArrayRef<int> Mask; |
| if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && |
| match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && |
| LHS->hasOneUse() && RHS->hasOneUse() && |
| cast<ShuffleVectorInst>(LHS)->isConcat() && |
| cast<ShuffleVectorInst>(RHS)->isConcat()) { |
| // This transform does not have the speculative execution constraint as |
| // below because the shuffle is a concatenation. The new binops are |
| // operating on exactly the same elements as the existing binop. |
| // TODO: We could ease the mask requirement to allow different undef lanes, |
| // but that requires an analysis of the binop-with-undef output value. |
| Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); |
| if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) |
| BO->copyIRFlags(&Inst); |
| Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); |
| if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) |
| BO->copyIRFlags(&Inst); |
| return new ShuffleVectorInst(NewBO0, NewBO1, Mask); |
| } |
| |
| // It may not be safe to reorder shuffles and things like div, urem, etc. |
| // because we may trap when executing those ops on unknown vector elements. |
| // See PR20059. |
| if (!isSafeToSpeculativelyExecute(&Inst)) |
| return nullptr; |
| |
| auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { |
| Value *XY = Builder.CreateBinOp(Opcode, X, Y); |
| if (auto *BO = dyn_cast<BinaryOperator>(XY)) |
| BO->copyIRFlags(&Inst); |
| return new ShuffleVectorInst(XY, M); |
| }; |
| |
| // If both arguments of the binary operation are shuffles that use the same |
| // mask and shuffle within a single vector, move the shuffle after the binop. |
| Value *V1, *V2; |
| if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && |
| match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && |
| V1->getType() == V2->getType() && |
| (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { |
| // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) |
| return createBinOpShuffle(V1, V2, Mask); |
| } |
| |
| // If both arguments of a commutative binop are select-shuffles that use the |
| // same mask with commuted operands, the shuffles are unnecessary. |
| if (Inst.isCommutative() && |
| match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && |
| match(RHS, |
| m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { |
| auto *LShuf = cast<ShuffleVectorInst>(LHS); |
| auto *RShuf = cast<ShuffleVectorInst>(RHS); |
| // TODO: Allow shuffles that contain undefs in the mask? |
| // That is legal, but it reduces undef knowledge. |
| // TODO: Allow arbitrary shuffles by shuffling after binop? |
| // That might be legal, but we have to deal with poison. |
| if (LShuf->isSelect() && |
| !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && |
| RShuf->isSelect() && |
| !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { |
| // Example: |
| // LHS = shuffle V1, V2, <0, 5, 6, 3> |
| // RHS = shuffle V2, V1, <0, 5, 6, 3> |
| // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 |
| Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); |
| NewBO->copyIRFlags(&Inst); |
| return NewBO; |
| } |
| } |
| |
| // If one argument is a shuffle within one vector and the other is a constant, |
| // try moving the shuffle after the binary operation. This canonicalization |
| // intends to move shuffles closer to other shuffles and binops closer to |
| // other binops, so they can be folded. It may also enable demanded elements |
| // transforms. |
| Constant *C; |
| auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); |
| if (InstVTy && |
| match(&Inst, |
| m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), |
| m_ImmConstant(C))) && |
| cast<FixedVectorType>(V1->getType())->getNumElements() <= |
| InstVTy->getNumElements()) { |
| assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && |
| "Shuffle should not change scalar type"); |
| |
| // Find constant NewC that has property: |
| // shuffle(NewC, ShMask) = C |
| // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) |
| // reorder is not possible. A 1-to-1 mapping is not required. Example: |
| // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> |
| bool ConstOp1 = isa<Constant>(RHS); |
| ArrayRef<int> ShMask = Mask; |
| unsigned SrcVecNumElts = |
| cast<FixedVectorType>(V1->getType())->getNumElements(); |
| UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); |
| SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); |
| bool MayChange = true; |
| unsigned NumElts = InstVTy->getNumElements(); |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *CElt = C->getAggregateElement(I); |
| if (ShMask[I] >= 0) { |
| assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); |
| Constant *NewCElt = NewVecC[ShMask[I]]; |
| // Bail out if: |
| // 1. The constant vector contains a constant expression. |
| // 2. The shuffle needs an element of the constant vector that can't |
| // be mapped to a new constant vector. |
| // 3. This is a widening shuffle that copies elements of V1 into the |
| // extended elements (extending with undef is allowed). |
| if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || |
| I >= SrcVecNumElts) { |
| MayChange = false; |
| break; |
| } |
| NewVecC[ShMask[I]] = CElt; |
| } |
| // If this is a widening shuffle, we must be able to extend with undef |
| // elements. If the original binop does not produce an undef in the high |
| // lanes, then this transform is not safe. |
| // Similarly for undef lanes due to the shuffle mask, we can only |
| // transform binops that preserve undef. |
| // TODO: We could shuffle those non-undef constant values into the |
| // result by using a constant vector (rather than an undef vector) |
| // as operand 1 of the new binop, but that might be too aggressive |
| // for target-independent shuffle creation. |
| if (I >= SrcVecNumElts || ShMask[I] < 0) { |
| Constant *MaybeUndef = |
| ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) |
| : ConstantExpr::get(Opcode, CElt, UndefScalar); |
| if (!match(MaybeUndef, m_Undef())) { |
| MayChange = false; |
| break; |
| } |
| } |
| } |
| if (MayChange) { |
| Constant *NewC = ConstantVector::get(NewVecC); |
| // It may not be safe to execute a binop on a vector with undef elements |
| // because the entire instruction can be folded to undef or create poison |
| // that did not exist in the original code. |
| if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) |
| NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); |
| |
| // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) |
| // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) |
| Value *NewLHS = ConstOp1 ? V1 : NewC; |
| Value *NewRHS = ConstOp1 ? NewC : V1; |
| return createBinOpShuffle(NewLHS, NewRHS, Mask); |
| } |
| } |
| |
| // Try to reassociate to sink a splat shuffle after a binary operation. |
| if (Inst.isAssociative() && Inst.isCommutative()) { |
| // Canonicalize shuffle operand as LHS. |
| if (isa<ShuffleVectorInst>(RHS)) |
| std::swap(LHS, RHS); |
| |
| Value *X; |
| ArrayRef<int> MaskC; |
| int SplatIndex; |
| Value *Y, *OtherOp; |
| if (!match(LHS, |
| m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || |
| !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || |
| X->getType() != Inst.getType() || |
| !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) |
| return nullptr; |
| |
| // FIXME: This may not be safe if the analysis allows undef elements. By |
| // moving 'Y' before the splat shuffle, we are implicitly assuming |
| // that it is not undef/poison at the splat index. |
| if (isSplatValue(OtherOp, SplatIndex)) { |
| std::swap(Y, OtherOp); |
| } else if (!isSplatValue(Y, SplatIndex)) { |
| return nullptr; |
| } |
| |
| // X and Y are splatted values, so perform the binary operation on those |
| // values followed by a splat followed by the 2nd binary operation: |
| // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp |
| Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); |
| SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); |
| Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); |
| Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); |
| |
| // Intersect FMF on both new binops. Other (poison-generating) flags are |
| // dropped to be safe. |
| if (isa<FPMathOperator>(R)) { |
| R->copyFastMathFlags(&Inst); |
| R->andIRFlags(RHS); |
| } |
| if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) |
| NewInstBO->copyIRFlags(R); |
| return R; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to narrow the width of a binop if at least 1 operand is an extend of |
| /// of a value. This requires a potentially expensive known bits check to make |
| /// sure the narrow op does not overflow. |
| Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { |
| // We need at least one extended operand. |
| Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); |
| |
| // If this is a sub, we swap the operands since we always want an extension |
| // on the RHS. The LHS can be an extension or a constant. |
| if (BO.getOpcode() == Instruction::Sub) |
| std::swap(Op0, Op1); |
| |
| Value *X; |
| bool IsSext = match(Op0, m_SExt(m_Value(X))); |
| if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) |
| return nullptr; |
| |
| // If both operands are the same extension from the same source type and we |
| // can eliminate at least one (hasOneUse), this might work. |
| CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; |
| Value *Y; |
| if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && |
| cast<Operator>(Op1)->getOpcode() == CastOpc && |
| (Op0->hasOneUse() || Op1->hasOneUse()))) { |
| // If that did not match, see if we have a suitable constant operand. |
| // Truncating and extending must produce the same constant. |
| Constant *WideC; |
| if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) |
| return nullptr; |
| Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); |
| if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) |
| return nullptr; |
| Y = NarrowC; |
| } |
| |
| // Swap back now that we found our operands. |
| if (BO.getOpcode() == Instruction::Sub) |
| std::swap(X, Y); |
| |
| // Both operands have narrow versions. Last step: the math must not overflow |
| // in the narrow width. |
| if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) |
| return nullptr; |
| |
| // bo (ext X), (ext Y) --> ext (bo X, Y) |
| // bo (ext X), C --> ext (bo X, C') |
| Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); |
| if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { |
| if (IsSext) |
| NewBinOp->setHasNoSignedWrap(); |
| else |
| NewBinOp->setHasNoUnsignedWrap(); |
| } |
| return CastInst::Create(CastOpc, NarrowBO, BO.getType()); |
| } |
| |
| static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { |
| // At least one GEP must be inbounds. |
| if (!GEP1.isInBounds() && !GEP2.isInBounds()) |
| return false; |
| |
| return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && |
| (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); |
| } |
| |
| /// Thread a GEP operation with constant indices through the constant true/false |
| /// arms of a select. |
| static Instruction *foldSelectGEP(GetElementPtrInst &GEP, |
| InstCombiner::BuilderTy &Builder) { |
| if (!GEP.hasAllConstantIndices()) |
| return nullptr; |
| |
| Instruction *Sel; |
| Value *Cond; |
| Constant *TrueC, *FalseC; |
| if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || |
| !match(Sel, |
| m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) |
| return nullptr; |
| |
| // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' |
| // Propagate 'inbounds' and metadata from existing instructions. |
| // Note: using IRBuilder to create the constants for efficiency. |
| SmallVector<Value *, 4> IndexC(GEP.indices()); |
| bool IsInBounds = GEP.isInBounds(); |
| Type *Ty = GEP.getSourceElementType(); |
| Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) |
| : Builder.CreateGEP(Ty, TrueC, IndexC); |
| Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) |
| : Builder.CreateGEP(Ty, FalseC, IndexC); |
| return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); |
| } |
| |
| Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| SmallVector<Value *, 8> Ops(GEP.operands()); |
| Type *GEPType = GEP.getType(); |
| Type *GEPEltType = GEP.getSourceElementType(); |
| bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); |
| if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(), |
| SQ.getWithInstruction(&GEP))) |
| return replaceInstUsesWith(GEP, V); |
| |
| // For vector geps, use the generic demanded vector support. |
| // Skip if GEP return type is scalable. The number of elements is unknown at |
| // compile-time. |
| if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { |
| auto VWidth = GEPFVTy->getNumElements(); |
| APInt UndefElts(VWidth, 0); |
| APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); |
| if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, |
| UndefElts)) { |
| if (V != &GEP) |
| return replaceInstUsesWith(GEP, V); |
| return &GEP; |
| } |
| |
| // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if |
| // possible (decide on canonical form for pointer broadcast), 3) exploit |
| // undef elements to decrease demanded bits |
| } |
| |
| Value *PtrOp = GEP.getOperand(0); |
| |
| // Eliminate unneeded casts for indices, and replace indices which displace |
| // by multiples of a zero size type with zero. |
| bool MadeChange = false; |
| |
| // Index width may not be the same width as pointer width. |
| // Data layout chooses the right type based on supported integer types. |
| Type *NewScalarIndexTy = |
| DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); |
| |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; |
| ++I, ++GTI) { |
| // Skip indices into struct types. |
| if (GTI.isStruct()) |
| continue; |
| |
| Type *IndexTy = (*I)->getType(); |
| Type *NewIndexType = |
| IndexTy->isVectorTy() |
| ? VectorType::get(NewScalarIndexTy, |
| cast<VectorType>(IndexTy)->getElementCount()) |
| : NewScalarIndexTy; |
| |
| // If the element type has zero size then any index over it is equivalent |
| // to an index of zero, so replace it with zero if it is not zero already. |
| Type *EltTy = GTI.getIndexedType(); |
| if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) |
| if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { |
| *I = Constant::getNullValue(NewIndexType); |
| MadeChange = true; |
| } |
| |
| if (IndexTy != NewIndexType) { |
| // If we are using a wider index than needed for this platform, shrink |
| // it to what we need. If narrower, sign-extend it to what we need. |
| // This explicit cast can make subsequent optimizations more obvious. |
| *I = Builder.CreateIntCast(*I, NewIndexType, true); |
| MadeChange = true; |
| } |
| } |
| if (MadeChange) |
| return &GEP; |
| |
| // Check to see if the inputs to the PHI node are getelementptr instructions. |
| if (auto *PN = dyn_cast<PHINode>(PtrOp)) { |
| auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); |
| if (!Op1) |
| return nullptr; |
| |
| // Don't fold a GEP into itself through a PHI node. This can only happen |
| // through the back-edge of a loop. Folding a GEP into itself means that |
| // the value of the previous iteration needs to be stored in the meantime, |
| // thus requiring an additional register variable to be live, but not |
| // actually achieving anything (the GEP still needs to be executed once per |
| // loop iteration). |
| if (Op1 == &GEP) |
| return nullptr; |
| |
| int DI = -1; |
| |
| for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { |
| auto *Op2 = dyn_cast<GetElementPtrInst>(*I); |
| if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) |
| return nullptr; |
| |
| // As for Op1 above, don't try to fold a GEP into itself. |
| if (Op2 == &GEP) |
| return nullptr; |
| |
| // Keep track of the type as we walk the GEP. |
| Type *CurTy = nullptr; |
| |
| for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { |
| if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) |
| return nullptr; |
| |
| if (Op1->getOperand(J) != Op2->getOperand(J)) { |
| if (DI == -1) { |
| // We have not seen any differences yet in the GEPs feeding the |
| // PHI yet, so we record this one if it is allowed to be a |
| // variable. |
| |
| // The first two arguments can vary for any GEP, the rest have to be |
| // static for struct slots |
| if (J > 1) { |
| assert(CurTy && "No current type?"); |
| if (CurTy->isStructTy()) |
| return nullptr; |
| } |
| |
| DI = J; |
| } else { |
| // The GEP is different by more than one input. While this could be |
| // extended to support GEPs that vary by more than one variable it |
| // doesn't make sense since it greatly increases the complexity and |
| // would result in an R+R+R addressing mode which no backend |
| // directly supports and would need to be broken into several |
| // simpler instructions anyway. |
| return nullptr; |
| } |
| } |
| |
| // Sink down a layer of the type for the next iteration. |
| if (J > 0) { |
| if (J == 1) { |
| CurTy = Op1->getSourceElementType(); |
| } else { |
| CurTy = |
| GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); |
| } |
| } |
| } |
| } |
| |
| // If not all GEPs are identical we'll have to create a new PHI node. |
| // Check that the old PHI node has only one use so that it will get |
| // removed. |
| if (DI != -1 && !PN->hasOneUse()) |
| return nullptr; |
| |
| auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); |
| if (DI == -1) { |
| // All the GEPs feeding the PHI are identical. Clone one down into our |
| // BB so that it can be merged with the current GEP. |
| } else { |
| // All the GEPs feeding the PHI differ at a single offset. Clone a GEP |
| // into the current block so it can be merged, and create a new PHI to |
| // set that index. |
| PHINode *NewPN; |
| { |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(PN); |
| NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), |
| PN->getNumOperands()); |
| } |
| |
| for (auto &I : PN->operands()) |
| NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), |
| PN->getIncomingBlock(I)); |
| |
| NewGEP->setOperand(DI, NewPN); |
| } |
| |
| GEP.getParent()->getInstList().insert( |
| GEP.getParent()->getFirstInsertionPt(), NewGEP); |
| replaceOperand(GEP, 0, NewGEP); |
| PtrOp = NewGEP; |
| } |
| |
| // Combine Indices - If the source pointer to this getelementptr instruction |
| // is a getelementptr instruction, combine the indices of the two |
| // getelementptr instructions into a single instruction. |
| if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { |
| if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) |
| return nullptr; |
| |
| if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && |
| Src->hasOneUse()) { |
| Value *GO1 = GEP.getOperand(1); |
| Value *SO1 = Src->getOperand(1); |
| |
| if (LI) { |
| // Try to reassociate loop invariant GEP chains to enable LICM. |
| if (Loop *L = LI->getLoopFor(GEP.getParent())) { |
| // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is |
| // invariant: this breaks the dependence between GEPs and allows LICM |
| // to hoist the invariant part out of the loop. |
| if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { |
| // We have to be careful here. |
| // We have something like: |
| // %src = getelementptr <ty>, <ty>* %base, <ty> %idx |
| // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 |
| // If we just swap idx & idx2 then we could inadvertantly |
| // change %src from a vector to a scalar, or vice versa. |
| // Cases: |
| // 1) %base a scalar & idx a scalar & idx2 a vector |
| // => Swapping idx & idx2 turns %src into a vector type. |
| // 2) %base a scalar & idx a vector & idx2 a scalar |
| // => Swapping idx & idx2 turns %src in a scalar type |
| // 3) %base, %idx, and %idx2 are scalars |
| // => %src & %gep are scalars |
| // => swapping idx & idx2 is safe |
| // 4) %base a vector |
| // => %src is a vector |
| // => swapping idx & idx2 is safe. |
| auto *SO0 = Src->getOperand(0); |
| auto *SO0Ty = SO0->getType(); |
| if (!isa<VectorType>(GEPType) || // case 3 |
| isa<VectorType>(SO0Ty)) { // case 4 |
| Src->setOperand(1, GO1); |
| GEP.setOperand(1, SO1); |
| return &GEP; |
| } else { |
| // Case 1 or 2 |
| // -- have to recreate %src & %gep |
| // put NewSrc at same location as %src |
| Builder.SetInsertPoint(cast<Instruction>(PtrOp)); |
| Value *NewSrc = |
| Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()); |
| // Propagate 'inbounds' if the new source was not constant-folded. |
| if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) |
| NewSrcGEPI->setIsInBounds(Src->isInBounds()); |
| GetElementPtrInst *NewGEP = |
| GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); |
| NewGEP->setIsInBounds(GEP.isInBounds()); |
| return NewGEP; |
| } |
| } |
| } |
| } |
| } |
| |
| // Note that if our source is a gep chain itself then we wait for that |
| // chain to be resolved before we perform this transformation. This |
| // avoids us creating a TON of code in some cases. |
| if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) |
| if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) |
| return nullptr; // Wait until our source is folded to completion. |
| |
| SmallVector<Value*, 8> Indices; |
| |
| // Find out whether the last index in the source GEP is a sequential idx. |
| bool EndsWithSequential = false; |
| for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); |
| I != E; ++I) |
| EndsWithSequential = I.isSequential(); |
| |
| // Can we combine the two pointer arithmetics offsets? |
| if (EndsWithSequential) { |
| // Replace: gep (gep %P, long B), long A, ... |
| // With: T = long A+B; gep %P, T, ... |
| Value *SO1 = Src->getOperand(Src->getNumOperands()-1); |
| Value *GO1 = GEP.getOperand(1); |
| |
| // If they aren't the same type, then the input hasn't been processed |
| // by the loop above yet (which canonicalizes sequential index types to |
| // intptr_t). Just avoid transforming this until the input has been |
| // normalized. |
| if (SO1->getType() != GO1->getType()) |
| return nullptr; |
| |
| Value *Sum = |
| SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); |
| // Only do the combine when we are sure the cost after the |
| // merge is never more than that before the merge. |
| if (Sum == nullptr) |
| return nullptr; |
| |
| // Update the GEP in place if possible. |
| if (Src->getNumOperands() == 2) { |
| GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); |
| replaceOperand(GEP, 0, Src->getOperand(0)); |
| replaceOperand(GEP, 1, Sum); |
| return &GEP; |
| } |
| Indices.append(Src->op_begin()+1, Src->op_end()-1); |
| Indices.push_back(Sum); |
| Indices.append(GEP.op_begin()+2, GEP.op_end()); |
| } else if (isa<Constant>(*GEP.idx_begin()) && |
| cast<Constant>(*GEP.idx_begin())->isNullValue() && |
| Src->getNumOperands() != 1) { |
| // Otherwise we can do the fold if the first index of the GEP is a zero |
| Indices.append(Src->op_begin()+1, Src->op_end()); |
| Indices.append(GEP.idx_begin()+1, GEP.idx_end()); |
| } |
| |
| if (!Indices.empty()) |
| return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) |
| ? GetElementPtrInst::CreateInBounds( |
| Src->getSourceElementType(), Src->getOperand(0), Indices, |
| GEP.getName()) |
| : GetElementPtrInst::Create(Src->getSourceElementType(), |
| Src->getOperand(0), Indices, |
| GEP.getName()); |
| } |
| |
| // Skip if GEP source element type is scalable. The type alloc size is unknown |
| // at compile-time. |
| if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { |
| unsigned AS = GEP.getPointerAddressSpace(); |
| if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == |
| DL.getIndexSizeInBits(AS)) { |
| uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); |
| |
| bool Matched = false; |
| uint64_t C; |
| Value *V = nullptr; |
| if (TyAllocSize == 1) { |
| V = GEP.getOperand(1); |
| Matched = true; |
| } else if (match(GEP.getOperand(1), |
| m_AShr(m_Value(V), m_ConstantInt(C)))) { |
| if (TyAllocSize == 1ULL << C) |
| Matched = true; |
| } else if (match(GEP.getOperand(1), |
| m_SDiv(m_Value(V), m_ConstantInt(C)))) { |
| if (TyAllocSize == C) |
| Matched = true; |
| } |
| |
| // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but |
| // only if both point to the same underlying object (otherwise provenance |
| // is not necessarily retained). |
| Value *Y; |
| Value *X = GEP.getOperand(0); |
| if (Matched && |
| match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && |
| getUnderlyingObject(X) == getUnderlyingObject(Y)) |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); |
| } |
| } |
| |
| // We do not handle pointer-vector geps here. |
| if (GEPType->isVectorTy()) |
| return nullptr; |
| |
| // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). |
| Value *StrippedPtr = PtrOp->stripPointerCasts(); |
| PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); |
| |
| if (StrippedPtr != PtrOp) { |
| bool HasZeroPointerIndex = false; |
| Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); |
| |
| if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) |
| HasZeroPointerIndex = C->isZero(); |
| |
| // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... |
| // into : GEP [10 x i8]* X, i32 0, ... |
| // |
| // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... |
| // into : GEP i8* X, ... |
| // |
| // This occurs when the program declares an array extern like "int X[];" |
| if (HasZeroPointerIndex) { |
| if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { |
| // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == StrippedPtrEltTy) { |
| // -> GEP i8* X, ... |
| SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); |
| GetElementPtrInst *Res = GetElementPtrInst::Create( |
| StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); |
| Res->setIsInBounds(GEP.isInBounds()); |
| if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) |
| return Res; |
| // Insert Res, and create an addrspacecast. |
| // e.g., |
| // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... |
| // -> |
| // %0 = GEP i8 addrspace(1)* X, ... |
| // addrspacecast i8 addrspace(1)* %0 to i8* |
| return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); |
| } |
| |
| if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { |
| // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == XATy->getElementType()) { |
| // -> GEP [10 x i8]* X, i32 0, ... |
| // At this point, we know that the cast source type is a pointer |
| // to an array of the same type as the destination pointer |
| // array. Because the array type is never stepped over (there |
| // is a leading zero) we can fold the cast into this GEP. |
| if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { |
| GEP.setSourceElementType(XATy); |
| return replaceOperand(GEP, 0, StrippedPtr); |
| } |
| // Cannot replace the base pointer directly because StrippedPtr's |
| // address space is different. Instead, create a new GEP followed by |
| // an addrspacecast. |
| // e.g., |
| // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), |
| // i32 0, ... |
| // -> |
| // %0 = GEP [10 x i8] addrspace(1)* X, ... |
| // addrspacecast i8 addrspace(1)* %0 to i8* |
| SmallVector<Value *, 8> Idx(GEP.indices()); |
| Value *NewGEP = |
| GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, |
| Idx, GEP.getName()) |
| : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, |
| GEP.getName()); |
| return new AddrSpaceCastInst(NewGEP, GEPType); |
| } |
| } |
| } |
| } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { |
| // Skip if GEP source element type is scalable. The type alloc size is |
| // unknown at compile-time. |
| // Transform things like: %t = getelementptr i32* |
| // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 |
| // x i32]* %str, i32 0, i32 %V; bitcast |
| if (StrippedPtrEltTy->isArrayTy() && |
| DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == |
| DL.getTypeAllocSize(GEPEltType)) { |
| Type *IdxType = DL.getIndexType(GEPType); |
| Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; |
| Value *NewGEP = |
| GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, |
| GEP.getName()) |
| : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, |
| GEP.getName()); |
| |
| // V and GEP are both pointer types --> BitCast |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); |
| } |
| |
| // Transform things like: |
| // %V = mul i64 %N, 4 |
| // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V |
| // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast |
| if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { |
| // Check that changing the type amounts to dividing the index by a scale |
| // factor. |
| uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); |
| uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); |
| if (ResSize && SrcSize % ResSize == 0) { |
| Value *Idx = GEP.getOperand(1); |
| unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); |
| uint64_t Scale = SrcSize / ResSize; |
| |
| // Earlier transforms ensure that the index has the right type |
| // according to Data Layout, which considerably simplifies the |
| // logic by eliminating implicit casts. |
| assert(Idx->getType() == DL.getIndexType(GEPType) && |
| "Index type does not match the Data Layout preferences"); |
| |
| bool NSW; |
| if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { |
| // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. |
| // If the multiplication NewIdx * Scale may overflow then the new |
| // GEP may not be "inbounds". |
| Value *NewGEP = |
| GEP.isInBounds() && NSW |
| ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, |
| NewIdx, GEP.getName()) |
| : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, |
| GEP.getName()); |
| |
| // The NewGEP must be pointer typed, so must the old one -> BitCast |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, |
| GEPType); |
| } |
| } |
| } |
| |
| // Similarly, transform things like: |
| // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp |
| // (where tmp = 8*tmp2) into: |
| // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast |
| if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && |
| StrippedPtrEltTy->isArrayTy()) { |
| // Check that changing to the array element type amounts to dividing the |
| // index by a scale factor. |
| uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); |
| uint64_t ArrayEltSize = |
| DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) |
| .getFixedSize(); |
| if (ResSize && ArrayEltSize % ResSize == 0) { |
| Value *Idx = GEP.getOperand(1); |
| unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); |
| uint64_t Scale = ArrayEltSize / ResSize; |
| |
| // Earlier transforms ensure that the index has the right type |
| // according to the Data Layout, which considerably simplifies |
| // the logic by eliminating implicit casts. |
| assert(Idx->getType() == DL.getIndexType(GEPType) && |
| "Index type does not match the Data Layout preferences"); |
| |
| bool NSW; |
| if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { |
| // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. |
| // If the multiplication NewIdx * Scale may overflow then the new |
| // GEP may not be "inbounds". |
| Type *IndTy = DL.getIndexType(GEPType); |
| Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; |
| |
| Value *NewGEP = |
| GEP.isInBounds() && NSW |
| ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, |
| Off, GEP.getName()) |
| : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, |
| GEP.getName()); |
| // The NewGEP must be pointer typed, so must the old one -> BitCast |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, |
| GEPType); |
| } |
| } |
| } |
| } |
| } |
| |
| // addrspacecast between types is canonicalized as a bitcast, then an |
| // addrspacecast. To take advantage of the below bitcast + struct GEP, look |
| // through the addrspacecast. |
| Value *ASCStrippedPtrOp = PtrOp; |
| if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { |
| // X = bitcast A addrspace(1)* to B addrspace(1)* |
| // Y = addrspacecast A addrspace(1)* to B addrspace(2)* |
| // Z = gep Y, <...constant indices...> |
| // Into an addrspacecasted GEP of the struct. |
| if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) |
| ASCStrippedPtrOp = BC; |
| } |
| |
| if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { |
| Value *SrcOp = BCI->getOperand(0); |
| PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); |
| Type *SrcEltType = SrcType->getElementType(); |
| |
| // GEP directly using the source operand if this GEP is accessing an element |
| // of a bitcasted pointer to vector or array of the same dimensions: |
| // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z |
| // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z |
| auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, |
| const DataLayout &DL) { |
| auto *VecVTy = cast<FixedVectorType>(VecTy); |
| return ArrTy->getArrayElementType() == VecVTy->getElementType() && |
| ArrTy->getArrayNumElements() == VecVTy->getNumElements() && |
| DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); |
| }; |
| if (GEP.getNumOperands() == 3 && |
| ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && |
| areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || |
| (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && |
| areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { |
| |
| // Create a new GEP here, as using `setOperand()` followed by |
| // `setSourceElementType()` won't actually update the type of the |
| // existing GEP Value. Causing issues if this Value is accessed when |
| // constructing an AddrSpaceCastInst |
| Value *NGEP = |
| GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) |
| : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); |
| NGEP->takeName(&GEP); |
| |
| // Preserve GEP address space to satisfy users |
| if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) |
| return new AddrSpaceCastInst(NGEP, GEPType); |
| |
| return replaceInstUsesWith(GEP, NGEP); |
| } |
| |
| // See if we can simplify: |
| // X = bitcast A* to B* |
| // Y = gep X, <...constant indices...> |
| // into a gep of the original struct. This is important for SROA and alias |
| // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. |
| unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); |
| APInt Offset(OffsetBits, 0); |
| |
| // If the bitcast argument is an allocation, The bitcast is for convertion |
| // to actual type of allocation. Removing such bitcasts, results in having |
| // GEPs with i8* base and pure byte offsets. That means GEP is not aware of |
| // struct or array hierarchy. |
| // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have |
| // a better chance to succeed. |
| if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && |
| !isAllocationFn(SrcOp, &TLI)) { |
| // If this GEP instruction doesn't move the pointer, just replace the GEP |
| // with a bitcast of the real input to the dest type. |
| if (!Offset) { |
| // If the bitcast is of an allocation, and the allocation will be |
| // converted to match the type of the cast, don't touch this. |
| if (isa<AllocaInst>(SrcOp)) { |
| // See if the bitcast simplifies, if so, don't nuke this GEP yet. |
| if (Instruction *I = visitBitCast(*BCI)) { |
| if (I != BCI) { |
| I->takeName(BCI); |
| BCI->getParent()->getInstList().insert(BCI->getIterator(), I); |
| replaceInstUsesWith(*BCI, I); |
| } |
| return &GEP; |
| } |
| } |
| |
| if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) |
| return new AddrSpaceCastInst(SrcOp, GEPType); |
| return new BitCastInst(SrcOp, GEPType); |
| } |
| |
| // Otherwise, if the offset is non-zero, we need to find out if there is a |
| // field at Offset in 'A's type. If so, we can pull the cast through the |
| // GEP. |
| SmallVector<Value*, 8> NewIndices; |
| if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { |
| Value *NGEP = |
| GEP.isInBounds() |
| ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) |
| : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); |
| |
| if (NGEP->getType() == GEPType) |
| return replaceInstUsesWith(GEP, NGEP); |
| NGEP->takeName(&GEP); |
| |
| if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) |
| return new AddrSpaceCastInst(NGEP, GEPType); |
| return new BitCastInst(NGEP, GEPType); |
| } |
| } |
| } |
| |
| if (!GEP.isInBounds()) { |
| unsigned IdxWidth = |
| DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); |
| APInt BasePtrOffset(IdxWidth, 0); |
| Value *UnderlyingPtrOp = |
| PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, |
| BasePtrOffset); |
| if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { |
| if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && |
| BasePtrOffset.isNonNegative()) { |
| APInt AllocSize( |
| IdxWidth, |
| DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); |
| if (BasePtrOffset.ule(AllocSize)) { |
| return GetElementPtrInst::CreateInBounds( |
| GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), |
| GEP.getName()); |
| } |
| } |
| } |
| } |
| |
| if (Instruction *R = foldSelectGEP(GEP, Builder)) |
| return R; |
| |
| return nullptr; |
| } |
| |
| static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, |
| Instruction *AI) { |
| if (isa<ConstantPointerNull>(V)) |
| return true; |
| if (auto *LI = dyn_cast<LoadInst>(V)) |
| return isa<GlobalVariable>(LI->getPointerOperand()); |
| // Two distinct allocations will never be equal. |
| // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking |
| // through bitcasts of V can cause |
| // the result statement below to be true, even when AI and V (ex: |
| // i8* ->i32* ->i8* of AI) are the same allocations. |
| return isAllocLikeFn(V, TLI) && V != AI; |
| } |
| |
| static bool isAllocSiteRemovable(Instruction *AI, |
| SmallVectorImpl<WeakTrackingVH> &Users, |
| const TargetLibraryInfo *TLI) { |
| SmallVector<Instruction*, 4> Worklist; |
| Worklist.push_back(AI); |
| |
| do { |
| Instruction *PI = Worklist.pop_back_val(); |
| for (User *U : PI->users()) { |
| Instruction *I = cast<Instruction>(U); |
| switch (I->getOpcode()) { |
| default: |
| // Give up the moment we see something we can't handle. |
| return false; |
| |
| case Instruction::AddrSpaceCast: |
| case Instruction::BitCast: |
| case Instruction::GetElementPtr: |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| |
| case Instruction::ICmp: { |
| ICmpInst *ICI = cast<ICmpInst>(I); |
| // We can fold eq/ne comparisons with null to false/true, respectively. |
| // We also fold comparisons in some conditions provided the alloc has |
| // not escaped (see isNeverEqualToUnescapedAlloc). |
| if (!ICI->isEquality()) |
| return false; |
| unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; |
| if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) |
| return false; |
| Users.emplace_back(I); |
| continue; |
| } |
| |
| case Instruction::Call: |
| // Ignore no-op and store intrinsics. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| return false; |
| |
| case Intrinsic::memmove: |
| case Intrinsic::memcpy: |
| case Intrinsic::memset: { |
| MemIntrinsic *MI = cast<MemIntrinsic>(II); |
| if (MI->isVolatile() || MI->getRawDest() != PI) |
| return false; |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::assume: |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::objectsize: |
| Users.emplace_back(I); |
| continue; |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| } |
| } |
| |
| if (isFreeCall(I, TLI)) { |
| Users.emplace_back(I); |
| continue; |
| } |
| |
| if (isReallocLikeFn(I, TLI, true)) { |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| } |
| |
| return false; |
| |
| case Instruction::Store: { |
| StoreInst *SI = cast<StoreInst>(I); |
| if (SI->isVolatile() || SI->getPointerOperand() != PI) |
| return false; |
| Users.emplace_back(I); |
| continue; |
| } |
| } |
| llvm_unreachable("missing a return?"); |
| } |
| } while (!Worklist.empty()); |
| |