| //===- InstCombineVectorOps.cpp -------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements instcombine for ExtractElement, InsertElement and |
| // ShuffleVector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| STATISTIC(NumAggregateReconstructionsSimplified, |
| "Number of aggregate reconstructions turned into reuse of the " |
| "original aggregate"); |
| |
| /// Return true if the value is cheaper to scalarize than it is to leave as a |
| /// vector operation. If the extract index \p EI is a constant integer then |
| /// some operations may be cheap to scalarize. |
| /// |
| /// FIXME: It's possible to create more instructions than previously existed. |
| static bool cheapToScalarize(Value *V, Value *EI) { |
| ConstantInt *CEI = dyn_cast<ConstantInt>(EI); |
| |
| // If we can pick a scalar constant value out of a vector, that is free. |
| if (auto *C = dyn_cast<Constant>(V)) |
| return CEI || C->getSplatValue(); |
| |
| if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { |
| ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); |
| // Index needs to be lower than the minimum size of the vector, because |
| // for scalable vector, the vector size is known at run time. |
| return CEI->getValue().ult(EC.getKnownMinValue()); |
| } |
| |
| // An insertelement to the same constant index as our extract will simplify |
| // to the scalar inserted element. An insertelement to a different constant |
| // index is irrelevant to our extract. |
| if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) |
| return CEI; |
| |
| if (match(V, m_OneUse(m_Load(m_Value())))) |
| return true; |
| |
| if (match(V, m_OneUse(m_UnOp()))) |
| return true; |
| |
| Value *V0, *V1; |
| if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) |
| if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) |
| return true; |
| |
| CmpInst::Predicate UnusedPred; |
| if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) |
| if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) |
| return true; |
| |
| return false; |
| } |
| |
| // If we have a PHI node with a vector type that is only used to feed |
| // itself and be an operand of extractelement at a constant location, |
| // try to replace the PHI of the vector type with a PHI of a scalar type. |
| Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, |
| PHINode *PN) { |
| SmallVector<Instruction *, 2> Extracts; |
| // The users we want the PHI to have are: |
| // 1) The EI ExtractElement (we already know this) |
| // 2) Possibly more ExtractElements with the same index. |
| // 3) Another operand, which will feed back into the PHI. |
| Instruction *PHIUser = nullptr; |
| for (auto U : PN->users()) { |
| if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { |
| if (EI.getIndexOperand() == EU->getIndexOperand()) |
| Extracts.push_back(EU); |
| else |
| return nullptr; |
| } else if (!PHIUser) { |
| PHIUser = cast<Instruction>(U); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| if (!PHIUser) |
| return nullptr; |
| |
| // Verify that this PHI user has one use, which is the PHI itself, |
| // and that it is a binary operation which is cheap to scalarize. |
| // otherwise return nullptr. |
| if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || |
| !(isa<BinaryOperator>(PHIUser)) || |
| !cheapToScalarize(PHIUser, EI.getIndexOperand())) |
| return nullptr; |
| |
| // Create a scalar PHI node that will replace the vector PHI node |
| // just before the current PHI node. |
| PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( |
| PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); |
| // Scalarize each PHI operand. |
| for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { |
| Value *PHIInVal = PN->getIncomingValue(i); |
| BasicBlock *inBB = PN->getIncomingBlock(i); |
| Value *Elt = EI.getIndexOperand(); |
| // If the operand is the PHI induction variable: |
| if (PHIInVal == PHIUser) { |
| // Scalarize the binary operation. Its first operand is the |
| // scalar PHI, and the second operand is extracted from the other |
| // vector operand. |
| BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); |
| unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; |
| Value *Op = InsertNewInstWith( |
| ExtractElementInst::Create(B0->getOperand(opId), Elt, |
| B0->getOperand(opId)->getName() + ".Elt"), |
| *B0); |
| Value *newPHIUser = InsertNewInstWith( |
| BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), |
| scalarPHI, Op, B0), *B0); |
| scalarPHI->addIncoming(newPHIUser, inBB); |
| } else { |
| // Scalarize PHI input: |
| Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); |
| // Insert the new instruction into the predecessor basic block. |
| Instruction *pos = dyn_cast<Instruction>(PHIInVal); |
| BasicBlock::iterator InsertPos; |
| if (pos && !isa<PHINode>(pos)) { |
| InsertPos = ++pos->getIterator(); |
| } else { |
| InsertPos = inBB->getFirstInsertionPt(); |
| } |
| |
| InsertNewInstWith(newEI, *InsertPos); |
| |
| scalarPHI->addIncoming(newEI, inBB); |
| } |
| } |
| |
| for (auto E : Extracts) |
| replaceInstUsesWith(*E, scalarPHI); |
| |
| return &EI; |
| } |
| |
| Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { |
| Value *X; |
| uint64_t ExtIndexC; |
| if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || |
| !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) |
| return nullptr; |
| |
| ElementCount NumElts = |
| cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); |
| Type *DestTy = Ext.getType(); |
| bool IsBigEndian = DL.isBigEndian(); |
| |
| // If we are casting an integer to vector and extracting a portion, that is |
| // a shift-right and truncate. |
| // TODO: Allow FP dest type by casting the trunc to FP? |
| if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && |
| isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { |
| assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && |
| "Expected fixed vector type for bitcast from scalar integer"); |
| |
| // Big endian requires adjusting the extract index since MSB is at index 0. |
| // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 |
| // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 |
| if (IsBigEndian) |
| ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; |
| unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); |
| if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { |
| Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); |
| return new TruncInst(Lshr, DestTy); |
| } |
| } |
| |
| if (!X->getType()->isVectorTy()) |
| return nullptr; |
| |
| // If this extractelement is using a bitcast from a vector of the same number |
| // of elements, see if we can find the source element from the source vector: |
| // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] |
| auto *SrcTy = cast<VectorType>(X->getType()); |
| ElementCount NumSrcElts = SrcTy->getElementCount(); |
| if (NumSrcElts == NumElts) |
| if (Value *Elt = findScalarElement(X, ExtIndexC)) |
| return new BitCastInst(Elt, DestTy); |
| |
| assert(NumSrcElts.isScalable() == NumElts.isScalable() && |
| "Src and Dst must be the same sort of vector type"); |
| |
| // If the source elements are wider than the destination, try to shift and |
| // truncate a subset of scalar bits of an insert op. |
| if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { |
| Value *Scalar; |
| uint64_t InsIndexC; |
| if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), |
| m_ConstantInt(InsIndexC)))) |
| return nullptr; |
| |
| // The extract must be from the subset of vector elements that we inserted |
| // into. Example: if we inserted element 1 of a <2 x i64> and we are |
| // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 |
| // of elements 4-7 of the bitcasted vector. |
| unsigned NarrowingRatio = |
| NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); |
| if (ExtIndexC / NarrowingRatio != InsIndexC) |
| return nullptr; |
| |
| // We are extracting part of the original scalar. How that scalar is |
| // inserted into the vector depends on the endian-ness. Example: |
| // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 |
| // +--+--+--+--+--+--+--+--+ |
| // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| |
| // extelt <4 x i16> V', 3: | |S2|S3| |
| // +--+--+--+--+--+--+--+--+ |
| // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. |
| // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. |
| // In this example, we must right-shift little-endian. Big-endian is just a |
| // truncate. |
| unsigned Chunk = ExtIndexC % NarrowingRatio; |
| if (IsBigEndian) |
| Chunk = NarrowingRatio - 1 - Chunk; |
| |
| // Bail out if this is an FP vector to FP vector sequence. That would take |
| // more instructions than we started with unless there is no shift, and it |
| // may not be handled as well in the backend. |
| bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); |
| bool NeedDestBitcast = DestTy->isFloatingPointTy(); |
| if (NeedSrcBitcast && NeedDestBitcast) |
| return nullptr; |
| |
| unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); |
| unsigned ShAmt = Chunk * DestWidth; |
| |
| // TODO: This limitation is more strict than necessary. We could sum the |
| // number of new instructions and subtract the number eliminated to know if |
| // we can proceed. |
| if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) |
| if (NeedSrcBitcast || NeedDestBitcast) |
| return nullptr; |
| |
| if (NeedSrcBitcast) { |
| Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); |
| Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); |
| } |
| |
| if (ShAmt) { |
| // Bail out if we could end with more instructions than we started with. |
| if (!Ext.getVectorOperand()->hasOneUse()) |
| return nullptr; |
| Scalar = Builder.CreateLShr(Scalar, ShAmt); |
| } |
| |
| if (NeedDestBitcast) { |
| Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); |
| return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); |
| } |
| return new TruncInst(Scalar, DestTy); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Find elements of V demanded by UserInstr. |
| static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { |
| unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); |
| |
| // Conservatively assume that all elements are needed. |
| APInt UsedElts(APInt::getAllOnes(VWidth)); |
| |
| switch (UserInstr->getOpcode()) { |
| case Instruction::ExtractElement: { |
| ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); |
| assert(EEI->getVectorOperand() == V); |
| ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); |
| if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { |
| UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); |
| } |
| break; |
| } |
| case Instruction::ShuffleVector: { |
| ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); |
| unsigned MaskNumElts = |
| cast<FixedVectorType>(UserInstr->getType())->getNumElements(); |
| |
| UsedElts = APInt(VWidth, 0); |
| for (unsigned i = 0; i < MaskNumElts; i++) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (MaskVal == -1u || MaskVal >= 2 * VWidth) |
| continue; |
| if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) |
| UsedElts.setBit(MaskVal); |
| if (Shuffle->getOperand(1) == V && |
| ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) |
| UsedElts.setBit(MaskVal - VWidth); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| return UsedElts; |
| } |
| |
| /// Find union of elements of V demanded by all its users. |
| /// If it is known by querying findDemandedEltsBySingleUser that |
| /// no user demands an element of V, then the corresponding bit |
| /// remains unset in the returned value. |
| static APInt findDemandedEltsByAllUsers(Value *V) { |
| unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); |
| |
| APInt UnionUsedElts(VWidth, 0); |
| for (const Use &U : V->uses()) { |
| if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { |
| UnionUsedElts |= findDemandedEltsBySingleUser(V, I); |
| } else { |
| UnionUsedElts = APInt::getAllOnes(VWidth); |
| break; |
| } |
| |
| if (UnionUsedElts.isAllOnes()) |
| break; |
| } |
| |
| return UnionUsedElts; |
| } |
| |
| Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { |
| Value *SrcVec = EI.getVectorOperand(); |
| Value *Index = EI.getIndexOperand(); |
| if (Value *V = SimplifyExtractElementInst(SrcVec, Index, |
| SQ.getWithInstruction(&EI))) |
| return replaceInstUsesWith(EI, V); |
| |
| // If extracting a specified index from the vector, see if we can recursively |
| // find a previously computed scalar that was inserted into the vector. |
| auto *IndexC = dyn_cast<ConstantInt>(Index); |
| if (IndexC) { |
| ElementCount EC = EI.getVectorOperandType()->getElementCount(); |
| unsigned NumElts = EC.getKnownMinValue(); |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { |
| Intrinsic::ID IID = II->getIntrinsicID(); |
| // Index needs to be lower than the minimum size of the vector, because |
| // for scalable vector, the vector size is known at run time. |
| if (IID == Intrinsic::experimental_stepvector && |
| IndexC->getValue().ult(NumElts)) { |
| Type *Ty = EI.getType(); |
| unsigned BitWidth = Ty->getIntegerBitWidth(); |
| Value *Idx; |
| // Return index when its value does not exceed the allowed limit |
| // for the element type of the vector, otherwise return undefined. |
| if (IndexC->getValue().getActiveBits() <= BitWidth) |
| Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); |
| else |
| Idx = UndefValue::get(Ty); |
| return replaceInstUsesWith(EI, Idx); |
| } |
| } |
| |
| // InstSimplify should handle cases where the index is invalid. |
| // For fixed-length vector, it's invalid to extract out-of-range element. |
| if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) |
| return nullptr; |
| |
| // This instruction only demands the single element from the input vector. |
| // Skip for scalable type, the number of elements is unknown at |
| // compile-time. |
| if (!EC.isScalable() && NumElts != 1) { |
| // If the input vector has a single use, simplify it based on this use |
| // property. |
| if (SrcVec->hasOneUse()) { |
| APInt UndefElts(NumElts, 0); |
| APInt DemandedElts(NumElts, 0); |
| DemandedElts.setBit(IndexC->getZExtValue()); |
| if (Value *V = |
| SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) |
| return replaceOperand(EI, 0, V); |
| } else { |
| // If the input vector has multiple uses, simplify it based on a union |
| // of all elements used. |
| APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); |
| if (!DemandedElts.isAllOnes()) { |
| APInt UndefElts(NumElts, 0); |
| if (Value *V = SimplifyDemandedVectorElts( |
| SrcVec, DemandedElts, UndefElts, 0 /* Depth */, |
| true /* AllowMultipleUsers */)) { |
| if (V != SrcVec) { |
| SrcVec->replaceAllUsesWith(V); |
| return &EI; |
| } |
| } |
| } |
| } |
| } |
| |
| if (Instruction *I = foldBitcastExtElt(EI)) |
| return I; |
| |
| // If there's a vector PHI feeding a scalar use through this extractelement |
| // instruction, try to scalarize the PHI. |
| if (auto *Phi = dyn_cast<PHINode>(SrcVec)) |
| if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) |
| return ScalarPHI; |
| } |
| |
| // TODO come up with a n-ary matcher that subsumes both unary and |
| // binary matchers. |
| UnaryOperator *UO; |
| if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { |
| // extelt (unop X), Index --> unop (extelt X, Index) |
| Value *X = UO->getOperand(0); |
| Value *E = Builder.CreateExtractElement(X, Index); |
| return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); |
| } |
| |
| BinaryOperator *BO; |
| if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { |
| // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) |
| Value *X = BO->getOperand(0), *Y = BO->getOperand(1); |
| Value *E0 = Builder.CreateExtractElement(X, Index); |
| Value *E1 = Builder.CreateExtractElement(Y, Index); |
| return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); |
| } |
| |
| Value *X, *Y; |
| CmpInst::Predicate Pred; |
| if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && |
| cheapToScalarize(SrcVec, Index)) { |
| // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) |
| Value *E0 = Builder.CreateExtractElement(X, Index); |
| Value *E1 = Builder.CreateExtractElement(Y, Index); |
| return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); |
| } |
| |
| if (auto *I = dyn_cast<Instruction>(SrcVec)) { |
| if (auto *IE = dyn_cast<InsertElementInst>(I)) { |
| // Extracting the inserted element? |
| if (IE->getOperand(2) == Index) |
| return replaceInstUsesWith(EI, IE->getOperand(1)); |
| // If the inserted and extracted elements are constants, they must not |
| // be the same value, extract from the pre-inserted value instead. |
| if (isa<Constant>(IE->getOperand(2)) && IndexC) |
| return replaceOperand(EI, 0, IE->getOperand(0)); |
| } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| auto *VecType = cast<VectorType>(GEP->getType()); |
| ElementCount EC = VecType->getElementCount(); |
| uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; |
| if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { |
| // Find out why we have a vector result - these are a few examples: |
| // 1. We have a scalar pointer and a vector of indices, or |
| // 2. We have a vector of pointers and a scalar index, or |
| // 3. We have a vector of pointers and a vector of indices, etc. |
| // Here we only consider combining when there is exactly one vector |
| // operand, since the optimization is less obviously a win due to |
| // needing more than one extractelements. |
| |
| unsigned VectorOps = |
| llvm::count_if(GEP->operands(), [](const Value *V) { |
| return isa<VectorType>(V->getType()); |
| }); |
| if (VectorOps > 1) |
| return nullptr; |
| assert(VectorOps == 1 && "Expected exactly one vector GEP operand!"); |
| |
| Value *NewPtr = GEP->getPointerOperand(); |
| if (isa<VectorType>(NewPtr->getType())) |
| NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); |
| |
| SmallVector<Value *> NewOps; |
| for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { |
| Value *Op = GEP->getOperand(I); |
| if (isa<VectorType>(Op->getType())) |
| NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); |
| else |
| NewOps.push_back(Op); |
| } |
| |
| GetElementPtrInst *NewGEP = GetElementPtrInst::Create( |
| cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, |
| NewOps); |
| NewGEP->setIsInBounds(GEP->isInBounds()); |
| return NewGEP; |
| } |
| return nullptr; |
| } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { |
| // If this is extracting an element from a shufflevector, figure out where |
| // it came from and extract from the appropriate input element instead. |
| // Restrict the following transformation to fixed-length vector. |
| if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { |
| int SrcIdx = |
| SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); |
| Value *Src; |
| unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) |
| ->getNumElements(); |
| |
| if (SrcIdx < 0) |
| return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); |
| if (SrcIdx < (int)LHSWidth) |
| Src = SVI->getOperand(0); |
| else { |
| SrcIdx -= LHSWidth; |
| Src = SVI->getOperand(1); |
| } |
| Type *Int32Ty = Type::getInt32Ty(EI.getContext()); |
| return ExtractElementInst::Create( |
| Src, ConstantInt::get(Int32Ty, SrcIdx, false)); |
| } |
| } else if (auto *CI = dyn_cast<CastInst>(I)) { |
| // Canonicalize extractelement(cast) -> cast(extractelement). |
| // Bitcasts can change the number of vector elements, and they cost |
| // nothing. |
| if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { |
| Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); |
| return CastInst::Create(CI->getOpcode(), EE, EI.getType()); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| /// If V is a shuffle of values that ONLY returns elements from either LHS or |
| /// RHS, return the shuffle mask and true. Otherwise, return false. |
| static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, |
| SmallVectorImpl<int> &Mask) { |
| assert(LHS->getType() == RHS->getType() && |
| "Invalid CollectSingleShuffleElements"); |
| unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); |
| |
| if (match(V, m_Undef())) { |
| Mask.assign(NumElts, -1); |
| return true; |
| } |
| |
| if (V == LHS) { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Mask.push_back(i); |
| return true; |
| } |
| |
| if (V == RHS) { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Mask.push_back(i + NumElts); |
| return true; |
| } |
| |
| if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { |
| // If this is an insert of an extract from some other vector, include it. |
| Value *VecOp = IEI->getOperand(0); |
| Value *ScalarOp = IEI->getOperand(1); |
| Value *IdxOp = IEI->getOperand(2); |
| |
| if (!isa<ConstantInt>(IdxOp)) |
| return false; |
| unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); |
| |
| if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. |
| // We can handle this if the vector we are inserting into is |
| // transitively ok. |
| if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { |
| // If so, update the mask to reflect the inserted undef. |
| Mask[InsertedIdx] = -1; |
| return true; |
| } |
| } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ |
| if (isa<ConstantInt>(EI->getOperand(1))) { |
| unsigned ExtractedIdx = |
| cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); |
| unsigned NumLHSElts = |
| cast<FixedVectorType>(LHS->getType())->getNumElements(); |
| |
| // This must be extracting from either LHS or RHS. |
| if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { |
| // We can handle this if the vector we are inserting into is |
| // transitively ok. |
| if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { |
| // If so, update the mask to reflect the inserted value. |
| if (EI->getOperand(0) == LHS) { |
| Mask[InsertedIdx % NumElts] = ExtractedIdx; |
| } else { |
| assert(EI->getOperand(0) == RHS); |
| Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; |
| } |
| return true; |
| } |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// If we have insertion into a vector that is wider than the vector that we |
| /// are extracting from, try to widen the source vector to allow a single |
| /// shufflevector to replace one or more insert/extract pairs. |
| static void replaceExtractElements(InsertElementInst *InsElt, |
| ExtractElementInst *ExtElt, |
| InstCombinerImpl &IC) { |
| auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); |
| auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); |
| unsigned NumInsElts = InsVecType->getNumElements(); |
| unsigned NumExtElts = ExtVecType->getNumElements(); |
| |
| // The inserted-to vector must be wider than the extracted-from vector. |
| if (InsVecType->getElementType() != ExtVecType->getElementType() || |
| NumExtElts >= NumInsElts) |
| return; |
| |
| // Create a shuffle mask to widen the extended-from vector using poison |
| // values. The mask selects all of the values of the original vector followed |
| // by as many poison values as needed to create a vector of the same length |
| // as the inserted-to vector. |
| SmallVector<int, 16> ExtendMask; |
| for (unsigned i = 0; i < NumExtElts; ++i) |
| ExtendMask.push_back(i); |
| for (unsigned i = NumExtElts; i < NumInsElts; ++i) |
| ExtendMask.push_back(-1); |
| |
| Value *ExtVecOp = ExtElt->getVectorOperand(); |
| auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); |
| BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) |
| ? ExtVecOpInst->getParent() |
| : ExtElt->getParent(); |
| |
| // TODO: This restriction matches the basic block check below when creating |
| // new extractelement instructions. If that limitation is removed, this one |
| // could also be removed. But for now, we just bail out to ensure that we |
| // will replace the extractelement instruction that is feeding our |
| // insertelement instruction. This allows the insertelement to then be |
| // replaced by a shufflevector. If the insertelement is not replaced, we can |
| // induce infinite looping because there's an optimization for extractelement |
| // that will delete our widening shuffle. This would trigger another attempt |
| // here to create that shuffle, and we spin forever. |
| if (InsertionBlock != InsElt->getParent()) |
| return; |
| |
| // TODO: This restriction matches the check in visitInsertElementInst() and |
| // prevents an infinite loop caused by not turning the extract/insert pair |
| // into a shuffle. We really should not need either check, but we're lacking |
| // folds for shufflevectors because we're afraid to generate shuffle masks |
| // that the backend can't handle. |
| if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) |
| return; |
| |
| auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); |
| |
| // Insert the new shuffle after the vector operand of the extract is defined |
| // (as long as it's not a PHI) or at the start of the basic block of the |
| // extract, so any subsequent extracts in the same basic block can use it. |
| // TODO: Insert before the earliest ExtractElementInst that is replaced. |
| if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) |
| WideVec->insertAfter(ExtVecOpInst); |
| else |
| IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); |
| |
| // Replace extracts from the original narrow vector with extracts from the new |
| // wide vector. |
| for (User *U : ExtVecOp->users()) { |
| ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); |
| if (!OldExt || OldExt->getParent() != WideVec->getParent()) |
| continue; |
| auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); |
| NewExt->insertAfter(OldExt); |
| IC.replaceInstUsesWith(*OldExt, NewExt); |
| } |
| } |
| |
| /// We are building a shuffle to create V, which is a sequence of insertelement, |
| /// extractelement pairs. If PermittedRHS is set, then we must either use it or |
| /// not rely on the second vector source. Return a std::pair containing the |
| /// left and right vectors of the proposed shuffle (or 0), and set the Mask |
| /// parameter as required. |
| /// |
| /// Note: we intentionally don't try to fold earlier shuffles since they have |
| /// often been chosen carefully to be efficiently implementable on the target. |
| using ShuffleOps = std::pair<Value *, Value *>; |
| |
| static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, |
| Value *PermittedRHS, |
| InstCombinerImpl &IC) { |
| assert(V->getType()->isVectorTy() && "Invalid shuffle!"); |
| unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); |
| |
| if (match(V, m_Undef())) { |
| Mask.assign(NumElts, -1); |
| return std::make_pair( |
| PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); |
| } |
| |
| if (isa<ConstantAggregateZero>(V)) { |
| Mask.assign(NumElts, 0); |
| return std::make_pair(V, nullptr); |
| } |
| |
| if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { |
| // If this is an insert of an extract from some other vector, include it. |
| Value *VecOp = IEI->getOperand(0); |
| Value *ScalarOp = IEI->getOperand(1); |
| Value *IdxOp = IEI->getOperand(2); |
| |
| if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { |
| if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { |
| unsigned ExtractedIdx = |
| cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); |
| unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); |
| |
| // Either the extracted from or inserted into vector must be RHSVec, |
| // otherwise we'd end up with a shuffle of three inputs. |
| if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { |
| Value *RHS = EI->getOperand(0); |
| ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); |
| assert(LR.second == nullptr || LR.second == RHS); |
| |
| if (LR.first->getType() != RHS->getType()) { |
| // Although we are giving up for now, see if we can create extracts |
| // that match the inserts for another round of combining. |
| replaceExtractElements(IEI, EI, IC); |
| |
| // We tried our best, but we can't find anything compatible with RHS |
| // further up the chain. Return a trivial shuffle. |
| for (unsigned i = 0; i < NumElts; ++i) |
| Mask[i] = i; |
| return std::make_pair(V, nullptr); |
| } |
| |
| unsigned NumLHSElts = |
| cast<FixedVectorType>(RHS->getType())->getNumElements(); |
| Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; |
| return std::make_pair(LR.first, RHS); |
| } |
| |
| if (VecOp == PermittedRHS) { |
| // We've gone as far as we can: anything on the other side of the |
| // extractelement will already have been converted into a shuffle. |
| unsigned NumLHSElts = |
| cast<FixedVectorType>(EI->getOperand(0)->getType()) |
| ->getNumElements(); |
| for (unsigned i = 0; i != NumElts; ++i) |
| Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); |
| return std::make_pair(EI->getOperand(0), PermittedRHS); |
| } |
| |
| // If this insertelement is a chain that comes from exactly these two |
| // vectors, return the vector and the effective shuffle. |
| if (EI->getOperand(0)->getType() == PermittedRHS->getType() && |
| collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, |
| Mask)) |
| return std::make_pair(EI->getOperand(0), PermittedRHS); |
| } |
| } |
| } |
| |
| // Otherwise, we can't do anything fancy. Return an identity vector. |
| for (unsigned i = 0; i != NumElts; ++i) |
| Mask.push_back(i); |
| return std::make_pair(V, nullptr); |
| } |
| |
| /// Look for chain of insertvalue's that fully define an aggregate, and trace |
| /// back the values inserted, see if they are all were extractvalue'd from |
| /// the same source aggregate from the exact same element indexes. |
| /// If they were, just reuse the source aggregate. |
| /// This potentially deals with PHI indirections. |
| Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( |
| InsertValueInst &OrigIVI) { |
| Type *AggTy = OrigIVI.getType(); |
| unsigned NumAggElts; |
| switch (AggTy->getTypeID()) { |
| case Type::StructTyID: |
| NumAggElts = AggTy->getStructNumElements(); |
| break; |
| case Type::ArrayTyID: |
| NumAggElts = AggTy->getArrayNumElements(); |
| break; |
| default: |
| llvm_unreachable("Unhandled aggregate type?"); |
| } |
| |
| // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able |
| // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), |
| // FIXME: any interesting patterns to be caught with larger limit? |
| assert(NumAggElts > 0 && "Aggregate should have elements."); |
| if (NumAggElts > 2) |
| return nullptr; |
| |
| static constexpr auto NotFound = None; |
| static constexpr auto FoundMismatch = nullptr; |
| |
| // Try to find a value of each element of an aggregate. |
| // FIXME: deal with more complex, not one-dimensional, aggregate types |
| SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); |
| |
| // Do we know values for each element of the aggregate? |
| auto KnowAllElts = [&AggElts]() { |
| return all_of(AggElts, |
| [](Optional<Instruction *> Elt) { return Elt != NotFound; }); |
| }; |
| |
| int Depth = 0; |
| |
| // Arbitrary `insertvalue` visitation depth limit. Let's be okay with |
| // every element being overwritten twice, which should never happen. |
| static const int DepthLimit = 2 * NumAggElts; |
| |
| // Recurse up the chain of `insertvalue` aggregate operands until either we've |
| // reconstructed full initializer or can't visit any more `insertvalue`'s. |
| for (InsertValueInst *CurrIVI = &OrigIVI; |
| Depth < DepthLimit && CurrIVI && !KnowAllElts(); |
| CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), |
| ++Depth) { |
| auto *InsertedValue = |
| dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); |
| if (!InsertedValue) |
| return nullptr; // Inserted value must be produced by an instruction. |
| |
| ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); |
| |
| // Don't bother with more than single-level aggregates. |
| if (Indices.size() != 1) |
| return nullptr; // FIXME: deal with more complex aggregates? |
| |
| // Now, we may have already previously recorded the value for this element |
| // of an aggregate. If we did, that means the CurrIVI will later be |
| // overwritten with the already-recorded value. But if not, let's record it! |
| Optional<Instruction *> &Elt = AggElts[Indices.front()]; |
| Elt = Elt.getValueOr(InsertedValue); |
| |
| // FIXME: should we handle chain-terminating undef base operand? |
| } |
| |
| // Was that sufficient to deduce the full initializer for the aggregate? |
| if (!KnowAllElts()) |
| return nullptr; // Give up then. |
| |
| // We now want to find the source[s] of the aggregate elements we've found. |
| // And with "source" we mean the original aggregate[s] from which |
| // the inserted elements were extracted. This may require PHI translation. |
| |
| enum class AggregateDescription { |
| /// When analyzing the value that was inserted into an aggregate, we did |
| /// not manage to find defining `extractvalue` instruction to analyze. |
| NotFound, |
| /// When analyzing the value that was inserted into an aggregate, we did |
| /// manage to find defining `extractvalue` instruction[s], and everything |
| /// matched perfectly - aggregate type, element insertion/extraction index. |
| Found, |
| /// When analyzing the value that was inserted into an aggregate, we did |
| /// manage to find defining `extractvalue` instruction, but there was |
| /// a mismatch: either the source type from which the extraction was didn't |
| /// match the aggregate type into which the insertion was, |
| /// or the extraction/insertion channels mismatched, |
| /// or different elements had different source aggregates. |
| FoundMismatch |
| }; |
| auto Describe = [](Optional<Value *> SourceAggregate) { |
| if (SourceAggregate == NotFound) |
| return AggregateDescription::NotFound; |
| if (*SourceAggregate == FoundMismatch) |
| return AggregateDescription::FoundMismatch; |
| return AggregateDescription::Found; |
| }; |
| |
| // Given the value \p Elt that was being inserted into element \p EltIdx of an |
| // aggregate AggTy, see if \p Elt was originally defined by an |
| // appropriate extractvalue (same element index, same aggregate type). |
| // If found, return the source aggregate from which the extraction was. |
| // If \p PredBB is provided, does PHI translation of an \p Elt first. |
| auto FindSourceAggregate = |
| [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, |
| Optional<BasicBlock *> PredBB) -> Optional<Value *> { |
| // For now(?), only deal with, at most, a single level of PHI indirection. |
| if (UseBB && PredBB) |
| Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); |
| // FIXME: deal with multiple levels of PHI indirection? |
| |
| // Did we find an extraction? |
| auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); |
| if (!EVI) |
| return NotFound; |
| |
| Value *SourceAggregate = EVI->getAggregateOperand(); |
| |
| // Is the extraction from the same type into which the insertion was? |
| if (SourceAggregate->getType() != AggTy) |
| return FoundMismatch; |
| // And the element index doesn't change between extraction and insertion? |
| if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) |
| return FoundMismatch; |
| |
| return SourceAggregate; // AggregateDescription::Found |
| }; |
| |
| // Given elements AggElts that were constructing an aggregate OrigIVI, |
| // see if we can find appropriate source aggregate for each of the elements, |
| // and see it's the same aggregate for each element. If so, return it. |
| auto FindCommonSourceAggregate = |
| [&](Optional<BasicBlock *> UseBB, |
| Optional<BasicBlock *> PredBB) -> Optional<Value *> { |
| Optional<Value *> SourceAggregate; |
| |
| for (auto I : enumerate(AggElts)) { |
| assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && |
| "We don't store nullptr in SourceAggregate!"); |
| assert((Describe(SourceAggregate) == AggregateDescription::Found) == |
| (I.index() != 0) && |
| "SourceAggregate should be valid after the first element,"); |
| |
| // For this element, is there a plausible source aggregate? |
| // FIXME: we could special-case undef element, IFF we know that in the |
| // source aggregate said element isn't poison. |
| Optional<Value *> SourceAggregateForElement = |
| FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); |
| |
| // Okay, what have we found? Does that correlate with previous findings? |
| |
| // Regardless of whether or not we have previously found source |
| // aggregate for previous elements (if any), if we didn't find one for |
| // this element, passthrough whatever we have just found. |
| if (Describe(SourceAggregateForElement) != AggregateDescription::Found) |
| return SourceAggregateForElement; |
| |
| // Okay, we have found source aggregate for this element. |
| // Let's see what we already know from previous elements, if any. |
| switch (Describe(SourceAggregate)) { |
| case AggregateDescription::NotFound: |
| // This is apparently the first element that we have examined. |
| SourceAggregate = SourceAggregateForElement; // Record the aggregate! |
| continue; // Great, now look at next element. |
| case AggregateDescription::Found: |
| // We have previously already successfully examined other elements. |
| // Is this the same source aggregate we've found for other elements? |
| if (*SourceAggregateForElement != *SourceAggregate) |
| return FoundMismatch; |
| continue; // Still the same aggregate, look at next element. |
| case AggregateDescription::FoundMismatch: |
| llvm_unreachable("Can't happen. We would have early-exited then."); |
| }; |
| } |
| |
| assert(Describe(SourceAggregate) == AggregateDescription::Found && |
| "Must be a valid Value"); |
| return *SourceAggregate; |
| }; |
| |
| Optional<Value *> SourceAggregate; |
| |
| // Can we find the source aggregate without looking at predecessors? |
| SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); |
| if (Describe(SourceAggregate) != AggregateDescription::NotFound) { |
| if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) |
| return nullptr; // Conflicting source aggregates! |
| ++NumAggregateReconstructionsSimplified; |
| return replaceInstUsesWith(OrigIVI, *SourceAggregate); |
| } |
| |
| // Okay, apparently we need to look at predecessors. |
| |
| // We should be smart about picking the "use" basic block, which will be the |
| // merge point for aggregate, where we'll insert the final PHI that will be |
| // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. |
| // We should look in which blocks each of the AggElts is being defined, |
| // they all should be defined in the same basic block. |
| BasicBlock *UseBB = nullptr; |
| |
| for (const Optional<Instruction *> &I : AggElts) { |
| BasicBlock *BB = (*I)->getParent(); |
| // If it's the first instruction we've encountered, record the basic block. |
| if (!UseBB) { |
| UseBB = BB; |
| continue; |
| } |
| // Otherwise, this must be the same basic block we've seen previously. |
| if (UseBB != BB) |
| return nullptr; |
| } |
| |
| // If *all* of the elements are basic-block-independent, meaning they are |
| // either function arguments, or constant expressions, then if we didn't |
| // handle them without predecessor-aware handling, we won't handle them now. |
| if (!UseBB) |
| return nullptr; |
| |
| // If we didn't manage to find source aggregate without looking at |
| // predecessors, and there are no predecessors to look at, then we're done. |
| if (pred_empty(UseBB)) |
| return nullptr; |
| |
| // Arbitrary predecessor count limit. |
| static const int PredCountLimit = 64; |
| |
| // Cache the (non-uniqified!) list of predecessors in a vector, |
| // checking the limit at the same time for efficiency. |
| SmallVector<BasicBlock *, 4> Preds; // May have duplicates! |
| for (BasicBlock *Pred : predecessors(UseBB)) { |
| // Don't bother if there are too many predecessors. |
| if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? |
| return nullptr; |
| Preds.emplace_back(Pred); |
| } |
| |
| // For each predecessor, what is the source aggregate, |
| // from which all the elements were originally extracted from? |
| // Note that we want for the map to have stable iteration order! |
| SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; |
| for (BasicBlock *Pred : Preds) { |
| std::pair<decltype(SourceAggregates)::iterator, bool> IV = |
| SourceAggregates.insert({Pred, nullptr}); |
| // Did we already evaluate this predecessor? |
| if (!IV.second) |
| continue; |
| |
| // Let's hope that when coming from predecessor Pred, all elements of the |
| // aggregate produced by OrigIVI must have been originally extracted from |
| // the same aggregate. Is that so? Can we find said original aggregate? |
| SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); |
| if (Describe(SourceAggregate) != AggregateDescription::Found) |
| return nullptr; // Give up. |
| IV.first->second = *SourceAggregate; |
| } |
| |
| // All good! Now we just need to thread the source aggregates here. |
| // Note that we have to insert the new PHI here, ourselves, because we can't |
| // rely on InstCombinerImpl::run() inserting it into the right basic block. |
| // Note that the same block can be a predecessor more than once, |
| // and we need to preserve that invariant for the PHI node. |
| BuilderTy::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(UseBB->getFirstNonPHI()); |
| auto *PHI = |
| Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); |
| for (BasicBlock *Pred : Preds) |
| PHI->addIncoming(SourceAggregates[Pred], Pred); |
| |
| ++NumAggregateReconstructionsSimplified; |
| return replaceInstUsesWith(OrigIVI, PHI); |
| } |
| |
| /// Try to find redundant insertvalue instructions, like the following ones: |
| /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 |
| /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 |
| /// Here the second instruction inserts values at the same indices, as the |
| /// first one, making the first one redundant. |
| /// It should be transformed to: |
| /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 |
| Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { |
| bool IsRedundant = false; |
| ArrayRef<unsigned int> FirstIndices = I.getIndices(); |
| |
| // If there is a chain of insertvalue instructions (each of them except the |
| // last one has only one use and it's another insertvalue insn from this |
| // chain), check if any of the 'children' uses the same indices as the first |
| // instruction. In this case, the first one is redundant. |
| Value *V = &I; |
| unsigned Depth = 0; |
| while (V->hasOneUse() && Depth < 10) { |
| User *U = V->user_back(); |
| auto UserInsInst = dyn_cast<InsertValueInst>(U); |
| if (!UserInsInst || U->getOperand(0) != V) |
| break; |
| if (UserInsInst->getIndices() == FirstIndices) { |
| IsRedundant = true; |
| break; |
| } |
| V = UserInsInst; |
| Depth++; |
| } |
| |
| if (IsRedundant) |
| return replaceInstUsesWith(I, I.getOperand(0)); |
| |
| if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) |
| return NewI; |
| |
| return nullptr; |
| } |
| |
| static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { |
| // Can not analyze scalable type, the number of elements is not a compile-time |
| // constant. |
| if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) |
| return false; |
| |
| int MaskSize = Shuf.getShuffleMask().size(); |
| int VecSize = |
| cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); |
| |
| // A vector select does not change the size of the operands. |
| if (MaskSize != VecSize) |
| return false; |
| |
| // Each mask element must be undefined or choose a vector element from one of |
| // the source operands without crossing vector lanes. |
| for (int i = 0; i != MaskSize; ++i) { |
| int Elt = Shuf.getMaskValue(i); |
| if (Elt != -1 && Elt != i && Elt != i + VecSize) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Turn a chain of inserts that splats a value into an insert + shuffle: |
| /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> |
| /// shufflevector(insertelt(X, %k, 0), poison, zero) |
| static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { |
| // We are interested in the last insert in a chain. So if this insert has a |
| // single user and that user is an insert, bail. |
| if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) |
| return nullptr; |
| |
| VectorType *VecTy = InsElt.getType(); |
| // Can not handle scalable type, the number of elements is not a compile-time |
| // constant. |
| if (isa<ScalableVectorType>(VecTy)) |
| return nullptr; |
| unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); |
| |
| // Do not try to do this for a one-element vector, since that's a nop, |
| // and will cause an inf-loop. |
| if (NumElements == 1) |
| return nullptr; |
| |
| Value *SplatVal = InsElt.getOperand(1); |
| InsertElementInst *CurrIE = &InsElt; |
| SmallBitVector ElementPresent(NumElements, false); |
| InsertElementInst *FirstIE = nullptr; |
| |
| // Walk the chain backwards, keeping track of which indices we inserted into, |
| // until we hit something that isn't an insert of the splatted value. |
| while (CurrIE) { |
| auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); |
| if (!Idx || CurrIE->getOperand(1) != SplatVal) |
| return nullptr; |
| |
| auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); |
| // Check none of the intermediate steps have any additional uses, except |
| // for the root insertelement instruction, which can be re-used, if it |
| // inserts at position 0. |
| if (CurrIE != &InsElt && |
| (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) |
| return nullptr; |
| |
| ElementPresent[Idx->getZExtValue()] = true; |
| FirstIE = CurrIE; |
| CurrIE = NextIE; |
| } |
| |
| // If this is just a single insertelement (not a sequence), we are done. |
| if (FirstIE == &InsElt) |
| return nullptr; |
| |
| // If we are not inserting into an undef vector, make sure we've seen an |
| // insert into every element. |
| // TODO: If the base vector is not undef, it might be better to create a splat |
| // and then a select-shuffle (blend) with the base vector. |
| if (!match(FirstIE->getOperand(0), m_Undef())) |
| if (!ElementPresent.all()) |
| return nullptr; |
| |
| // Create the insert + shuffle. |
| Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); |
| PoisonValue *PoisonVec = PoisonValue::get(VecTy); |
| Constant *Zero = ConstantInt::get(Int32Ty, 0); |
| if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) |
| FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); |
| |
| // Splat from element 0, but replace absent elements with undef in the mask. |
| SmallVector<int, 16> Mask(NumElements, 0); |
| for (unsigned i = 0; i != NumElements; ++i) |
| if (!ElementPresent[i]) |
| Mask[i] = -1; |
| |
| return new ShuffleVectorInst(FirstIE, Mask); |
| } |
| |
| /// Try to fold an insert element into an existing splat shuffle by changing |
| /// the shuffle's mask to include the index of this insert element. |
| static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { |
| // Check if the vector operand of this insert is a canonical splat shuffle. |
| auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); |
| if (!Shuf || !Shuf->isZeroEltSplat()) |
| return nullptr; |
| |
| // Bail out early if shuffle is scalable type. The number of elements in |
| // shuffle mask is unknown at compile-time. |
| if (isa<ScalableVectorType>(Shuf->getType())) |
| return nullptr; |
| |
| // Check for a constant insertion index. |
| uint64_t IdxC; |
| if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) |
| return nullptr; |
| |
| // Check if the splat shuffle's input is the same as this insert's scalar op. |
| Value *X = InsElt.getOperand(1); |
| Value *Op0 = Shuf->getOperand(0); |
| if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) |
| return nullptr; |
| |
| // Replace the shuffle mask element at the index of this insert with a zero. |
| // For example: |
| // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 |
| // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> |
| unsigned NumMaskElts = |
| cast<FixedVectorType>(Shuf->getType())->getNumElements(); |
| SmallVector<int, 16> NewMask(NumMaskElts); |
| for (unsigned i = 0; i != NumMaskElts; ++i) |
| NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); |
| |
| return new ShuffleVectorInst(Op0, NewMask); |
| } |
| |
| /// Try to fold an extract+insert element into an existing identity shuffle by |
| /// changing the shuffle's mask to include the index of this insert element. |
| static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { |
| // Check if the vector operand of this insert is an identity shuffle. |
| auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); |
| if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || |
| !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) |
| return nullptr; |
| |
| // Bail out early if shuffle is scalable type. The number of elements in |
| // shuffle mask is unknown at compile-time. |
| if (isa<ScalableVectorType>(Shuf->getType())) |
| return nullptr; |
| |
| // Check for a constant insertion index. |
| uint64_t IdxC; |
| if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) |
| return nullptr; |
| |
| // Check if this insert's scalar op is extracted from the identity shuffle's |
| // input vector. |
| Value *Scalar = InsElt.getOperand(1); |
| Value *X = Shuf->getOperand(0); |
| if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) |
| return nullptr; |
| |
| // Replace the shuffle mask element at the index of this extract+insert with |
| // that same index value. |
| // For example: |
| // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' |
| unsigned NumMaskElts = |
| cast<FixedVectorType>(Shuf->getType())->getNumElements(); |
| SmallVector<int, 16> NewMask(NumMaskElts); |
| ArrayRef<int> OldMask = Shuf->getShuffleMask(); |
| for (unsigned i = 0; i != NumMaskElts; ++i) { |
| if (i != IdxC) { |
| // All mask elements besides the inserted element remain the same. |
| NewMask[i] = OldMask[i]; |
| } else if (OldMask[i] == (int)IdxC) { |
| // If the mask element was already set, there's nothing to do |
| // (demanded elements analysis may unset it later). |
| return nullptr; |
| } else { |
| assert(OldMask[i] == UndefMaskElem && |
| "Unexpected shuffle mask element for identity shuffle"); |
| NewMask[i] = IdxC; |
| } |
| } |
| |
| return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); |
| } |
| |
| /// If we have an insertelement instruction feeding into another insertelement |
| /// and the 2nd is inserting a constant into the vector, canonicalize that |
| /// constant insertion before the insertion of a variable: |
| /// |
| /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> |
| /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 |
| /// |
| /// This has the potential of eliminating the 2nd insertelement instruction |
| /// via constant folding of the scalar constant into a vector constant. |
| static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, |
| InstCombiner::BuilderTy &Builder) { |
| auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); |
| if (!InsElt1 || !InsElt1->hasOneUse()) |
| return nullptr; |
| |
| Value *X, *Y; |
| Constant *ScalarC; |
| ConstantInt *IdxC1, *IdxC2; |
| if (match(InsElt1->getOperand(0), m_Value(X)) && |
| match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && |
| match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && |
| match(InsElt2.getOperand(1), m_Constant(ScalarC)) && |
| match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { |
| Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); |
| return InsertElementInst::Create(NewInsElt1, Y, IdxC1); |
| } |
| |
| return nullptr; |
| } |
| |
| /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex |
| /// --> shufflevector X, CVec', Mask' |
| static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { |
| auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); |
| // Bail out if the parent has more than one use. In that case, we'd be |
| // replacing the insertelt with a shuffle, and that's not a clear win. |
| if (!Inst || !Inst->hasOneUse()) |
| return nullptr; |
| if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { |
| // The shuffle must have a constant vector operand. The insertelt must have |
| // a constant scalar being inserted at a constant position in the vector. |
| Constant *ShufConstVec, *InsEltScalar; |
| uint64_t InsEltIndex; |
| if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || |
| !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || |
| !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) |
| return nullptr; |
| |
| // Adding an element to an arbitrary shuffle could be expensive, but a |
| // shuffle that selects elements from vectors without crossing lanes is |
| // assumed cheap. |
| // If we're just adding a constant into that shuffle, it will still be |
| // cheap. |
| if (!isShuffleEquivalentToSelect(*Shuf)) |
| return nullptr; |
| |
| // From the above 'select' check, we know that the mask has the same number |
| // of elements as the vector input operands. We also know that each constant |
| // input element is used in its lane and can not be used more than once by |
| // the shuffle. Therefore, replace the constant in the shuffle's constant |
| // vector with the insertelt constant. Replace the constant in the shuffle's |
| // mask vector with the insertelt index plus the length of the vector |
| // (because the constant vector operand of a shuffle is always the 2nd |
| // operand). |
| ArrayRef<int> Mask = Shuf->getShuffleMask(); |
| unsigned NumElts = Mask.size(); |
| SmallVector<Constant *, 16> NewShufElts(NumElts); |
| SmallVector<int, 16> NewMaskElts(NumElts); |
| for (unsigned I = 0; I != NumElts; ++I) { |
| if (I == InsEltIndex) { |
| NewShufElts[I] = InsEltScalar; |
| NewMaskElts[I] = InsEltIndex + NumElts; |
| } else { |
| // Copy over the existing values. |
| NewShufElts[I] = ShufConstVec->getAggregateElement(I); |
| NewMaskElts[I] = Mask[I]; |
| } |
| |
| // Bail if we failed to find an element. |
| if (!NewShufElts[I]) |
| return nullptr; |
| } |
| |
| // Create new operands for a shuffle that includes the constant of the |
| // original insertelt. The old shuffle will be dead now. |
| return new ShuffleVectorInst(Shuf->getOperand(0), |
| ConstantVector::get(NewShufElts), NewMaskElts); |
| } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { |
| // Transform sequences of insertelements ops with constant data/indexes into |
| // a single shuffle op. |
| // Can not handle scalable type, the number of elements needed to create |
| // shuffle mask is not a compile-time constant. |
| if (isa<ScalableVectorType>(InsElt.getType())) |
| return nullptr; |
| unsigned NumElts = |
| cast<FixedVectorType>(InsElt.getType())->getNumElements(); |
| |
| uint64_t InsertIdx[2]; |
| Constant *Val[2]; |
| if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || |
| !match(InsElt.getOperand(1), m_Constant(Val[0])) || |
| !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || |
| !match(IEI->getOperand(1), m_Constant(Val[1]))) |
| return nullptr; |
| SmallVector<Constant *, 16> Values(NumElts); |
| SmallVector<int, 16> Mask(NumElts); |
| auto ValI = std::begin(Val); |
| // Generate new constant vector and mask. |
| // We have 2 values/masks from the insertelements instructions. Insert them |
| // into new value/mask vectors. |
| for (uint64_t I : InsertIdx) { |
| if (!Values[I]) { |
| Values[I] = *ValI; |
| Mask[I] = NumElts + I; |
| } |
| ++ValI; |
| } |
| // Remaining values are filled with 'undef' values. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| if (!Values[I]) { |
| Values[I] = UndefValue::get(InsElt.getType()->getElementType()); |
| Mask[I] = I; |
| } |
| } |
| // Create new operands for a shuffle that includes the constant of the |
| // original insertelt. |
| return new ShuffleVectorInst(IEI->getOperand(0), |
| ConstantVector::get(Values), Mask); |
| } |
| return nullptr; |
| } |
| |
| /// If both the base vector and the inserted element are extended from the same |
| /// type, do the insert element in the narrow source type followed by extend. |
| /// TODO: This can be extended to include other cast opcodes, but particularly |
| /// if we create a wider insertelement, make sure codegen is not harmed. |
| static Instruction *narrowInsElt(InsertElementInst &InsElt, |
| InstCombiner::BuilderTy &Builder) { |
| // We are creating a vector extend. If the original vector extend has another |
| // use, that would mean we end up with 2 vector extends, so avoid that. |
| // TODO: We could ease the use-clause to "if at least one op has one use" |
| // (assuming that the source types match - see next TODO comment). |
| Value *Vec = InsElt.getOperand(0); |
| if (!Vec->hasOneUse()) |
| return nullptr; |
| |
| Value *Scalar = InsElt.getOperand(1); |
| Value *X, *Y; |
| CastInst::CastOps CastOpcode; |
| if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) |
| CastOpcode = Instruction::FPExt; |
| else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) |
| CastOpcode = Instruction::SExt; |
| else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) |
| CastOpcode = Instruction::ZExt; |
| else |
| return nullptr; |
| |
| // TODO: We can allow mismatched types by creating an intermediate cast. |
| if (X->getType()->getScalarType() != Y->getType()) |
| return nullptr; |
| |
| // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) |
| Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); |
| return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); |
| } |
| |
| Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { |
| Value *VecOp = IE.getOperand(0); |
| Value *ScalarOp = IE.getOperand(1); |
| Value *IdxOp = IE.getOperand(2); |
| |
| if (auto *V = SimplifyInsertElementInst( |
| VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) |
| return replaceInstUsesWith(IE, V); |
| |
| // If the scalar is bitcast and inserted into undef, do the insert in the |
| // source type followed by bitcast. |
| // TODO: Generalize for insert into any constant, not just undef? |
| Value *ScalarSrc; |
| if (match(VecOp, m_Undef()) && |
| match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && |
| (ScalarSrc->getType()->isIntegerTy() || |
| ScalarSrc->getType()->isFloatingPointTy())) { |
| // inselt undef, (bitcast ScalarSrc), IdxOp --> |
| // bitcast (inselt undef, ScalarSrc, IdxOp) |
| Type *ScalarTy = ScalarSrc->getType(); |
| Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); |
| UndefValue *NewUndef = UndefValue::get(VecTy); |
| Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); |
| return new BitCastInst(NewInsElt, IE.getType()); |
| } |
| |
| // If the vector and scalar are both bitcast from the same element type, do |
| // the insert in that source type followed by bitcast. |
| Value *VecSrc; |
| if (match(VecOp, m_BitCast(m_Value(VecSrc))) && |
| match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && |
| (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && |
| VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && |
| cast<VectorType>(VecSrc->getType())->getElementType() == |
| ScalarSrc->getType()) { |
| // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> |
| // bitcast (inselt VecSrc, ScalarSrc, IdxOp) |
| Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); |
| return new BitCastInst(NewInsElt, IE.getType()); |
| } |
| |
| // If the inserted element was extracted from some other fixed-length vector |
| // and both indexes are valid constants, try to turn this into a shuffle. |
| // Can not handle scalable vector type, the number of elements needed to |
| // create shuffle mask is not a compile-time constant. |
| uint64_t InsertedIdx, ExtractedIdx; |
| Value *ExtVecOp; |
| if (isa<FixedVectorType>(IE.getType()) && |
| match(IdxOp, m_ConstantInt(InsertedIdx)) && |
| match(ScalarOp, |
| m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && |
| isa<FixedVectorType>(ExtVecOp->getType()) && |
| ExtractedIdx < |
| cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { |
| // TODO: Looking at the user(s) to determine if this insert is a |
| // fold-to-shuffle opportunity does not match the usual instcombine |
| // constraints. We should decide if the transform is worthy based only |
| // on this instruction and its operands, but that may not work currently. |
| // |
| // Here, we are trying to avoid creating shuffles before reaching |
| // the end of a chain of extract-insert pairs. This is complicated because |
| // we do not generally form arbitrary shuffle masks in instcombine |
| // (because those may codegen poorly), but collectShuffleElements() does |
| // exactly that. |
| // |
| // The rules for determining what is an acceptable target-independent |
| // shuffle mask are fuzzy because they evolve based on the backend's |
| // capabilities and real-world impact. |
| auto isShuffleRootCandidate = [](InsertElementInst &Insert) { |
| if (!Insert.hasOneUse()) |
| return true; |
| auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); |
| if (!InsertUser) |
| return true; |
| return false; |
| }; |
| |
| // Try to form a shuffle from a chain of extract-insert ops. |
| if (isShuffleRootCandidate(IE)) { |
| SmallVector<int, 16> Mask; |
| ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); |
| |
| // The proposed shuffle may be trivial, in which case we shouldn't |
| // perform the combine. |
| if (LR.first != &IE && LR.second != &IE) { |
| // We now have a shuffle of LHS, RHS, Mask. |
| if (LR.second == nullptr) |
| LR.second = UndefValue::get(LR.first->getType()); |
| return new ShuffleVectorInst(LR.first, LR.second, Mask); |
| } |
| } |
| } |
| |
| if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { |
| unsigned VWidth = VecTy->getNumElements(); |
| APInt UndefElts(VWidth, 0); |
| APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); |
| if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { |
| if (V != &IE) |
| return replaceInstUsesWith(IE, V); |
| return &IE; |
| } |
| } |
| |
| if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) |
| return Shuf; |
| |
| if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) |
| return NewInsElt; |
| |
| if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) |
| return Broadcast; |
| |
| if (Instruction *Splat = foldInsEltIntoSplat(IE)) |
| return Splat; |
| |
| if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) |
| return IdentityShuf; |
| |
| if (Instruction *Ext = narrowInsElt(IE, Builder)) |
| return Ext; |
| |
| return nullptr; |
| } |
| |
| /// Return true if we can evaluate the specified expression tree if the vector |
| /// elements were shuffled in a different order. |
| static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, |
| unsigned Depth = 5) { |
| // We can always reorder the elements of a constant. |
| if (isa<Constant>(V)) |
| return true; |
| |
| // We won't reorder vector arguments. No IPO here. |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| |
| // Two users may expect different orders of the elements. Don't try it. |
| if (!I->hasOneUse()) |
| return false; |
| |
| if (Depth == 0) return false; |
| |
| switch (I->getOpcode()) { |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| // Propagating an undefined shuffle mask element to integer div/rem is not |
| // allowed because those opcodes can create immediate undefined behavior |
| // from an undefined element in an operand. |
| if (llvm::is_contained(Mask, -1)) |
| return false; |
| LLVM_FALLTHROUGH; |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::GetElementPtr: { |
| // Bail out if we would create longer vector ops. We could allow creating |
| // longer vector ops, but that may result in more expensive codegen. |
| Type *ITy = I->getType(); |
| if (ITy->isVectorTy() && |
| Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) |
| return false; |
| for (Value *Operand : I->operands()) { |
| if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) |
| return false; |
| } |
| return true; |
| } |
| case Instruction::InsertElement: { |
| ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); |
| if (!CI) return false; |
| int ElementNumber = CI->getLimitedValue(); |
| |
| // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' |
| // can't put an element into multiple indices. |
| bool SeenOnce = false; |
| for (int i = 0, e = Mask.size(); i != e; ++i) { |
| if (Mask[i] == ElementNumber) { |
| if (SeenOnce) |
| return false; |
| SeenOnce = true; |
| } |
| } |
| return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); |
| } |
| } |
| return false; |
| } |
| |
| /// Rebuild a new instruction just like 'I' but with the new operands given. |
| /// In the event of type mismatch, the type of the operands is correct. |
| static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { |
| // We don't want to use the IRBuilder here because we want the replacement |
| // instructions to appear next to 'I', not the builder's insertion point. |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| BinaryOperator *BO = cast<BinaryOperator>(I); |
| assert(NewOps.size() == 2 && "binary operator with #ops != 2"); |
| BinaryOperator *New = |
| BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), |
| NewOps[0], NewOps[1], "", BO); |
| if (isa<OverflowingBinaryOperator>(BO)) { |
| New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); |
| New->setHasNoSignedWrap(BO->hasNoSignedWrap()); |
| } |
| if (isa<PossiblyExactOperator>(BO)) { |
| New->setIsExact(BO->isExact()); |
| } |
| if (isa<FPMathOperator>(BO)) |
| New->copyFastMathFlags(I); |
| return New; |
| } |
| case Instruction::ICmp: |
| assert(NewOps.size() == 2 && "icmp with #ops != 2"); |
| return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), |
| NewOps[0], NewOps[1]); |
| case Instruction::FCmp: |
| assert(NewOps.size() == 2 && "fcmp with #ops != 2"); |
| return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), |
| NewOps[0], NewOps[1]); |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: { |
| // It's possible that the mask has a different number of elements from |
| // the original cast. We recompute the destination type to match the mask. |
| Type *DestTy = VectorType::get( |
| I->getType()->getScalarType(), |
| cast<VectorType>(NewOps[0]->getType())->getElementCount()); |
| assert(NewOps.size() == 1 && "cast with #ops != 1"); |
| return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, |
| "", I); |
| } |
| case Instruction::GetElementPtr: { |
| Value *Ptr = NewOps[0]; |
| ArrayRef<Value*> Idx = NewOps.slice(1); |
| GetElementPtrInst *GEP = GetElementPtrInst::Create( |
| cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); |
| GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); |
| return GEP; |
| } |
| } |
| llvm_unreachable("failed to rebuild vector instructions"); |
| } |
| |
| static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { |
| // Mask.size() does not need to be equal to the number of vector elements. |
| |
| assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); |
| Type *EltTy = V->getType()->getScalarType(); |
| Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); |
| if (match(V, m_Undef())) |
| return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); |
| |
| if (isa<ConstantAggregateZero>(V)) |
| return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); |
| |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), |
| Mask); |
| |
| Instruction *I = cast<Instruction>(V); |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::Select: |
| case Instruction::GetElementPtr: { |
| SmallVector<Value*, 8> NewOps; |
| bool NeedsRebuild = |
| (Mask.size() != |
| cast<FixedVectorType>(I->getType())->getNumElements()); |
| for (int i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Value *V; |
| // Recursively call evaluateInDifferentElementOrder on vector arguments |
| // as well. E.g. GetElementPtr may have scalar operands even if the |
| // return value is a vector, so we need to examine the operand type. |
| if (I->getOperand(i)->getType()->isVectorTy()) |
| V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); |
| else |
| V = I->getOperand(i); |
| NewOps.push_back(V); |
| NeedsRebuild |= (V != I->getOperand(i)); |
| } |
| if (NeedsRebuild) { |
| return buildNew(I, NewOps); |
| } |
| return I; |
| } |
| case Instruction::InsertElement: { |
| int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); |
| |
| // The insertelement was inserting at Element. Figure out which element |
| // that becomes after shuffling. The answer is guaranteed to be unique |
| // by CanEvaluateShuffled. |
| bool Found = false; |
| int Index = 0; |
| for (int e = Mask.size(); Index != e; ++Index) { |
| if (Mask[Index] == Element) { |
| Found = true; |
| break; |
| } |
| } |
| |
| // If element is not in Mask, no need to handle the operand 1 (element to |
| // be inserted). Just evaluate values in operand 0 according to Mask. |
| if (!Found) |
| return evaluateInDifferentElementOrder(I->getOperand(0), Mask); |
| |
| Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); |
| return InsertElementInst::Create(V, I->getOperand(1), |
| ConstantInt::get(I32Ty, Index), "", I); |
| } |
| } |
| llvm_unreachable("failed to reorder elements of vector instruction!"); |
| } |
| |
| // Returns true if the shuffle is extracting a contiguous range of values from |
| // LHS, for example: |
| // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
| // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| |
| // Shuffles to: |EE|FF|GG|HH| |
| // +--+--+--+--+ |
| static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, |
| ArrayRef<int> Mask) { |
| unsigned LHSElems = |
| cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); |
| unsigned MaskElems = Mask.size(); |
| unsigned BegIdx = Mask.front(); |
| unsigned EndIdx = Mask.back(); |
| if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) |
| return false; |
| for (unsigned I = 0; I != MaskElems; ++I) |
| if (static_cast<unsigned>(Mask[I]) != BegIdx + I) |
| return false; |
| return true; |
| } |
| |
| /// These are the ingredients in an alternate form binary operator as described |
| /// below. |
| struct BinopElts { |
| BinaryOperator::BinaryOps Opcode; |
| Value *Op0; |
| Value *Op1; |
| BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, |
| Value *V0 = nullptr, Value *V1 = nullptr) : |
| Opcode(Opc), Op0(V0), Op1(V1) {} |
| operator bool() const { return Opcode != 0; } |
| }; |
| |
| /// Binops may be transformed into binops with different opcodes and operands. |
| /// Reverse the usual canonicalization to enable folds with the non-canonical |
| /// form of the binop. If a transform is possible, return the elements of the |
| /// new binop. If not, return invalid elements. |
| static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { |
| Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); |
| Type *Ty = BO->getType(); |
| switch (BO->getOpcode()) { |
| case Instruction::Shl: { |
| // shl X, C --> mul X, (1 << C) |
| Constant *C; |
| if (match(BO1, m_Constant(C))) { |
| Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); |
| return { Instruction::Mul, BO0, ShlOne }; |
| } |
| break; |
| } |
| case Instruction::Or: { |
| // or X, C --> add X, C (when X and C have no common bits set) |
| const APInt *C; |
| if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) |
| return { Instruction::Add, BO0, BO1 }; |
| break; |
| } |
| default: |
| break; |
| } |
| return {}; |
| } |
| |
| static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { |
| assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); |
| |
| // Are we shuffling together some value and that same value after it has been |
| // modified by a binop with a constant? |
| Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); |
| Constant *C; |
| bool Op0IsBinop; |
| if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) |
| Op0IsBinop = true; |
| else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) |
| Op0IsBinop = false; |
| else |
| return nullptr; |
| |
| // The identity constant for a binop leaves a variable operand unchanged. For |
| // a vector, this is a splat of something like 0, -1, or 1. |
| // If there's no identity constant for this binop, we're done. |
| auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); |
| BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); |
| Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); |
| if (!IdC) |
| return nullptr; |
| |
| // Shuffle identity constants into the lanes that return the original value. |
| // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} |
| // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} |
| // The existing binop constant vector remains in the same operand position. |
| ArrayRef<int> Mask = Shuf.getShuffleMask(); |
| Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : |
| ConstantExpr::getShuffleVector(IdC, C, Mask); |
| |
| bool MightCreatePoisonOrUB = |
| is_contained(Mask, UndefMaskElem) && |
| (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); |
| if (MightCreatePoisonOrUB) |
| NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); |
| |
| // shuf (bop X, C), X, M --> bop X, C' |
| // shuf X, (bop X, C), M --> bop X, C' |
| Value *X = Op0IsBinop ? Op1 : Op0; |
| Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); |
| NewBO->copyIRFlags(BO); |
| |
| // An undef shuffle mask element may propagate as an undef constant element in |
| // the new binop. That would produce poison where the original code might not. |
| // If we already made a safe constant, then there's no danger. |
| if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) |
| NewBO->dropPoisonGeneratingFlags(); |
| return NewBO; |
| } |
| |
| /// If we have an insert of a scalar to a non-zero element of an undefined |
| /// vector and then shuffle that value, that's the same as inserting to the zero |
| /// element and shuffling. Splatting from the zero element is recognized as the |
| /// canonical form of splat. |
| static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); |
| ArrayRef<int> Mask = Shuf.getShuffleMask(); |
| Value *X; |
| uint64_t IndexC; |
| |
| // Match a shuffle that is a splat to a non-zero element. |
| if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), |
| m_ConstantInt(IndexC)))) || |
| !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) |
| return nullptr; |
| |
| // Insert into element 0 of an undef vector. |
| UndefValue *UndefVec = UndefValue::get(Shuf.getType()); |
| Constant *Zero = Builder.getInt32(0); |
| Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); |
| |
| // Splat from element 0. Any mask element that is undefined remains undefined. |
| // For example: |
| // shuf (inselt undef, X, 2), _, <2,2,undef> |
| // --> shuf (inselt undef, X, 0), poison, <0,0,undef> |
| unsigned NumMaskElts = |
| cast<FixedVectorType>(Shuf.getType())->getNumElements(); |
| SmallVector<int, 16> NewMask(NumMaskElts, 0); |
| for (unsigned i = 0; i != NumMaskElts; ++i) |
| if (Mask[i] == UndefMaskElem) |
| NewMask[i] = Mask[i]; |
| |
| return new ShuffleVectorInst(NewIns, NewMask); |
| } |
| |
| /// Try to fold shuffles that are the equivalent of a vector select. |
| static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, |
| InstCombiner::BuilderTy &Builder, |
| const DataLayout &DL) { |
| if (!Shuf.isSelect()) |
| return nullptr; |
| |
| // Canonicalize to choose from operand 0 first unless operand 1 is undefined. |
| // Commuting undef to operand 0 conflicts with another canonicalization. |
| unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); |
| if (!match(Shuf.getOperand(1), m_Undef()) && |
| Shuf.getMaskValue(0) >= (int)NumElts) { |
| // TODO: Can we assert that both operands of a shuffle-select are not undef |
| // (otherwise, it would have been folded by instsimplify? |
| Shuf.commute(); |
| return &Shuf; |
| } |
| |
| if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) |
| return I; |
| |
| BinaryOperator *B0, *B1; |
| if (!match(Shuf.getOperand(0), m_BinOp(B0)) || |
| !match(Shuf.getOperand(1), m_BinOp(B1))) |
| return nullptr; |
| |
| Value *X, *Y; |
| Constant *C0, *C1; |
| bool ConstantsAreOp1; |
| if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && |
| match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) |
| ConstantsAreOp1 = true; |
| else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && |
| match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) |
| ConstantsAreOp1 = false; |
| else |
| return nullptr; |
| |
| // We need matching binops to fold the lanes together. |
| BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); |
| BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); |
| bool DropNSW = false; |
| if (ConstantsAreOp1 && Opc0 != Opc1) { |
| // TODO: We drop "nsw" if shift is converted into multiply because it may |
| // not be correct when the shift amount is BitWidth - 1. We could examine |
| // each vector element to determine if it is safe to keep that flag. |
| if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) |
| DropNSW = true; |
| if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { |
| assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); |
| Opc0 = AltB0.Opcode; |
| C0 = cast<Constant>(AltB0.Op1); |
| } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { |
| assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); |
| Opc1 = AltB1.Opcode; |
| C1 = cast<Constant>(AltB1.Op1); |
| } |
| } |
| |
| if (Opc0 != Opc1) |
| return nullptr; |
| |
| // The opcodes must be the same. Use a new name to make that clear. |
| BinaryOperator::BinaryOps BOpc = Opc0; |
| |
| // Select the constant elements needed for the single binop. |
| ArrayRef<int> Mask = Shuf.getShuffleMask(); |
| Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); |
| |
| // We are moving a binop after a shuffle. When a shuffle has an undefined |
| // mask element, the result is undefined, but it is not poison or undefined |
| // behavior. That is not necessarily true for div/rem/shift. |
| bool MightCreatePoisonOrUB = |
| is_contained(Mask, UndefMaskElem) && |
| (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); |
| if (MightCreatePoisonOrUB) |
| NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, |
| ConstantsAreOp1); |
| |
| Value *V; |
| if (X == Y) { |
| // Remove a binop and the shuffle by rearranging the constant: |
| // shuffle (op V, C0), (op V, C1), M --> op V, C' |
| // shuffle (op C0, V), (op C1, V), M --> op C', V |
| V = X; |
| } else { |
| // If there are 2 different variable operands, we must create a new shuffle |
| // (select) first, so check uses to ensure that we don't end up with more |
| // instructions than we started with. |
| if (!B0->hasOneUse() && !B1->hasOneUse()) |
| return nullptr; |
| |
| // If we use the original shuffle mask and op1 is *variable*, we would be |
| // putting an undef into operand 1 of div/rem/shift. This is either UB or |
| // poison. We do not have to guard against UB when *constants* are op1 |
| // because safe constants guarantee that we do not overflow sdiv/srem (and |
| // there's no danger for other opcodes). |
| // TODO: To allow this case, create a new shuffle mask with no undefs. |
| if (MightCreatePoisonOrUB && !ConstantsAreOp1) |
| return nullptr; |
| |
| // Note: In general, we do not create new shuffles in InstCombine because we |
| // do not know if a target can lower an arbitrary shuffle optimally. In this |
| // case, the shuffle uses the existing mask, so there is no additional risk. |
| |
| // Select the variable vectors first, then perform the binop: |
| // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' |
| // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) |
| V = Builder.CreateShuffleVector(X, Y, Mask); |
| } |
| |
| Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : |
| BinaryOperator::Create(BOpc, NewC, V); |
| |
| // Flags are intersected from the 2 source binops. But there are 2 exceptions: |
| // 1. If we changed an opcode, poison conditions might have changed. |
| // 2. If the shuffle had undef mask elements, the new binop might have undefs |
| // where the original code did not. But if we already made a safe constant, |
| // then there's no danger. |
| NewBO->copyIRFlags(B0); |
| NewBO->andIRFlags(B1); |
| if (DropNSW) |
| NewBO->setHasNoSignedWrap(false); |
| if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) |
| NewBO->dropPoisonGeneratingFlags(); |
| return NewBO; |
| } |
| |
| /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. |
| /// Example (little endian): |
| /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> |
| static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, |
| bool IsBigEndian) { |
| // This must be a bitcasted shuffle of 1 vector integer operand. |
| Type *DestType = Shuf.getType(); |
| Value *X; |
| if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || |
| !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| // The source type must have the same number of elements as the shuffle, |
| // and the source element type must be larger than the shuffle element type. |
| Type *SrcType = X->getType(); |
| if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || |
| cast<FixedVectorType>(SrcType)->getNumElements() != |
| cast<FixedVectorType>(DestType)->getNumElements() || |
| SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) |
| return nullptr; |
| |
| assert(Shuf.changesLength() && !Shuf.increasesLength() && |
| "Expected a shuffle that decreases length"); |
| |
| // Last, check that the mask chooses the correct low bits for each narrow |
| // element in the result. |
| uint64_t TruncRatio = |
| SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); |
| ArrayRef<int> Mask = Shuf.getShuffleMask(); |
| for (unsigned i = 0, e = Mask.size(); i != e; ++i) { |
| if (Mask[i] == UndefMaskElem) |
| continue; |
| uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; |
| assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); |
| if (Mask[i] != (int)LSBIndex) |
| return nullptr; |
| } |
| |
| return new TruncInst(X, DestType); |
| } |
| |
| /// Match a shuffle-select-shuffle pattern where the shuffles are widening and |
| /// narrowing (concatenating with undef and extracting back to the original |
| /// length). This allows replacing the wide select with a narrow select. |
| static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, |
| InstCombiner::BuilderTy &Builder) { |
| // This must be a narrowing identity shuffle. It extracts the 1st N elements |
| // of the 1st vector operand of a shuffle. |
| if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) |
| return nullptr; |
| |
| // The vector being shuffled must be a vector select that we can eliminate. |
| // TODO: The one-use requirement could be eased if X and/or Y are constants. |
| Value *Cond, *X, *Y; |
| if (!match(Shuf.getOperand(0), |
| m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) |
| return nullptr; |
| |
| // We need a narrow condition value. It must be extended with undef elements |
| // and have the same number of elements as this shuffle. |
| unsigned NarrowNumElts = |
| cast<FixedVectorType>(Shuf.getType())->getNumElements(); |
| Value *NarrowCond; |
| if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || |
| cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != |
| NarrowNumElts || |
| !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) |
| return nullptr; |
| |
| // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> |
| // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) |
| Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); |
| Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); |
| return SelectInst::Create(NarrowCond, NarrowX, NarrowY); |
| } |
| |
| /// Try to fold an extract subvector operation. |
| static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { |
| Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); |
| if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) |
| return nullptr; |
| |
| // Check if we are extracting all bits of an inserted scalar: |
| // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type |
| Value *X; |
| if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && |
| X->getType()->getPrimitiveSizeInBits() == |
| Shuf.getType()->getPrimitiveSizeInBits()) |
| return new BitCastInst(X, Shuf.getType()); |
| |
| // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. |
| Value *Y; |
| ArrayRef<int> Mask; |
| if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) |
| return nullptr; |
| |
| // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, |
| // then combining may result in worse codegen. |
| if (!Op0->hasOneUse()) |
| return nullptr; |
| |
| // We are extracting a subvector from a shuffle. Remove excess elements from |
| // the 1st shuffle mask to eliminate the extract. |
| // |
| // This transform is conservatively limited to identity extracts because we do |
| // not allow arbitrary shuffle mask creation as a target-independent transform |
| // (because we can't guarantee that will lower efficiently). |
| // |
| // If the extracting shuffle has an undef mask element, it transfers to the |
| // new shuffle mask. Otherwise, copy the original mask element. Example: |
| // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> |
| // shuf X, Y, <C0, undef, C2, undef> |
| unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); |
| SmallVector<int, 16> NewMask(NumElts); |
| assert(NumElts < Mask.size() && |
| "Identity with extract must have less elements than its inputs"); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int ExtractMaskElt = Shuf.getMaskValue(i); |
| int MaskElt = Mask[i]; |
| NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; |
| } |
| return new ShuffleVectorInst(X, Y, NewMask); |
| } |
| |
| /// Try to replace a shuffle with an insertelement or try to replace a shuffle |
| /// operand with the operand of an insertelement. |
| static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, |
| InstCombinerImpl &IC) { |
| Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); |
| SmallVector<int, 16> Mask; |
| Shuf.getShuffleMask(Mask); |
| |
| int NumElts = Mask.size(); |
| int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); |
| |
| // This is a specialization of a fold in SimplifyDemandedVectorElts. We may |
| // not be able to handle it there if the insertelement has >1 use. |
| // If the shuffle has an insertelement operand but does not choose the |
| // inserted scalar element from that value, then we can replace that shuffle |
| // operand with the source vector of the insertelement. |
| Value *X; |
| uint64_t IdxC; |
| if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { |
| // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask |
| if (!is_contained(Mask, (int)IdxC)) |
| return IC.replaceOperand(Shuf, 0, X); |
| } |
| if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { |
| // Offset the index constant by the vector width because we are checking for |
| // accesses to the 2nd vector input of the shuffle. |
| IdxC += InpNumElts; |
| // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask |
| if (!is_contained(Mask, (int)IdxC)) |
| return IC.replaceOperand(Shuf, 1, X); |
| } |
| // For the rest of the transform, the shuffle must not change vector sizes. |
| // TODO: This restriction could be removed if the insert has only one use |
| // (because the transform would require a new length-changing shuffle). |
| if (NumElts != InpNumElts) |
| return nullptr; |
| |
| // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' |
| auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { |
| // We need an insertelement with a constant index. |
| if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), |
| m_ConstantInt(IndexC)))) |
| return false; |
| |
| // Test the shuffle mask to see if it splices the inserted scalar into the |
| // operand 1 vector of the shuffle. |
| int NewInsIndex = -1; |
| for (int i = 0; i != NumElts; ++i) { |
| // Ignore undef mask elements. |
| if (Mask[i] == -1) |
| continue; |
| |
| // The shuffle takes elements of operand 1 without lane changes. |
| if (Mask[i] == NumElts + i) |
| continue; |
| |
| // The shuffle must choose the inserted scalar exactly once. |
| if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) |
| return false; |
| |
| // The shuffle is placing the inserted scalar into element i. |
| NewInsIndex = i; |
| } |
| |
| assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); |
| |
| // Index is updated to the potentially translated insertion lane. |
| IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); |
| return true; |
| }; |
| |
| // If the shuffle is unnecessary, insert the scalar operand directly into |
| // operand 1 of the shuffle. Example: |
| // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 |
| Value *Scalar; |
| ConstantInt *IndexC; |
| if (isShufflingScalarIntoOp1(Scalar, IndexC)) |
| return InsertElementInst::Create(V1, Scalar, IndexC); |
| |
| // Try again after commuting shuffle. Example: |
| // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> |
| // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 |
| std::swap(V0, V1); |
| ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); |
| if (isShufflingScalarIntoOp1(Scalar, IndexC)) |
| return InsertElementInst::Create(V1, Scalar, IndexC); |
| |
| return nullptr; |
| } |
| |
| static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { |
| // Match the operands as identity with padding (also known as concatenation |
| // with undef) shuffles of the same source type. The backend is expected to |
| // recreate these concatenations from a shuffle of narrow operands. |
| auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); |
| auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); |
| if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || |
| !Shuffle1 || !Shuffle1->isIdentityWithPadding()) |
| return nullptr; |
| |
| // We limit this transform to power-of-2 types because we expect that the |
| // backend can convert the simplified IR patterns to identical nodes as the |
| // original IR. |
| // TODO: If we can verify the same behavior for arbitrary types, the |
| // power-of-2 checks can be removed. |
| Value *X = Shuffle0->getOperand(0); |
| Value *Y = Shuffle1->getOperand(0); |
| if (X->getType() != Y->getType() || |
| !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || |
| !isPowerOf2_32( |
| cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || |
| !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || |
| match(X, m_Undef()) || match(Y, m_Undef())) |
| return nullptr; |
| assert(match(Shuffle0->getOperand(1), m_Undef()) && |
| match(Shuffle1->getOperand(1), m_Undef()) && |
| "Unexpected operand for identity shuffle"); |
| |
| // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source |
| // operands directly by adjusting the shuffle mask to account for the narrower |
| // types: |
| // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' |
| int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); |
| int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); |
| assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); |
| |
| ArrayRef<int> Mask = Shuf.getShuffleMask(); |
| SmallVector<int, 16> NewMask(Mask.size(), -1); |
| for (int i = 0, e = Mask.size(); i != e; ++i) { |
| if (Mask[i] == -1) |
| continue; |
| |
| // If this shuffle is choosing an undef element from 1 of the sources, that |
| // element is undef. |
| if (Mask[i] < WideElts) { |
| if (Shuffle0->getMaskValue(Mask[i]) == -1) |
| continue; |
| } else { |
| if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) |
| continue; |
| } |
| |
| // If this shuffle is choosing from the 1st narrow op, the mask element is |
| // the same. If this shuffle is choosing from the 2nd narrow op, the mask |
| // element is offset down to adjust for the narrow vector widths. |
| if (Mask[i] < WideElts) { |
| assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); |
| NewMask[i] = Mask[i]; |
| } else { |
| assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); |
| NewMask[i] = Mask[i] - (WideElts - NarrowElts); |
| } |
| } |
| return new ShuffleVectorInst(X, Y, NewMask); |
| } |
| |
| Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { |
| Value *LHS = SVI.getOperand(0); |
| Value *RHS = SVI.getOperand(1); |
| SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); |
| if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), |
| SVI.getType(), ShufQuery)) |
| return replaceInstUsesWith(SVI, V); |
| |
| // Bail out for scalable vectors |
| if (isa<ScalableVectorType>(LHS->getType())) |
| return nullptr; |
| |
| unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); |
| unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); |
| |
| // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) |
| // |
| // if X and Y are of the same (vector) type, and the element size is not |
| // changed by the bitcasts, we can distribute the bitcasts through the |
| // shuffle, hopefully reducing the number of instructions. We make sure that |
| // at least one bitcast only has one use, so we don't *increase* the number of |
| // instructions here. |
| Value *X, *Y; |
| if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && |
| X->getType()->isVectorTy() && X->getType() == Y->getType() && |
| X->getType()->getScalarSizeInBits() == |
| SVI.getType()->getScalarSizeInBits() && |
| (LHS->hasOneUse() || RHS->hasOneUse())) { |
| Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), |
| SVI.getName() + ".uncasted"); |
| return new BitCastInst(V, SVI.getType()); |
| } |
| |
| ArrayRef<int> Mask = SVI.getShuffleMask(); |
| Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); |
| |
| // Peek through a bitcasted shuffle operand by scaling the mask. If the |
| // simulated shuffle can simplify, then this shuffle is unnecessary: |
| // shuf (bitcast X), undef, Mask --> bitcast X' |
| // TODO: This could be extended to allow length-changing shuffles. |
| // The transform might also be obsoleted if we allowed canonicalization |
| // of bitcasted shuffles. |
| if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && |
| X->getType()->isVectorTy() && VWidth == LHSWidth) { |
| // Try to create a scaled mask constant. |
| auto *XType = cast<FixedVectorType>(X->getType()); |
| unsigned XNumElts = XType->getNumElements(); |
| SmallVector<int, 16> ScaledMask; |
| if (XNumElts >= VWidth) { |
| assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); |
| narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); |
| } else { |
| assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); |
| if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) |
| ScaledMask.clear(); |
| } |
| if (!ScaledMask.empty()) { |
| // If the shuffled source vector simplifies, cast that value to this |
| // shuffle's type. |
| if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), |
| ScaledMask, XType, ShufQuery)) |
| return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); |
| } |
| } |
| |
| // shuffle x, x, mask --> shuffle x, undef, mask' |
| if (LHS == RHS) { |
| assert(!match(RHS, m_Undef()) && |
| "Shuffle with 2 undef ops not simplified?"); |
| return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); |
| } |
| |
| // shuffle undef, x, mask --> shuffle x, undef, mask' |
| if (match(LHS, m_Undef())) { |
| SVI.commute(); |
| return &SVI; |
| } |
| |
| if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) |
| return I; |
| |
| if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) |
| return I; |
| |
| if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) |
| return I; |
| |
| if (Instruction *I = narrowVectorSelect(SVI, Builder)) |
| return I; |
| |
| APInt UndefElts(VWidth, 0); |
| APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); |
| if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { |
| if (V != &SVI) |
| return replaceInstUsesWith(SVI, V); |
| return &SVI; |
| } |
| |
| if (Instruction *I = foldIdentityExtractShuffle(SVI)) |
| return I; |
| |
| // These transforms have the potential to lose undef knowledge, so they are |
| // intentionally placed after SimplifyDemandedVectorElts(). |
| if (Instruction *I = foldShuffleWithInsert(SVI, *this)) |
| return I; |
| if (Instruction *I = foldIdentityPaddedShuffles(SVI)) |
| return I; |
| |
| if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { |
| Value *V = evaluateInDifferentElementOrder(LHS, Mask); |
| return replaceInstUsesWith(SVI, V); |
| } |
| |
| // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to |
| // a non-vector type. We can instead bitcast the original vector followed by |
| // an extract of the desired element: |
| // |
| // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, |
| // <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| // %1 = bitcast <4 x i8> %sroa to i32 |
| // Becomes: |
| // %bc = bitcast <16 x i8> %in to <4 x i32> |
| // %ext = extractelement <4 x i32> %bc, i32 0 |
| // |
| // If the shuffle is extracting a contiguous range of values from the input |
| // vector then each use which is a bitcast of the extracted size can be |
| // replaced. This will work if the vector types are compatible, and the begin |
| // index is aligned to a value in the casted vector type. If the begin index |
| // isn't aligned then we can shuffle the original vector (keeping the same |
| // vector type) before extracting. |
| // |
| // This code will bail out if the target type is fundamentally incompatible |
| // with vectors of the source type. |
| // |
| // Example of <16 x i8>, target type i32: |
| // Index range [4,8): v-----------v Will work. |
| // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
| // <16 x i8>: | | | | | | | | | | | | | | | | | |
| // <4 x i32>: | | | | | |
| // +-----------+-----------+-----------+-----------+ |
| // Index range [6,10): ^-----------^ Needs an extra shuffle. |
| // Target type i40: ^--------------^ Won't work, bail. |
| bool MadeChange = false; |
| if (isShuffleExtractingFromLHS(SVI, Mask)) { |
| Value *V = LHS; |
| unsigned MaskElems = Mask.size(); |
| auto *SrcTy = cast<FixedVectorType>(V->getType()); |
| unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); |
| unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); |
| assert(SrcElemBitWidth && "vector elements must have a bitwidth"); |
| unsigned SrcNumElems = SrcTy->getNumElements(); |
| SmallVector<BitCastInst *, 8> BCs; |
| DenseMap<Type *, Value *> NewBCs; |
| for (User *U : SVI.users()) |
| if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) |
| if (!BC->use_empty()) |
| // Only visit bitcasts that weren't previously handled. |
| BCs.push_back(BC); |
| for (BitCastInst *BC : BCs) { |
| unsigned BegIdx = Mask.front(); |
| Type *TgtTy = BC->getDestTy(); |
| unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); |
| if (!TgtElemBitWidth) |
| continue; |
| unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; |
| bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; |
| bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); |
| if (!VecBitWidthsEqual) |
| continue; |
| if (!VectorType::isValidElementType(TgtTy)) |
| continue; |
| auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); |
| if (!BegIsAligned) { |
| // Shuffle the input so [0,NumElements) contains the output, and |
| // [NumElems,SrcNumElems) is undef. |
| SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); |
| for (unsigned I = 0, E = MaskElems, Idx = |