| //===- InstCombineMulDivRem.cpp -------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, |
| // srem, urem, frem. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <utility> |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| /// The specific integer value is used in a context where it is known to be |
| /// non-zero. If this allows us to simplify the computation, do so and return |
| /// the new operand, otherwise return null. |
| static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, |
| Instruction &CxtI) { |
| // If V has multiple uses, then we would have to do more analysis to determine |
| // if this is safe. For example, the use could be in dynamically unreached |
| // code. |
| if (!V->hasOneUse()) return nullptr; |
| |
| bool MadeChange = false; |
| |
| // ((1 << A) >>u B) --> (1 << (A-B)) |
| // Because V cannot be zero, we know that B is less than A. |
| Value *A = nullptr, *B = nullptr, *One = nullptr; |
| if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && |
| match(One, m_One())) { |
| A = IC.Builder.CreateSub(A, B); |
| return IC.Builder.CreateShl(One, A); |
| } |
| |
| // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it |
| // inexact. Similarly for <<. |
| BinaryOperator *I = dyn_cast<BinaryOperator>(V); |
| if (I && I->isLogicalShift() && |
| IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { |
| // We know that this is an exact/nuw shift and that the input is a |
| // non-zero context as well. |
| if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { |
| IC.replaceOperand(*I, 0, V2); |
| MadeChange = true; |
| } |
| |
| if (I->getOpcode() == Instruction::LShr && !I->isExact()) { |
| I->setIsExact(); |
| MadeChange = true; |
| } |
| |
| if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { |
| I->setHasNoUnsignedWrap(); |
| MadeChange = true; |
| } |
| } |
| |
| // TODO: Lots more we could do here: |
| // If V is a phi node, we can call this on each of its operands. |
| // "select cond, X, 0" can simplify to "X". |
| |
| return MadeChange ? V : nullptr; |
| } |
| |
| // TODO: This is a specific form of a much more general pattern. |
| // We could detect a select with any binop identity constant, or we |
| // could use SimplifyBinOp to see if either arm of the select reduces. |
| // But that needs to be done carefully and/or while removing potential |
| // reverse canonicalizations as in InstCombiner::foldSelectIntoOp(). |
| static Value *foldMulSelectToNegate(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Cond, *OtherOp; |
| |
| // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp |
| // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp |
| if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())), |
| m_Value(OtherOp)))) { |
| bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); |
| Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); |
| return Builder.CreateSelect(Cond, OtherOp, Neg); |
| } |
| // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp |
| // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp |
| if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())), |
| m_Value(OtherOp)))) { |
| bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap(); |
| Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap); |
| return Builder.CreateSelect(Cond, Neg, OtherOp); |
| } |
| |
| // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp |
| // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp |
| if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0), |
| m_SpecificFP(-1.0))), |
| m_Value(OtherOp)))) { |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.setFastMathFlags(I.getFastMathFlags()); |
| return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp)); |
| } |
| |
| // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp |
| // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp |
| if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0), |
| m_SpecificFP(1.0))), |
| m_Value(OtherOp)))) { |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.setFastMathFlags(I.getFastMathFlags()); |
| return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) { |
| if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| unsigned BitWidth = I.getType()->getScalarSizeInBits(); |
| |
| // X * -1 == 0 - X |
| if (match(Op1, m_AllOnes())) { |
| BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); |
| if (I.hasNoSignedWrap()) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| |
| // Also allow combining multiply instructions on vectors. |
| { |
| Value *NewOp; |
| Constant *C1, *C2; |
| const APInt *IVal; |
| if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), |
| m_Constant(C1))) && |
| match(C1, m_APInt(IVal))) { |
| // ((X << C2)*C1) == (X * (C1 << C2)) |
| Constant *Shl = ConstantExpr::getShl(C1, C2); |
| BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); |
| BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); |
| if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) |
| BO->setHasNoUnsignedWrap(); |
| if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && |
| Shl->isNotMinSignedValue()) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| |
| if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { |
| // Replace X*(2^C) with X << C, where C is either a scalar or a vector. |
| if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) { |
| BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); |
| |
| if (I.hasNoUnsignedWrap()) |
| Shl->setHasNoUnsignedWrap(); |
| if (I.hasNoSignedWrap()) { |
| const APInt *V; |
| if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) |
| Shl->setHasNoSignedWrap(); |
| } |
| |
| return Shl; |
| } |
| } |
| } |
| |
| if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) { |
| // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation. |
| // The "* (1<<C)" thus becomes a potential shifting opportunity. |
| if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this)) |
| return BinaryOperator::CreateMul( |
| NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName()); |
| } |
| |
| if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedMul; |
| |
| if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) |
| return replaceInstUsesWith(I, FoldedMul); |
| |
| // Simplify mul instructions with a constant RHS. |
| if (isa<Constant>(Op1)) { |
| // Canonicalize (X+C1)*CI -> X*CI+C1*CI. |
| Value *X; |
| Constant *C1; |
| if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { |
| Value *Mul = Builder.CreateMul(C1, Op1); |
| // Only go forward with the transform if C1*CI simplifies to a tidier |
| // constant. |
| if (!match(Mul, m_Mul(m_Value(), m_Value()))) |
| return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); |
| } |
| } |
| |
| // abs(X) * abs(X) -> X * X |
| // nabs(X) * nabs(X) -> X * X |
| if (Op0 == Op1) { |
| Value *X, *Y; |
| SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; |
| if (SPF == SPF_ABS || SPF == SPF_NABS) |
| return BinaryOperator::CreateMul(X, X); |
| |
| if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) |
| return BinaryOperator::CreateMul(X, X); |
| } |
| |
| // -X * C --> X * -C |
| Value *X, *Y; |
| Constant *Op1C; |
| if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) |
| return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); |
| |
| // -X * -Y --> X * Y |
| if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { |
| auto *NewMul = BinaryOperator::CreateMul(X, Y); |
| if (I.hasNoSignedWrap() && |
| cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && |
| cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) |
| NewMul->setHasNoSignedWrap(); |
| return NewMul; |
| } |
| |
| // -X * Y --> -(X * Y) |
| // X * -Y --> -(X * Y) |
| if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) |
| return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); |
| |
| // (X / Y) * Y = X - (X % Y) |
| // (X / Y) * -Y = (X % Y) - X |
| { |
| Value *Y = Op1; |
| BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); |
| if (!Div || (Div->getOpcode() != Instruction::UDiv && |
| Div->getOpcode() != Instruction::SDiv)) { |
| Y = Op0; |
| Div = dyn_cast<BinaryOperator>(Op1); |
| } |
| Value *Neg = dyn_castNegVal(Y); |
| if (Div && Div->hasOneUse() && |
| (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && |
| (Div->getOpcode() == Instruction::UDiv || |
| Div->getOpcode() == Instruction::SDiv)) { |
| Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); |
| |
| // If the division is exact, X % Y is zero, so we end up with X or -X. |
| if (Div->isExact()) { |
| if (DivOp1 == Y) |
| return replaceInstUsesWith(I, X); |
| return BinaryOperator::CreateNeg(X); |
| } |
| |
| auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem |
| : Instruction::SRem; |
| Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1); |
| if (DivOp1 == Y) |
| return BinaryOperator::CreateSub(X, Rem); |
| return BinaryOperator::CreateSub(Rem, X); |
| } |
| } |
| |
| /// i1 mul -> i1 and. |
| if (I.getType()->isIntOrIntVectorTy(1)) |
| return BinaryOperator::CreateAnd(Op0, Op1); |
| |
| // X*(1 << Y) --> X << Y |
| // (1 << Y)*X --> X << Y |
| { |
| Value *Y; |
| BinaryOperator *BO = nullptr; |
| bool ShlNSW = false; |
| if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { |
| BO = BinaryOperator::CreateShl(Op1, Y); |
| ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); |
| } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { |
| BO = BinaryOperator::CreateShl(Op0, Y); |
| ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); |
| } |
| if (BO) { |
| if (I.hasNoUnsignedWrap()) |
| BO->setHasNoUnsignedWrap(); |
| if (I.hasNoSignedWrap() && ShlNSW) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| } |
| |
| // (zext bool X) * (zext bool Y) --> zext (and X, Y) |
| // (sext bool X) * (sext bool Y) --> zext (and X, Y) |
| // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same) |
| if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || |
| (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && |
| X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && |
| (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) { |
| Value *And = Builder.CreateAnd(X, Y, "mulbool"); |
| return CastInst::Create(Instruction::ZExt, And, I.getType()); |
| } |
| // (sext bool X) * (zext bool Y) --> sext (and X, Y) |
| // (zext bool X) * (sext bool Y) --> sext (and X, Y) |
| // Note: -1 * 1 == 1 * -1 == -1 |
| if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || |
| (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && |
| X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && |
| (Op0->hasOneUse() || Op1->hasOneUse())) { |
| Value *And = Builder.CreateAnd(X, Y, "mulbool"); |
| return CastInst::Create(Instruction::SExt, And, I.getType()); |
| } |
| |
| // (bool X) * Y --> X ? Y : 0 |
| // Y * (bool X) --> X ? Y : 0 |
| if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0)); |
| if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0)); |
| |
| // (lshr X, 31) * Y --> (ashr X, 31) & Y |
| // Y * (lshr X, 31) --> (ashr X, 31) & Y |
| // TODO: We are not checking one-use because the elimination of the multiply |
| // is better for analysis? |
| // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be |
| // more similar to what we're doing above. |
| const APInt *C; |
| if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) |
| return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1); |
| if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) |
| return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0); |
| |
| // ((ashr X, 31) | 1) * X --> abs(X) |
| // X * ((ashr X, 31) | 1) --> abs(X) |
| if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X), |
| m_SpecificIntAllowUndef(BitWidth - 1)), |
| m_One()), |
| m_Deferred(X)))) { |
| Value *Abs = Builder.CreateBinaryIntrinsic( |
| Intrinsic::abs, X, |
| ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap())); |
| Abs->takeName(&I); |
| return replaceInstUsesWith(I, Abs); |
| } |
| |
| if (Instruction *Ext = narrowMathIfNoOverflow(I)) |
| return Ext; |
| |
| bool Changed = false; |
| if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoSignedWrap(true); |
| } |
| |
| if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoUnsignedWrap(true); |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) { |
| BinaryOperator::BinaryOps Opcode = I.getOpcode(); |
| assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && |
| "Expected fmul or fdiv"); |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Value *X, *Y; |
| |
| // -X * -Y --> X * Y |
| // -X / -Y --> X / Y |
| if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) |
| return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I); |
| |
| // fabs(X) * fabs(X) -> X * X |
| // fabs(X) / fabs(X) -> X / X |
| if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X)))) |
| return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I); |
| |
| // fabs(X) * fabs(Y) --> fabs(X * Y) |
| // fabs(X) / fabs(Y) --> fabs(X / Y) |
| if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) && |
| (Op0->hasOneUse() || Op1->hasOneUse())) { |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.setFastMathFlags(I.getFastMathFlags()); |
| Value *XY = Builder.CreateBinOp(Opcode, X, Y); |
| Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY); |
| Fabs->takeName(&I); |
| return replaceInstUsesWith(I, Fabs); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) { |
| if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1), |
| I.getFastMathFlags(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedMul; |
| |
| if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) |
| return replaceInstUsesWith(I, FoldedMul); |
| |
| if (Instruction *R = foldFPSignBitOps(I)) |
| return R; |
| |
| // X * -1.0 --> -X |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| if (match(Op1, m_SpecificFP(-1.0))) |
| return UnaryOperator::CreateFNegFMF(Op0, &I); |
| |
| // -X * C --> X * -C |
| Value *X, *Y; |
| Constant *C; |
| if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) |
| return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); |
| |
| // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) |
| if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) |
| return replaceInstUsesWith(I, V); |
| |
| if (I.hasAllowReassoc()) { |
| // Reassociate constant RHS with another constant to form constant |
| // expression. |
| if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { |
| Constant *C1; |
| if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { |
| // (C1 / X) * C --> (C * C1) / X |
| Constant *CC1 = ConstantExpr::getFMul(C, C1); |
| if (CC1->isNormalFP()) |
| return BinaryOperator::CreateFDivFMF(CC1, X, &I); |
| } |
| if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { |
| // (X / C1) * C --> X * (C / C1) |
| Constant *CDivC1 = ConstantExpr::getFDiv(C, C1); |
| if (CDivC1->isNormalFP()) |
| return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); |
| |
| // If the constant was a denormal, try reassociating differently. |
| // (X / C1) * C --> X / (C1 / C) |
| Constant *C1DivC = ConstantExpr::getFDiv(C1, C); |
| if (Op0->hasOneUse() && C1DivC->isNormalFP()) |
| return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); |
| } |
| |
| // We do not need to match 'fadd C, X' and 'fsub X, C' because they are |
| // canonicalized to 'fadd X, C'. Distributing the multiply may allow |
| // further folds and (X * C) + C2 is 'fma'. |
| if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { |
| // (X + C1) * C --> (X * C) + (C * C1) |
| Constant *CC1 = ConstantExpr::getFMul(C, C1); |
| Value *XC = Builder.CreateFMulFMF(X, C, &I); |
| return BinaryOperator::CreateFAddFMF(XC, CC1, &I); |
| } |
| if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { |
| // (C1 - X) * C --> (C * C1) - (X * C) |
| Constant *CC1 = ConstantExpr::getFMul(C, C1); |
| Value *XC = Builder.CreateFMulFMF(X, C, &I); |
| return BinaryOperator::CreateFSubFMF(CC1, XC, &I); |
| } |
| } |
| |
| Value *Z; |
| if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), |
| m_Value(Z)))) { |
| // Sink division: (X / Y) * Z --> (X * Z) / Y |
| Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); |
| return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); |
| } |
| |
| // sqrt(X) * sqrt(Y) -> sqrt(X * Y) |
| // nnan disallows the possibility of returning a number if both operands are |
| // negative (in that case, we should return NaN). |
| if (I.hasNoNaNs() && |
| match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) && |
| match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { |
| Value *XY = Builder.CreateFMulFMF(X, Y, &I); |
| Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); |
| return replaceInstUsesWith(I, Sqrt); |
| } |
| |
| // The following transforms are done irrespective of the number of uses |
| // for the expression "1.0/sqrt(X)". |
| // 1) 1.0/sqrt(X) * X -> X/sqrt(X) |
| // 2) X * 1.0/sqrt(X) -> X/sqrt(X) |
| // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it |
| // has the necessary (reassoc) fast-math-flags. |
| if (I.hasNoSignedZeros() && |
| match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && |
| match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X) |
| return BinaryOperator::CreateFDivFMF(X, Y, &I); |
| if (I.hasNoSignedZeros() && |
| match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && |
| match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X) |
| return BinaryOperator::CreateFDivFMF(X, Y, &I); |
| |
| // Like the similar transform in instsimplify, this requires 'nsz' because |
| // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. |
| if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && |
| Op0->hasNUses(2)) { |
| // Peek through fdiv to find squaring of square root: |
| // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y |
| if (match(Op0, m_FDiv(m_Value(X), |
| m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { |
| Value *XX = Builder.CreateFMulFMF(X, X, &I); |
| return BinaryOperator::CreateFDivFMF(XX, Y, &I); |
| } |
| // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) |
| if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)), |
| m_Value(X)))) { |
| Value *XX = Builder.CreateFMulFMF(X, X, &I); |
| return BinaryOperator::CreateFDivFMF(Y, XX, &I); |
| } |
| } |
| |
| if (I.isOnlyUserOfAnyOperand()) { |
| // pow(x, y) * pow(x, z) -> pow(x, y + z) |
| if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) && |
| match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) { |
| auto *YZ = Builder.CreateFAddFMF(Y, Z, &I); |
| auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I); |
| return replaceInstUsesWith(I, NewPow); |
| } |
| |
| // powi(x, y) * powi(x, z) -> powi(x, y + z) |
| if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) && |
| match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) && |
| Y->getType() == Z->getType()) { |
| auto *YZ = Builder.CreateAdd(Y, Z); |
| auto *NewPow = Builder.CreateIntrinsic( |
| Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I); |
| return replaceInstUsesWith(I, NewPow); |
| } |
| |
| // exp(X) * exp(Y) -> exp(X + Y) |
| if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && |
| match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) { |
| Value *XY = Builder.CreateFAddFMF(X, Y, &I); |
| Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); |
| return replaceInstUsesWith(I, Exp); |
| } |
| |
| // exp2(X) * exp2(Y) -> exp2(X + Y) |
| if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && |
| match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) { |
| Value *XY = Builder.CreateFAddFMF(X, Y, &I); |
| Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); |
| return replaceInstUsesWith(I, Exp2); |
| } |
| } |
| |
| // (X*Y) * X => (X*X) * Y where Y != X |
| // The purpose is two-fold: |
| // 1) to form a power expression (of X). |
| // 2) potentially shorten the critical path: After transformation, the |
| // latency of the instruction Y is amortized by the expression of X*X, |
| // and therefore Y is in a "less critical" position compared to what it |
| // was before the transformation. |
| if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && |
| Op1 != Y) { |
| Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); |
| return BinaryOperator::CreateFMulFMF(XX, Y, &I); |
| } |
| if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && |
| Op0 != Y) { |
| Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); |
| return BinaryOperator::CreateFMulFMF(XX, Y, &I); |
| } |
| } |
| |
| // log2(X * 0.5) * Y = log2(X) * Y - Y |
| if (I.isFast()) { |
| IntrinsicInst *Log2 = nullptr; |
| if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( |
| m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { |
| Log2 = cast<IntrinsicInst>(Op0); |
| Y = Op1; |
| } |
| if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( |
| m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { |
| Log2 = cast<IntrinsicInst>(Op1); |
| Y = Op0; |
| } |
| if (Log2) { |
| Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I); |
| Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); |
| return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Fold a divide or remainder with a select instruction divisor when one of the |
| /// select operands is zero. In that case, we can use the other select operand |
| /// because div/rem by zero is undefined. |
| bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { |
| SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); |
| if (!SI) |
| return false; |
| |
| int NonNullOperand; |
| if (match(SI->getTrueValue(), m_Zero())) |
| // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y |
| NonNullOperand = 2; |
| else if (match(SI->getFalseValue(), m_Zero())) |
| // div/rem X, (Cond ? Y : 0) -> div/rem X, Y |
| NonNullOperand = 1; |
| else |
| return false; |
| |
| // Change the div/rem to use 'Y' instead of the select. |
| replaceOperand(I, 1, SI->getOperand(NonNullOperand)); |
| |
| // Okay, we know we replace the operand of the div/rem with 'Y' with no |
| // problem. However, the select, or the condition of the select may have |
| // multiple uses. Based on our knowledge that the operand must be non-zero, |
| // propagate the known value for the select into other uses of it, and |
| // propagate a known value of the condition into its other users. |
| |
| // If the select and condition only have a single use, don't bother with this, |
| // early exit. |
| Value *SelectCond = SI->getCondition(); |
| if (SI->use_empty() && SelectCond->hasOneUse()) |
| return true; |
| |
| // Scan the current block backward, looking for other uses of SI. |
| BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); |
| Type *CondTy = SelectCond->getType(); |
| while (BBI != BBFront) { |
| --BBI; |
| // If we found an instruction that we can't assume will return, so |
| // information from below it cannot be propagated above it. |
| if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) |
| break; |
| |
| // Replace uses of the select or its condition with the known values. |
| for (Use &Op : BBI->operands()) { |
| if (Op == SI) { |
| replaceUse(Op, SI->getOperand(NonNullOperand)); |
| Worklist.push(&*BBI); |
| } else if (Op == SelectCond) { |
| replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) |
| : ConstantInt::getFalse(CondTy)); |
| Worklist.push(&*BBI); |
| } |
| } |
| |
| // If we past the instruction, quit looking for it. |
| if (&*BBI == SI) |
| SI = nullptr; |
| if (&*BBI == SelectCond) |
| SelectCond = nullptr; |
| |
| // If we ran out of things to eliminate, break out of the loop. |
| if (!SelectCond && !SI) |
| break; |
| |
| } |
| return true; |
| } |
| |
| /// True if the multiply can not be expressed in an int this size. |
| static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, |
| bool IsSigned) { |
| bool Overflow; |
| Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); |
| return Overflow; |
| } |
| |
| /// True if C1 is a multiple of C2. Quotient contains C1/C2. |
| static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, |
| bool IsSigned) { |
| assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); |
| |
| // Bail if we will divide by zero. |
| if (C2.isZero()) |
| return false; |
| |
| // Bail if we would divide INT_MIN by -1. |
| if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes()) |
| return false; |
| |
| APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned); |
| if (IsSigned) |
| APInt::sdivrem(C1, C2, Quotient, Remainder); |
| else |
| APInt::udivrem(C1, C2, Quotient, Remainder); |
| |
| return Remainder.isMinValue(); |
| } |
| |
| /// This function implements the transforms common to both integer division |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer |
| /// division instructions. |
| /// Common integer divide transforms |
| Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| bool IsSigned = I.getOpcode() == Instruction::SDiv; |
| Type *Ty = I.getType(); |
| |
| // The RHS is known non-zero. |
| if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) |
| return replaceOperand(I, 1, V); |
| |
| // Handle cases involving: [su]div X, (select Cond, Y, Z) |
| // This does not apply for fdiv. |
| if (simplifyDivRemOfSelectWithZeroOp(I)) |
| return &I; |
| |
| const APInt *C2; |
| if (match(Op1, m_APInt(C2))) { |
| Value *X; |
| const APInt *C1; |
| |
| // (X / C1) / C2 -> X / (C1*C2) |
| if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || |
| (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { |
| APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned); |
| if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) |
| return BinaryOperator::Create(I.getOpcode(), X, |
| ConstantInt::get(Ty, Product)); |
| } |
| |
| if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || |
| (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { |
| APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); |
| |
| // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. |
| if (isMultiple(*C2, *C1, Quotient, IsSigned)) { |
| auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, |
| ConstantInt::get(Ty, Quotient)); |
| NewDiv->setIsExact(I.isExact()); |
| return NewDiv; |
| } |
| |
| // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. |
| if (isMultiple(*C1, *C2, Quotient, IsSigned)) { |
| auto *Mul = BinaryOperator::Create(Instruction::Mul, X, |
| ConstantInt::get(Ty, Quotient)); |
| auto *OBO = cast<OverflowingBinaryOperator>(Op0); |
| Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); |
| Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); |
| return Mul; |
| } |
| } |
| |
| if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && |
| C1->ult(C1->getBitWidth() - 1)) || |
| (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) && |
| C1->ult(C1->getBitWidth()))) { |
| APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned); |
| APInt C1Shifted = APInt::getOneBitSet( |
| C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue())); |
| |
| // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. |
| if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { |
| auto *BO = BinaryOperator::Create(I.getOpcode(), X, |
| ConstantInt::get(Ty, Quotient)); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| |
| // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. |
| if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { |
| auto *Mul = BinaryOperator::Create(Instruction::Mul, X, |
| ConstantInt::get(Ty, Quotient)); |
| auto *OBO = cast<OverflowingBinaryOperator>(Op0); |
| Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); |
| Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); |
| return Mul; |
| } |
| } |
| |
| if (!C2->isZero()) // avoid X udiv 0 |
| if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedDiv; |
| } |
| |
| if (match(Op0, m_One())) { |
| assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); |
| if (IsSigned) { |
| // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the |
| // result is one, if Op1 is -1 then the result is minus one, otherwise |
| // it's zero. |
| Value *Inc = Builder.CreateAdd(Op1, Op0); |
| Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); |
| return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0)); |
| } else { |
| // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the |
| // result is one, otherwise it's zero. |
| return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); |
| } |
| } |
| |
| // See if we can fold away this div instruction. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y |
| Value *X, *Z; |
| if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 |
| if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || |
| (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) |
| return BinaryOperator::Create(I.getOpcode(), X, Op1); |
| |
| // (X << Y) / X -> 1 << Y |
| Value *Y; |
| if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) |
| return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); |
| if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) |
| return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); |
| |
| // X / (X * Y) -> 1 / Y if the multiplication does not overflow. |
| if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { |
| bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); |
| bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); |
| if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { |
| replaceOperand(I, 0, ConstantInt::get(Ty, 1)); |
| replaceOperand(I, 1, Y); |
| return &I; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static const unsigned MaxDepth = 6; |
| |
| namespace { |
| |
| using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1, |
| const BinaryOperator &I, |
| InstCombinerImpl &IC); |
| |
| /// Used to maintain state for visitUDivOperand(). |
| struct UDivFoldAction { |
| /// Informs visitUDiv() how to fold this operand. This can be zero if this |
| /// action joins two actions together. |
| FoldUDivOperandCb FoldAction; |
| |
| /// Which operand to fold. |
| Value *OperandToFold; |
| |
| union { |
| /// The instruction returned when FoldAction is invoked. |
| Instruction *FoldResult; |
| |
| /// Stores the LHS action index if this action joins two actions together. |
| size_t SelectLHSIdx; |
| }; |
| |
| UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) |
| : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} |
| UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) |
| : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| // X udiv 2^C -> X >> C |
| static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, |
| const BinaryOperator &I, |
| InstCombinerImpl &IC) { |
| Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1)); |
| if (!C1) |
| llvm_unreachable("Failed to constant fold udiv -> logbase2"); |
| BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1); |
| if (I.isExact()) |
| LShr->setIsExact(); |
| return LShr; |
| } |
| |
| // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
| // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2) |
| static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, |
| InstCombinerImpl &IC) { |
| Value *ShiftLeft; |
| if (!match(Op1, m_ZExt(m_Value(ShiftLeft)))) |
| ShiftLeft = Op1; |
| |
| Constant *CI; |
| Value *N; |
| if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N)))) |
| llvm_unreachable("match should never fail here!"); |
| Constant *Log2Base = ConstantExpr::getExactLogBase2(CI); |
| if (!Log2Base) |
| llvm_unreachable("getLogBase2 should never fail here!"); |
| N = IC.Builder.CreateAdd(N, Log2Base); |
| if (Op1 != ShiftLeft) |
| N = IC.Builder.CreateZExt(N, Op1->getType()); |
| BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); |
| if (I.isExact()) |
| LShr->setIsExact(); |
| return LShr; |
| } |
| |
| // Recursively visits the possible right hand operands of a udiv |
| // instruction, seeing through select instructions, to determine if we can |
| // replace the udiv with something simpler. If we find that an operand is not |
| // able to simplify the udiv, we abort the entire transformation. |
| static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, |
| SmallVectorImpl<UDivFoldAction> &Actions, |
| unsigned Depth = 0) { |
| // FIXME: assert that Op1 isn't/doesn't contain undef. |
| |
| // Check to see if this is an unsigned division with an exact power of 2, |
| // if so, convert to a right shift. |
| if (match(Op1, m_Power2())) { |
| Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); |
| return Actions.size(); |
| } |
| |
| // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
| if (match(Op1, m_Shl(m_Power2(), m_Value())) || |
| match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { |
| Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); |
| return Actions.size(); |
| } |
| |
| // The remaining tests are all recursive, so bail out if we hit the limit. |
| if (Depth++ == MaxDepth) |
| return 0; |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| // FIXME: missed optimization: if one of the hands of select is/contains |
| // undef, just directly pick the other one. |
| // FIXME: can both hands contain undef? |
| if (size_t LHSIdx = |
| visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) |
| if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { |
| Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); |
| return Actions.size(); |
| } |
| |
| return 0; |
| } |
| |
| /// If we have zero-extended operands of an unsigned div or rem, we may be able |
| /// to narrow the operation (sink the zext below the math). |
| static Instruction *narrowUDivURem(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| Value *N = I.getOperand(0); |
| Value *D = I.getOperand(1); |
| Type *Ty = I.getType(); |
| Value *X, *Y; |
| if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && |
| X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { |
| // udiv (zext X), (zext Y) --> zext (udiv X, Y) |
| // urem (zext X), (zext Y) --> zext (urem X, Y) |
| Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); |
| return new ZExtInst(NarrowOp, Ty); |
| } |
| |
| Constant *C; |
| if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || |
| (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { |
| // If the constant is the same in the smaller type, use the narrow version. |
| Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); |
| if (ConstantExpr::getZExt(TruncC, Ty) != C) |
| return nullptr; |
| |
| // udiv (zext X), C --> zext (udiv X, C') |
| // urem (zext X), C --> zext (urem X, C') |
| // udiv C, (zext X) --> zext (udiv C', X) |
| // urem C, (zext X) --> zext (urem C', X) |
| Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) |
| : Builder.CreateBinOp(Opcode, TruncC, X); |
| return new ZExtInst(NarrowOp, Ty); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) { |
| if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| // Handle the integer div common cases |
| if (Instruction *Common = commonIDivTransforms(I)) |
| return Common; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Value *X; |
| const APInt *C1, *C2; |
| if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { |
| // (X lshr C1) udiv C2 --> X udiv (C2 << C1) |
| bool Overflow; |
| APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); |
| if (!Overflow) { |
| bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); |
| BinaryOperator *BO = BinaryOperator::CreateUDiv( |
| X, ConstantInt::get(X->getType(), C2ShlC1)); |
| if (IsExact) |
| BO->setIsExact(); |
| return BO; |
| } |
| } |
| |
| // Op0 / C where C is large (negative) --> zext (Op0 >= C) |
| // TODO: Could use isKnownNegative() to handle non-constant values. |
| Type *Ty = I.getType(); |
| if (match(Op1, m_Negative())) { |
| Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); |
| return CastInst::CreateZExtOrBitCast(Cmp, Ty); |
| } |
| // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) |
| if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { |
| Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); |
| return CastInst::CreateZExtOrBitCast(Cmp, Ty); |
| } |
| |
| if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) |
| return NarrowDiv; |
| |
| // If the udiv operands are non-overflowing multiplies with a common operand, |
| // then eliminate the common factor: |
| // (A * B) / (A * X) --> B / X (and commuted variants) |
| // TODO: The code would be reduced if we had m_c_NUWMul pattern matching. |
| // TODO: If -reassociation handled this generally, we could remove this. |
| Value *A, *B; |
| if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { |
| if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || |
| match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) |
| return BinaryOperator::CreateUDiv(B, X); |
| if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || |
| match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) |
| return BinaryOperator::CreateUDiv(A, X); |
| } |
| |
| // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) |
| SmallVector<UDivFoldAction, 6> UDivActions; |
| if (visitUDivOperand(Op0, Op1, I, UDivActions)) |
| for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { |
| FoldUDivOperandCb Action = UDivActions[i].FoldAction; |
| Value *ActionOp1 = UDivActions[i].OperandToFold; |
| Instruction *Inst; |
| if (Action) |
| Inst = Action(Op0, ActionOp1, I, *this); |
| else { |
| // This action joins two actions together. The RHS of this action is |
| // simply the last action we processed, we saved the LHS action index in |
| // the joining action. |
| size_t SelectRHSIdx = i - 1; |
| Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; |
| size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; |
| Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; |
| Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), |
| SelectLHS, SelectRHS); |
| } |
| |
| // If this is the last action to process, return it to the InstCombiner. |
| // Otherwise, we insert it before the UDiv and record it so that we may |
| // use it as part of a joining action (i.e., a SelectInst). |
| if (e - i != 1) { |
| Inst->insertBefore(&I); |
| UDivActions[i].FoldResult = Inst; |
| } else |
| return Inst; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) { |
| if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| // Handle the integer div common cases |
| if (Instruction *Common = commonIDivTransforms(I)) |
| return Common; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Type *Ty = I.getType(); |
| Value *X; |
| // sdiv Op0, -1 --> -Op0 |
| // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) |
| if (match(Op1, m_AllOnes()) || |
| (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) |
| return BinaryOperator::CreateNeg(Op0); |
| |
| // X / INT_MIN --> X == INT_MIN |
| if (match(Op1, m_SignMask())) |
| return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty); |
| |
| // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative |
| // sdiv exact X, -1<<C --> -(ashr exact X, C) |
| if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) || |
| match(Op1, m_NegatedPower2()))) { |
| bool DivisorWasNegative = match(Op1, m_NegatedPower2()); |
| if (DivisorWasNegative) |
| Op1 = ConstantExpr::getNeg(cast<Constant>(Op1)); |
| auto *AShr = BinaryOperator::CreateExactAShr( |
| Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName()); |
| if (!DivisorWasNegative) |
| return AShr; |
| Builder.Insert(AShr); |
| AShr->setName(I.getName() + ".neg"); |
| return BinaryOperator::CreateNeg(AShr, I.getName()); |
| } |
| |
| const APInt *Op1C; |
| if (match(Op1, m_APInt(Op1C))) { |
| // If the dividend is sign-extended and the constant divisor is small enough |
| // to fit in the source type, shrink the division to the narrower type: |
| // (sext X) sdiv C --> sext (X sdiv C) |
| Value *Op0Src; |
| if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && |
| Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { |
| |
| // In the general case, we need to make sure that the dividend is not the |
| // minimum signed value because dividing that by -1 is UB. But here, we |
| // know that the -1 divisor case is already handled above. |
| |
| Constant *NarrowDivisor = |
| ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); |
| Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); |
| return new SExtInst(NarrowOp, Ty); |
| } |
| |
| // -X / C --> X / -C (if the negation doesn't overflow). |
| // TODO: This could be enhanced to handle arbitrary vector constants by |
| // checking if all elements are not the min-signed-val. |
| if (!Op1C->isMinSignedValue() && |
| match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { |
| Constant *NegC = ConstantInt::get(Ty, -(*Op1C)); |
| Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| } |
| |
| // -X / Y --> -(X / Y) |
| Value *Y; |
| if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) |
| return BinaryOperator::CreateNSWNeg( |
| Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); |
| |
| // abs(X) / X --> X > -1 ? 1 : -1 |
| // X / abs(X) --> X > -1 ? 1 : -1 |
| if (match(&I, m_c_BinOp( |
| m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())), |
| m_Deferred(X)))) { |
| Constant *NegOne = ConstantInt::getAllOnesValue(Ty); |
| Value *Cond = Builder.CreateICmpSGT(X, NegOne); |
| return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne); |
| } |
| |
| // If the sign bits of both operands are zero (i.e. we can prove they are |
| // unsigned inputs), turn this into a udiv. |
| APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits())); |
| if (MaskedValueIsZero(Op0, Mask, 0, &I)) { |
| if (MaskedValueIsZero(Op1, Mask, 0, &I)) { |
| // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set |
| auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| |
| if (match(Op1, m_NegatedPower2())) { |
| // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) -> |
| // -> -(X udiv (1 << C)) -> -(X u>> C) |
| return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst( |
| Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this))); |
| } |
| |
| if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { |
| // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) |
| // Safe because the only negative value (1 << Y) can take on is |
| // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have |
| // the sign bit set. |
| auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Remove negation and try to convert division into multiplication. |
| static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { |
| Constant *C; |
| if (!match(I.getOperand(1), m_Constant(C))) |
| return nullptr; |
| |
| // -X / C --> X / -C |
| Value *X; |
| if (match(I.getOperand(0), m_FNeg(m_Value(X)))) |
| return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); |
| |
| // If the constant divisor has an exact inverse, this is always safe. If not, |
| // then we can still create a reciprocal if fast-math-flags allow it and the |
| // constant is a regular number (not zero, infinite, or denormal). |
| if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) |
| return nullptr; |
| |
| // Disallow denormal constants because we don't know what would happen |
| // on all targets. |
| // TODO: Use Intrinsic::canonicalize or let function attributes tell us that |
| // denorms are flushed? |
| auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C); |
| if (!RecipC->isNormalFP()) |
| return nullptr; |
| |
| // X / C --> X * (1 / C) |
| return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); |
| } |
| |
| /// Remove negation and try to reassociate constant math. |
| static Instruction *foldFDivConstantDividend(BinaryOperator &I) { |
| Constant *C; |
| if (!match(I.getOperand(0), m_Constant(C))) |
| return nullptr; |
| |
| // C / -X --> -C / X |
| Value *X; |
| if (match(I.getOperand(1), m_FNeg(m_Value(X)))) |
| return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); |
| |
| if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) |
| return nullptr; |
| |
| // Try to reassociate C / X expressions where X includes another constant. |
| Constant *C2, *NewC = nullptr; |
| if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { |
| // C / (X * C2) --> (C / C2) / X |
| NewC = ConstantExpr::getFDiv(C, C2); |
| } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { |
| // C / (X / C2) --> (C * C2) / X |
| NewC = ConstantExpr::getFMul(C, C2); |
| } |
| // Disallow denormal constants because we don't know what would happen |
| // on all targets. |
| // TODO: Use Intrinsic::canonicalize or let function attributes tell us that |
| // denorms are flushed? |
| if (!NewC || !NewC->isNormalFP()) |
| return nullptr; |
| |
| return BinaryOperator::CreateFDivFMF(NewC, X, &I); |
| } |
| |
| /// Negate the exponent of pow/exp to fold division-by-pow() into multiply. |
| static Instruction *foldFDivPowDivisor(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| auto *II = dyn_cast<IntrinsicInst>(Op1); |
| if (!II || !II->hasOneUse() || !I.hasAllowReassoc() || |
| !I.hasAllowReciprocal()) |
| return nullptr; |
| |
| // Z / pow(X, Y) --> Z * pow(X, -Y) |
| // Z / exp{2}(Y) --> Z * exp{2}(-Y) |
| // In the general case, this creates an extra instruction, but fmul allows |
| // for better canonicalization and optimization than fdiv. |
| Intrinsic::ID IID = II->getIntrinsicID(); |
| SmallVector<Value *> Args; |
| switch (IID) { |
| case Intrinsic::pow: |
| Args.push_back(II->getArgOperand(0)); |
| Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I)); |
| break; |
| case Intrinsic::powi: { |
| // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable. |
| // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so |
| // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows |
| // non-standard results, so this corner case should be acceptable if the |
| // code rules out INF values. |
| if (!I.hasNoInfs()) |
| return nullptr; |
| Args.push_back(II->getArgOperand(0)); |
| Args.push_back(Builder.CreateNeg(II->getArgOperand(1))); |
| Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()}; |
| Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I); |
| return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); |
| } |
| case Intrinsic::exp: |
| case Intrinsic::exp2: |
| Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I)); |
| break; |
| default: |
| return nullptr; |
| } |
| Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I); |
| return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); |
| } |
| |
| Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) { |
| if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1), |
| I.getFastMathFlags(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *R = foldFDivConstantDivisor(I)) |
| return R; |
| |
| if (Instruction *R = foldFDivConstantDividend(I)) |
| return R; |
| |
| if (Instruction *R = foldFPSignBitOps(I)) |
| return R; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| if (isa<Constant>(Op0)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (isa<Constant>(Op1)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { |
| Value *X, *Y; |
| if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && |
| (!isa<Constant>(Y) || !isa<Constant>(Op1))) { |
| // (X / Y) / Z => X / (Y * Z) |
| Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); |
| return BinaryOperator::CreateFDivFMF(X, YZ, &I); |
| } |
| if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && |
| (!isa<Constant>(Y) || !isa<Constant>(Op0))) { |
| // Z / (X / Y) => (Y * Z) / X |
| Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); |
| return BinaryOperator::CreateFDivFMF(YZ, X, &I); |
| } |
| // Z / (1.0 / Y) => (Y * Z) |
| // |
| // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The |
| // m_OneUse check is avoided because even in the case of the multiple uses |
| // for 1.0/Y, the number of instructions remain the same and a division is |
| // replaced by a multiplication. |
| if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) |
| return BinaryOperator::CreateFMulFMF(Y, Op0, &I); |
| } |
| |
| if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { |
| // sin(X) / cos(X) -> tan(X) |
| // cos(X) / sin(X) -> 1/tan(X) (cotangent) |
| Value *X; |
| bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && |
| match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); |
| bool IsCot = |
| !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && |
| match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); |
| |
| if ((IsTan || IsCot) && |
| hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) { |
| IRBuilder<> B(&I); |
| IRBuilder<>::FastMathFlagGuard FMFGuard(B); |
| B.setFastMathFlags(I.getFastMathFlags()); |
| AttributeList Attrs = |
| cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); |
| Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, |
| LibFunc_tanl, B, Attrs); |
| if (IsCot) |
| Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); |
| return replaceInstUsesWith(I, Res); |
| } |
| } |
| |
| // X / (X * Y) --> 1.0 / Y |
| // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. |
| // We can ignore the possibility that X is infinity because INF/INF is NaN. |
| Value *X, *Y; |
| if (I.hasNoNaNs() && I.hasAllowReassoc() && |
| match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { |
| replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0)); |
| replaceOperand(I, 1, Y); |
| return &I; |
| } |
| |
| // X / fabs(X) -> copysign(1.0, X) |
| // fabs(X) / X -> copysign(1.0, X) |
| if (I.hasNoNaNs() && I.hasNoInfs() && |
| (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) || |
| match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) { |
| Value *V = Builder.CreateBinaryIntrinsic( |
| Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I); |
| return replaceInstUsesWith(I, V); |
| } |
| |
| if (Instruction *Mul = foldFDivPowDivisor(I, Builder)) |
| return Mul; |
| |
| return nullptr; |
| } |
| |
| /// This function implements the transforms common to both integer remainder |
| /// instructions (urem and srem). It is called by the visitors to those integer |
| /// remainder instructions. |
| /// Common integer remainder transforms |
| Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // The RHS is known non-zero. |
| if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) |
| return replaceOperand(I, 1, V); |
| |
| // Handle cases involving: rem X, (select Cond, Y, Z) |
| if (simplifyDivRemOfSelectWithZeroOp(I)) |
| return &I; |
| |
| if (isa<Constant>(Op1)) { |
| if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { |
| const APInt *Op1Int; |
| if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && |
| (I.getOpcode() == Instruction::URem || |
| !Op1Int->isMinSignedValue())) { |
| // foldOpIntoPhi will speculate instructions to the end of the PHI's |
| // predecessor blocks, so do this only if we know the srem or urem |
| // will not fault. |
| if (Instruction *NV = foldOpIntoPhi(I, PN)) |
| return NV; |
| } |
| } |
| |
| // See if we can fold away this rem instruction. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) { |
| if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *common = commonIRemTransforms(I)) |
| return common; |
| |
| if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) |
| return NarrowRem; |
| |
| // X urem Y -> X and Y-1, where Y is a power of 2, |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Type *Ty = I.getType(); |
| if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { |
| // This may increase instruction count, we don't enforce that Y is a |
| // constant. |
| Constant *N1 = Constant::getAllOnesValue(Ty); |
| Value *Add = Builder.CreateAdd(Op1, N1); |
| return BinaryOperator::CreateAnd(Op0, Add); |
| } |
| |
| // 1 urem X -> zext(X != 1) |
| if (match(Op0, m_One())) { |
| Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1)); |
| return CastInst::CreateZExtOrBitCast(Cmp, Ty); |
| } |
| |
| // X urem C -> X < C ? X : X - C, where C >= signbit. |
| if (match(Op1, m_Negative())) { |
| Value *Cmp = Builder.CreateICmpULT(Op0, Op1); |
| Value *Sub = Builder.CreateSub(Op0, Op1); |
| return SelectInst::Create(Cmp, Op0, Sub); |
| } |
| |
| // If the divisor is a sext of a boolean, then the divisor must be max |
| // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also |
| // max unsigned value. In that case, the remainder is 0: |
| // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 |
| Value *X; |
| if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { |
| Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); |
| return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) { |
| if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| // Handle the integer rem common cases |
| if (Instruction *Common = commonIRemTransforms(I)) |
| return Common; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| { |
| const APInt *Y; |
| // X % -Y -> X % Y |
| if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) |
| return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y)); |
| } |
| |
| // -X srem Y --> -(X srem Y) |
| Value *X, *Y; |
| if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) |
| return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); |
| |
| // If the sign bits of both operands are zero (i.e. we can prove they are |
| // unsigned inputs), turn this into a urem. |
| APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); |
| if (MaskedValueIsZero(Op1, Mask, 0, &I) && |
| MaskedValueIsZero(Op0, Mask, 0, &I)) { |
| // X srem Y -> X urem Y, iff X and Y don't have sign bit set |
| return BinaryOperator::CreateURem(Op0, Op1, I.getName()); |
| } |
| |
| // If it's a constant vector, flip any negative values positive. |
| if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { |
| Constant *C = cast<Constant>(Op1); |
| unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements(); |
| |
| bool hasNegative = false; |
| bool hasMissing = false; |
| for (unsigned i = 0; i != VWidth; ++i) { |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt) { |
| hasMissing = true; |
| break; |
| } |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) |
| if (RHS->isNegative()) |
| hasNegative = true; |
| } |
| |
| if (hasNegative && !hasMissing) { |
| SmallVector<Constant *, 16> Elts(VWidth); |
| for (unsigned i = 0; i != VWidth; ++i) { |
| Elts[i] = C->getAggregateElement(i); // Handle undef, etc. |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { |
| if (RHS->isNegative()) |
| Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); |
| } |
| } |
| |
| Constant *NewRHSV = ConstantVector::get(Elts); |
| if (NewRHSV != C) // Don't loop on -MININT |
| return replaceOperand(I, 1, NewRHSV); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) { |
| if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1), |
| I.getFastMathFlags(), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| return nullptr; |
| } |