| //===- InstCombineCalls.cpp -----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visitCall, visitInvoke, and visitCallBr functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/FloatingPointMode.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumeBundleQueries.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/IntrinsicsHexagon.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| STATISTIC(NumSimplified, "Number of library calls simplified"); |
| |
| static cl::opt<unsigned> GuardWideningWindow( |
| "instcombine-guard-widening-window", |
| cl::init(3), |
| cl::desc("How wide an instruction window to bypass looking for " |
| "another guard")); |
| |
| namespace llvm { |
| /// enable preservation of attributes in assume like: |
| /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] |
| extern cl::opt<bool> EnableKnowledgeRetention; |
| } // namespace llvm |
| |
| /// Return the specified type promoted as it would be to pass though a va_arg |
| /// area. |
| static Type *getPromotedType(Type *Ty) { |
| if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { |
| if (ITy->getBitWidth() < 32) |
| return Type::getInt32Ty(Ty->getContext()); |
| } |
| return Ty; |
| } |
| |
| Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { |
| Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); |
| MaybeAlign CopyDstAlign = MI->getDestAlign(); |
| if (!CopyDstAlign || *CopyDstAlign < DstAlign) { |
| MI->setDestAlignment(DstAlign); |
| return MI; |
| } |
| |
| Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); |
| MaybeAlign CopySrcAlign = MI->getSourceAlign(); |
| if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { |
| MI->setSourceAlignment(SrcAlign); |
| return MI; |
| } |
| |
| // If we have a store to a location which is known constant, we can conclude |
| // that the store must be storing the constant value (else the memory |
| // wouldn't be constant), and this must be a noop. |
| if (AA->pointsToConstantMemory(MI->getDest())) { |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setLength(Constant::getNullValue(MI->getLength()->getType())); |
| return MI; |
| } |
| |
| // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with |
| // load/store. |
| ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); |
| if (!MemOpLength) return nullptr; |
| |
| // Source and destination pointer types are always "i8*" for intrinsic. See |
| // if the size is something we can handle with a single primitive load/store. |
| // A single load+store correctly handles overlapping memory in the memmove |
| // case. |
| uint64_t Size = MemOpLength->getLimitedValue(); |
| assert(Size && "0-sized memory transferring should be removed already."); |
| |
| if (Size > 8 || (Size&(Size-1))) |
| return nullptr; // If not 1/2/4/8 bytes, exit. |
| |
| // If it is an atomic and alignment is less than the size then we will |
| // introduce the unaligned memory access which will be later transformed |
| // into libcall in CodeGen. This is not evident performance gain so disable |
| // it now. |
| if (isa<AtomicMemTransferInst>(MI)) |
| if (*CopyDstAlign < Size || *CopySrcAlign < Size) |
| return nullptr; |
| |
| // Use an integer load+store unless we can find something better. |
| unsigned SrcAddrSp = |
| cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); |
| unsigned DstAddrSp = |
| cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); |
| |
| IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); |
| Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); |
| Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); |
| |
| // If the memcpy has metadata describing the members, see if we can get the |
| // TBAA tag describing our copy. |
| MDNode *CopyMD = nullptr; |
| if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { |
| CopyMD = M; |
| } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { |
| if (M->getNumOperands() == 3 && M->getOperand(0) && |
| mdconst::hasa<ConstantInt>(M->getOperand(0)) && |
| mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && |
| M->getOperand(1) && |
| mdconst::hasa<ConstantInt>(M->getOperand(1)) && |
| mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == |
| Size && |
| M->getOperand(2) && isa<MDNode>(M->getOperand(2))) |
| CopyMD = cast<MDNode>(M->getOperand(2)); |
| } |
| |
| Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); |
| Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); |
| LoadInst *L = Builder.CreateLoad(IntType, Src); |
| // Alignment from the mem intrinsic will be better, so use it. |
| L->setAlignment(*CopySrcAlign); |
| if (CopyMD) |
| L->setMetadata(LLVMContext::MD_tbaa, CopyMD); |
| MDNode *LoopMemParallelMD = |
| MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); |
| if (LoopMemParallelMD) |
| L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); |
| MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); |
| if (AccessGroupMD) |
| L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); |
| |
| StoreInst *S = Builder.CreateStore(L, Dest); |
| // Alignment from the mem intrinsic will be better, so use it. |
| S->setAlignment(*CopyDstAlign); |
| if (CopyMD) |
| S->setMetadata(LLVMContext::MD_tbaa, CopyMD); |
| if (LoopMemParallelMD) |
| S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); |
| if (AccessGroupMD) |
| S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); |
| |
| if (auto *MT = dyn_cast<MemTransferInst>(MI)) { |
| // non-atomics can be volatile |
| L->setVolatile(MT->isVolatile()); |
| S->setVolatile(MT->isVolatile()); |
| } |
| if (isa<AtomicMemTransferInst>(MI)) { |
| // atomics have to be unordered |
| L->setOrdering(AtomicOrdering::Unordered); |
| S->setOrdering(AtomicOrdering::Unordered); |
| } |
| |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setLength(Constant::getNullValue(MemOpLength->getType())); |
| return MI; |
| } |
| |
| Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { |
| const Align KnownAlignment = |
| getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); |
| MaybeAlign MemSetAlign = MI->getDestAlign(); |
| if (!MemSetAlign || *MemSetAlign < KnownAlignment) { |
| MI->setDestAlignment(KnownAlignment); |
| return MI; |
| } |
| |
| // If we have a store to a location which is known constant, we can conclude |
| // that the store must be storing the constant value (else the memory |
| // wouldn't be constant), and this must be a noop. |
| if (AA->pointsToConstantMemory(MI->getDest())) { |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setLength(Constant::getNullValue(MI->getLength()->getType())); |
| return MI; |
| } |
| |
| // Extract the length and alignment and fill if they are constant. |
| ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); |
| ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); |
| if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) |
| return nullptr; |
| const uint64_t Len = LenC->getLimitedValue(); |
| assert(Len && "0-sized memory setting should be removed already."); |
| const Align Alignment = assumeAligned(MI->getDestAlignment()); |
| |
| // If it is an atomic and alignment is less than the size then we will |
| // introduce the unaligned memory access which will be later transformed |
| // into libcall in CodeGen. This is not evident performance gain so disable |
| // it now. |
| if (isa<AtomicMemSetInst>(MI)) |
| if (Alignment < Len) |
| return nullptr; |
| |
| // memset(s,c,n) -> store s, c (for n=1,2,4,8) |
| if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { |
| Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. |
| |
| Value *Dest = MI->getDest(); |
| unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); |
| Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); |
| Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); |
| |
| // Extract the fill value and store. |
| uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; |
| StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, |
| MI->isVolatile()); |
| S->setAlignment(Alignment); |
| if (isa<AtomicMemSetInst>(MI)) |
| S->setOrdering(AtomicOrdering::Unordered); |
| |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setLength(Constant::getNullValue(LenC->getType())); |
| return MI; |
| } |
| |
| return nullptr; |
| } |
| |
| // TODO, Obvious Missing Transforms: |
| // * Narrow width by halfs excluding zero/undef lanes |
| Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { |
| Value *LoadPtr = II.getArgOperand(0); |
| const Align Alignment = |
| cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); |
| |
| // If the mask is all ones or undefs, this is a plain vector load of the 1st |
| // argument. |
| if (maskIsAllOneOrUndef(II.getArgOperand(2))) { |
| LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, |
| "unmaskedload"); |
| L->copyMetadata(II); |
| return L; |
| } |
| |
| // If we can unconditionally load from this address, replace with a |
| // load/select idiom. TODO: use DT for context sensitive query |
| if (isDereferenceablePointer(LoadPtr, II.getType(), |
| II.getModule()->getDataLayout(), &II, nullptr)) { |
| LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, |
| "unmaskedload"); |
| LI->copyMetadata(II); |
| return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); |
| } |
| |
| return nullptr; |
| } |
| |
| // TODO, Obvious Missing Transforms: |
| // * Single constant active lane -> store |
| // * Narrow width by halfs excluding zero/undef lanes |
| Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { |
| auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); |
| if (!ConstMask) |
| return nullptr; |
| |
| // If the mask is all zeros, this instruction does nothing. |
| if (ConstMask->isNullValue()) |
| return eraseInstFromFunction(II); |
| |
| // If the mask is all ones, this is a plain vector store of the 1st argument. |
| if (ConstMask->isAllOnesValue()) { |
| Value *StorePtr = II.getArgOperand(1); |
| Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); |
| StoreInst *S = |
| new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); |
| S->copyMetadata(II); |
| return S; |
| } |
| |
| if (isa<ScalableVectorType>(ConstMask->getType())) |
| return nullptr; |
| |
| // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts |
| APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); |
| APInt UndefElts(DemandedElts.getBitWidth(), 0); |
| if (Value *V = |
| SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) |
| return replaceOperand(II, 0, V); |
| |
| return nullptr; |
| } |
| |
| // TODO, Obvious Missing Transforms: |
| // * Single constant active lane load -> load |
| // * Dereferenceable address & few lanes -> scalarize speculative load/selects |
| // * Adjacent vector addresses -> masked.load |
| // * Narrow width by halfs excluding zero/undef lanes |
| // * Vector splat address w/known mask -> scalar load |
| // * Vector incrementing address -> vector masked load |
| Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { |
| return nullptr; |
| } |
| |
| // TODO, Obvious Missing Transforms: |
| // * Single constant active lane -> store |
| // * Adjacent vector addresses -> masked.store |
| // * Narrow store width by halfs excluding zero/undef lanes |
| // * Vector splat address w/known mask -> scalar store |
| // * Vector incrementing address -> vector masked store |
| Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { |
| auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); |
| if (!ConstMask) |
| return nullptr; |
| |
| // If the mask is all zeros, a scatter does nothing. |
| if (ConstMask->isNullValue()) |
| return eraseInstFromFunction(II); |
| |
| if (isa<ScalableVectorType>(ConstMask->getType())) |
| return nullptr; |
| |
| // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts |
| APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); |
| APInt UndefElts(DemandedElts.getBitWidth(), 0); |
| if (Value *V = |
| SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) |
| return replaceOperand(II, 0, V); |
| if (Value *V = |
| SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts)) |
| return replaceOperand(II, 1, V); |
| |
| return nullptr; |
| } |
| |
| /// This function transforms launder.invariant.group and strip.invariant.group |
| /// like: |
| /// launder(launder(%x)) -> launder(%x) (the result is not the argument) |
| /// launder(strip(%x)) -> launder(%x) |
| /// strip(strip(%x)) -> strip(%x) (the result is not the argument) |
| /// strip(launder(%x)) -> strip(%x) |
| /// This is legal because it preserves the most recent information about |
| /// the presence or absence of invariant.group. |
| static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, |
| InstCombinerImpl &IC) { |
| auto *Arg = II.getArgOperand(0); |
| auto *StrippedArg = Arg->stripPointerCasts(); |
| auto *StrippedInvariantGroupsArg = StrippedArg; |
| while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { |
| if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && |
| Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) |
| break; |
| StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); |
| } |
| if (StrippedArg == StrippedInvariantGroupsArg) |
| return nullptr; // No launders/strips to remove. |
| |
| Value *Result = nullptr; |
| |
| if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) |
| Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); |
| else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) |
| Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); |
| else |
| llvm_unreachable( |
| "simplifyInvariantGroupIntrinsic only handles launder and strip"); |
| if (Result->getType()->getPointerAddressSpace() != |
| II.getType()->getPointerAddressSpace()) |
| Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); |
| if (Result->getType() != II.getType()) |
| Result = IC.Builder.CreateBitCast(Result, II.getType()); |
| |
| return cast<Instruction>(Result); |
| } |
| |
| static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { |
| assert((II.getIntrinsicID() == Intrinsic::cttz || |
| II.getIntrinsicID() == Intrinsic::ctlz) && |
| "Expected cttz or ctlz intrinsic"); |
| bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; |
| Value *Op0 = II.getArgOperand(0); |
| Value *Op1 = II.getArgOperand(1); |
| Value *X; |
| // ctlz(bitreverse(x)) -> cttz(x) |
| // cttz(bitreverse(x)) -> ctlz(x) |
| if (match(Op0, m_BitReverse(m_Value(X)))) { |
| Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; |
| Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); |
| return CallInst::Create(F, {X, II.getArgOperand(1)}); |
| } |
| |
| if (II.getType()->isIntOrIntVectorTy(1)) { |
| // ctlz/cttz i1 Op0 --> not Op0 |
| if (match(Op1, m_Zero())) |
| return BinaryOperator::CreateNot(Op0); |
| // If zero is undef, then the input can be assumed to be "true", so the |
| // instruction simplifies to "false". |
| assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); |
| return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); |
| } |
| |
| // If the operand is a select with constant arm(s), try to hoist ctlz/cttz. |
| if (auto *Sel = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) |
| return R; |
| |
| if (IsTZ) { |
| // cttz(-x) -> cttz(x) |
| if (match(Op0, m_Neg(m_Value(X)))) |
| return IC.replaceOperand(II, 0, X); |
| |
| // cttz(sext(x)) -> cttz(zext(x)) |
| if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { |
| auto *Zext = IC.Builder.CreateZExt(X, II.getType()); |
| auto *CttzZext = |
| IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); |
| return IC.replaceInstUsesWith(II, CttzZext); |
| } |
| |
| // Zext doesn't change the number of trailing zeros, so narrow: |
| // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'. |
| if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { |
| auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, |
| IC.Builder.getTrue()); |
| auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); |
| return IC.replaceInstUsesWith(II, ZextCttz); |
| } |
| |
| // cttz(abs(x)) -> cttz(x) |
| // cttz(nabs(x)) -> cttz(x) |
| Value *Y; |
| SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; |
| if (SPF == SPF_ABS || SPF == SPF_NABS) |
| return IC.replaceOperand(II, 0, X); |
| |
| if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) |
| return IC.replaceOperand(II, 0, X); |
| } |
| |
| KnownBits Known = IC.computeKnownBits(Op0, 0, &II); |
| |
| // Create a mask for bits above (ctlz) or below (cttz) the first known one. |
| unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() |
| : Known.countMaxLeadingZeros(); |
| unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() |
| : Known.countMinLeadingZeros(); |
| |
| // If all bits above (ctlz) or below (cttz) the first known one are known |
| // zero, this value is constant. |
| // FIXME: This should be in InstSimplify because we're replacing an |
| // instruction with a constant. |
| if (PossibleZeros == DefiniteZeros) { |
| auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); |
| return IC.replaceInstUsesWith(II, C); |
| } |
| |
| // If the input to cttz/ctlz is known to be non-zero, |
| // then change the 'ZeroIsUndef' parameter to 'true' |
| // because we know the zero behavior can't affect the result. |
| if (!Known.One.isZero() || |
| isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, |
| &IC.getDominatorTree())) { |
| if (!match(II.getArgOperand(1), m_One())) |
| return IC.replaceOperand(II, 1, IC.Builder.getTrue()); |
| } |
| |
| // Add range metadata since known bits can't completely reflect what we know. |
| // TODO: Handle splat vectors. |
| auto *IT = dyn_cast<IntegerType>(Op0->getType()); |
| if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { |
| Metadata *LowAndHigh[] = { |
| ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), |
| ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; |
| II.setMetadata(LLVMContext::MD_range, |
| MDNode::get(II.getContext(), LowAndHigh)); |
| return &II; |
| } |
| |
| return nullptr; |
| } |
| |
| static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { |
| assert(II.getIntrinsicID() == Intrinsic::ctpop && |
| "Expected ctpop intrinsic"); |
| Type *Ty = II.getType(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| Value *Op0 = II.getArgOperand(0); |
| Value *X, *Y; |
| |
| // ctpop(bitreverse(x)) -> ctpop(x) |
| // ctpop(bswap(x)) -> ctpop(x) |
| if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) |
| return IC.replaceOperand(II, 0, X); |
| |
| // ctpop(rot(x)) -> ctpop(x) |
| if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || |
| match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && |
| X == Y) |
| return IC.replaceOperand(II, 0, X); |
| |
| // ctpop(x | -x) -> bitwidth - cttz(x, false) |
| if (Op0->hasOneUse() && |
| match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { |
| Function *F = |
| Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); |
| auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); |
| auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); |
| return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); |
| } |
| |
| // ctpop(~x & (x - 1)) -> cttz(x, false) |
| if (match(Op0, |
| m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { |
| Function *F = |
| Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); |
| return CallInst::Create(F, {X, IC.Builder.getFalse()}); |
| } |
| |
| // Zext doesn't change the number of set bits, so narrow: |
| // ctpop (zext X) --> zext (ctpop X) |
| if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { |
| Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); |
| return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); |
| } |
| |
| // If the operand is a select with constant arm(s), try to hoist ctpop. |
| if (auto *Sel = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) |
| return R; |
| |
| KnownBits Known(BitWidth); |
| IC.computeKnownBits(Op0, Known, 0, &II); |
| |
| // If all bits are zero except for exactly one fixed bit, then the result |
| // must be 0 or 1, and we can get that answer by shifting to LSB: |
| // ctpop (X & 32) --> (X & 32) >> 5 |
| if ((~Known.Zero).isPowerOf2()) |
| return BinaryOperator::CreateLShr( |
| Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); |
| |
| // FIXME: Try to simplify vectors of integers. |
| auto *IT = dyn_cast<IntegerType>(Ty); |
| if (!IT) |
| return nullptr; |
| |
| // Add range metadata since known bits can't completely reflect what we know. |
| unsigned MinCount = Known.countMinPopulation(); |
| unsigned MaxCount = Known.countMaxPopulation(); |
| if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { |
| Metadata *LowAndHigh[] = { |
| ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), |
| ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; |
| II.setMetadata(LLVMContext::MD_range, |
| MDNode::get(II.getContext(), LowAndHigh)); |
| return &II; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Convert a table lookup to shufflevector if the mask is constant. |
| /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in |
| /// which case we could lower the shufflevector with rev64 instructions |
| /// as it's actually a byte reverse. |
| static Value *simplifyNeonTbl1(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| // Bail out if the mask is not a constant. |
| auto *C = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!C) |
| return nullptr; |
| |
| auto *VecTy = cast<FixedVectorType>(II.getType()); |
| unsigned NumElts = VecTy->getNumElements(); |
| |
| // Only perform this transformation for <8 x i8> vector types. |
| if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) |
| return nullptr; |
| |
| int Indexes[8]; |
| |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *COp = C->getAggregateElement(I); |
| |
| if (!COp || !isa<ConstantInt>(COp)) |
| return nullptr; |
| |
| Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); |
| |
| // Make sure the mask indices are in range. |
| if ((unsigned)Indexes[I] >= NumElts) |
| return nullptr; |
| } |
| |
| auto *V1 = II.getArgOperand(0); |
| auto *V2 = Constant::getNullValue(V1->getType()); |
| return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes)); |
| } |
| |
| // Returns true iff the 2 intrinsics have the same operands, limiting the |
| // comparison to the first NumOperands. |
| static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, |
| unsigned NumOperands) { |
| assert(I.arg_size() >= NumOperands && "Not enough operands"); |
| assert(E.arg_size() >= NumOperands && "Not enough operands"); |
| for (unsigned i = 0; i < NumOperands; i++) |
| if (I.getArgOperand(i) != E.getArgOperand(i)) |
| return false; |
| return true; |
| } |
| |
| // Remove trivially empty start/end intrinsic ranges, i.e. a start |
| // immediately followed by an end (ignoring debuginfo or other |
| // start/end intrinsics in between). As this handles only the most trivial |
| // cases, tracking the nesting level is not needed: |
| // |
| // call @llvm.foo.start(i1 0) |
| // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed |
| // call @llvm.foo.end(i1 0) |
| // call @llvm.foo.end(i1 0) ; &I |
| static bool |
| removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, |
| std::function<bool(const IntrinsicInst &)> IsStart) { |
| // We start from the end intrinsic and scan backwards, so that InstCombine |
| // has already processed (and potentially removed) all the instructions |
| // before the end intrinsic. |
| BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); |
| for (; BI != BE; ++BI) { |
| if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { |
| if (I->isDebugOrPseudoInst() || |
| I->getIntrinsicID() == EndI.getIntrinsicID()) |
| continue; |
| if (IsStart(*I)) { |
| if (haveSameOperands(EndI, *I, EndI.arg_size())) { |
| IC.eraseInstFromFunction(*I); |
| IC.eraseInstFromFunction(EndI); |
| return true; |
| } |
| // Skip start intrinsics that don't pair with this end intrinsic. |
| continue; |
| } |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { |
| removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { |
| return I.getIntrinsicID() == Intrinsic::vastart || |
| I.getIntrinsicID() == Intrinsic::vacopy; |
| }); |
| return nullptr; |
| } |
| |
| static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { |
| assert(Call.arg_size() > 1 && "Need at least 2 args to swap"); |
| Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); |
| if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { |
| Call.setArgOperand(0, Arg1); |
| Call.setArgOperand(1, Arg0); |
| return &Call; |
| } |
| return nullptr; |
| } |
| |
| /// Creates a result tuple for an overflow intrinsic \p II with a given |
| /// \p Result and a constant \p Overflow value. |
| static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, |
| Constant *Overflow) { |
| Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; |
| StructType *ST = cast<StructType>(II->getType()); |
| Constant *Struct = ConstantStruct::get(ST, V); |
| return InsertValueInst::Create(Struct, Result, 0); |
| } |
| |
| Instruction * |
| InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { |
| WithOverflowInst *WO = cast<WithOverflowInst>(II); |
| Value *OperationResult = nullptr; |
| Constant *OverflowResult = nullptr; |
| if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), |
| WO->getRHS(), *WO, OperationResult, OverflowResult)) |
| return createOverflowTuple(WO, OperationResult, OverflowResult); |
| return nullptr; |
| } |
| |
| static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI, |
| const DataLayout &DL, AssumptionCache *AC, |
| DominatorTree *DT) { |
| KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT); |
| if (Known.isNonNegative()) |
| return false; |
| if (Known.isNegative()) |
| return true; |
| |
| return isImpliedByDomCondition( |
| ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL); |
| } |
| |
| /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This |
| /// can trigger other combines. |
| static Instruction *moveAddAfterMinMax(IntrinsicInst *II, |
| InstCombiner::BuilderTy &Builder) { |
| Intrinsic::ID MinMaxID = II->getIntrinsicID(); |
| assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin || |
| MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) && |
| "Expected a min or max intrinsic"); |
| |
| // TODO: Match vectors with undef elements, but undef may not propagate. |
| Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); |
| Value *X; |
| const APInt *C0, *C1; |
| if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) || |
| !match(Op1, m_APInt(C1))) |
| return nullptr; |
| |
| // Check for necessary no-wrap and overflow constraints. |
| bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin; |
| auto *Add = cast<BinaryOperator>(Op0); |
| if ((IsSigned && !Add->hasNoSignedWrap()) || |
| (!IsSigned && !Add->hasNoUnsignedWrap())) |
| return nullptr; |
| |
| // If the constant difference overflows, then instsimplify should reduce the |
| // min/max to the add or C1. |
| bool Overflow; |
| APInt CDiff = |
| IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow); |
| assert(!Overflow && "Expected simplify of min/max"); |
| |
| // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0 |
| // Note: the "mismatched" no-overflow setting does not propagate. |
| Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff); |
| Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC); |
| return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1)) |
| : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1)); |
| } |
| |
| /// If we have a clamp pattern like max (min X, 42), 41 -- where the output |
| /// can only be one of two possible constant values -- turn that into a select |
| /// of constants. |
| static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, |
| InstCombiner::BuilderTy &Builder) { |
| Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); |
| Value *X; |
| const APInt *C0, *C1; |
| if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) |
| return nullptr; |
| |
| CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::smax: |
| if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) |
| Pred = ICmpInst::ICMP_SGT; |
| break; |
| case Intrinsic::smin: |
| if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) |
| Pred = ICmpInst::ICMP_SLT; |
| break; |
| case Intrinsic::umax: |
| if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) |
| Pred = ICmpInst::ICMP_UGT; |
| break; |
| case Intrinsic::umin: |
| if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) |
| Pred = ICmpInst::ICMP_ULT; |
| break; |
| default: |
| llvm_unreachable("Expected min/max intrinsic"); |
| } |
| if (Pred == CmpInst::BAD_ICMP_PREDICATE) |
| return nullptr; |
| |
| // max (min X, 42), 41 --> X > 41 ? 42 : 41 |
| // min (max X, 42), 43 --> X < 43 ? 42 : 43 |
| Value *Cmp = Builder.CreateICmp(Pred, X, I1); |
| return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); |
| } |
| |
| /// Reduce a sequence of min/max intrinsics with a common operand. |
| static Instruction *factorizeMinMaxTree(IntrinsicInst *II) { |
| // Match 3 of the same min/max ops. Example: umin(umin(), umin()). |
| auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); |
| auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1)); |
| Intrinsic::ID MinMaxID = II->getIntrinsicID(); |
| if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID || |
| RHS->getIntrinsicID() != MinMaxID || |
| (!LHS->hasOneUse() && !RHS->hasOneUse())) |
| return nullptr; |
| |
| Value *A = LHS->getArgOperand(0); |
| Value *B = LHS->getArgOperand(1); |
| Value *C = RHS->getArgOperand(0); |
| Value *D = RHS->getArgOperand(1); |
| |
| // Look for a common operand. |
| Value *MinMaxOp = nullptr; |
| Value *ThirdOp = nullptr; |
| if (LHS->hasOneUse()) { |
| // If the LHS is only used in this chain and the RHS is used outside of it, |
| // reuse the RHS min/max because that will eliminate the LHS. |
| if (D == A || C == A) { |
| // min(min(a, b), min(c, a)) --> min(min(c, a), b) |
| // min(min(a, b), min(a, d)) --> min(min(a, d), b) |
| MinMaxOp = RHS; |
| ThirdOp = B; |
| } else if (D == B || C == B) { |
| // min(min(a, b), min(c, b)) --> min(min(c, b), a) |
| // min(min(a, b), min(b, d)) --> min(min(b, d), a) |
| MinMaxOp = RHS; |
| ThirdOp = A; |
| } |
| } else { |
| assert(RHS->hasOneUse() && "Expected one-use operand"); |
| // Reuse the LHS. This will eliminate the RHS. |
| if (D == A || D == B) { |
| // min(min(a, b), min(c, a)) --> min(min(a, b), c) |
| // min(min(a, b), min(c, b)) --> min(min(a, b), c) |
| MinMaxOp = LHS; |
| ThirdOp = C; |
| } else if (C == A || C == B) { |
| // min(min(a, b), min(b, d)) --> min(min(a, b), d) |
| // min(min(a, b), min(c, b)) --> min(min(a, b), d) |
| MinMaxOp = LHS; |
| ThirdOp = D; |
| } |
| } |
| |
| if (!MinMaxOp || !ThirdOp) |
| return nullptr; |
| |
| Module *Mod = II->getModule(); |
| Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType()); |
| return CallInst::Create(MinMax, { MinMaxOp, ThirdOp }); |
| } |
| |
| /// CallInst simplification. This mostly only handles folding of intrinsic |
| /// instructions. For normal calls, it allows visitCallBase to do the heavy |
| /// lifting. |
| Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { |
| // Don't try to simplify calls without uses. It will not do anything useful, |
| // but will result in the following folds being skipped. |
| if (!CI.use_empty()) |
| if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) |
| return replaceInstUsesWith(CI, V); |
| |
| if (isFreeCall(&CI, &TLI)) |
| return visitFree(CI); |
| |
| // If the caller function is nounwind, mark the call as nounwind, even if the |
| // callee isn't. |
| if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { |
| CI.setDoesNotThrow(); |
| return &CI; |
| } |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); |
| if (!II) return visitCallBase(CI); |
| |
| // For atomic unordered mem intrinsics if len is not a positive or |
| // not a multiple of element size then behavior is undefined. |
| if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) |
| if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) |
| if (NumBytes->getSExtValue() < 0 || |
| (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { |
| CreateNonTerminatorUnreachable(AMI); |
| assert(AMI->getType()->isVoidTy() && |
| "non void atomic unordered mem intrinsic"); |
| return eraseInstFromFunction(*AMI); |
| } |
| |
| // Intrinsics cannot occur in an invoke or a callbr, so handle them here |
| // instead of in visitCallBase. |
| if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { |
| bool Changed = false; |
| |
| // memmove/cpy/set of zero bytes is a noop. |
| if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { |
| if (NumBytes->isNullValue()) |
| return eraseInstFromFunction(CI); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) |
| if (CI->getZExtValue() == 1) { |
| // Replace the instruction with just byte operations. We would |
| // transform other cases to loads/stores, but we don't know if |
| // alignment is sufficient. |
| } |
| } |
| |
| // No other transformations apply to volatile transfers. |
| if (auto *M = dyn_cast<MemIntrinsic>(MI)) |
| if (M->isVolatile()) |
| return nullptr; |
| |
| // If we have a memmove and the source operation is a constant global, |
| // then the source and dest pointers can't alias, so we can change this |
| // into a call to memcpy. |
| if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { |
| if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) |
| if (GVSrc->isConstant()) { |
| Module *M = CI.getModule(); |
| Intrinsic::ID MemCpyID = |
| isa<AtomicMemMoveInst>(MMI) |
| ? Intrinsic::memcpy_element_unordered_atomic |
| : Intrinsic::memcpy; |
| Type *Tys[3] = { CI.getArgOperand(0)->getType(), |
| CI.getArgOperand(1)->getType(), |
| CI.getArgOperand(2)->getType() }; |
| CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); |
| Changed = true; |
| } |
| } |
| |
| if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { |
| // memmove(x,x,size) -> noop. |
| if (MTI->getSource() == MTI->getDest()) |
| return eraseInstFromFunction(CI); |
| } |
| |
| // If we can determine a pointer alignment that is bigger than currently |
| // set, update the alignment. |
| if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { |
| if (Instruction *I = SimplifyAnyMemTransfer(MTI)) |
| return I; |
| } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { |
| if (Instruction *I = SimplifyAnyMemSet(MSI)) |
| return I; |
| } |
| |
| if (Changed) return II; |
| } |
| |
| // For fixed width vector result intrinsics, use the generic demanded vector |
| // support. |
| if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { |
| auto VWidth = IIFVTy->getNumElements(); |
| APInt UndefElts(VWidth, 0); |
| APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); |
| if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { |
| if (V != II) |
| return replaceInstUsesWith(*II, V); |
| return II; |
| } |
| } |
| |
| if (II->isCommutative()) { |
| if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) |
| return NewCall; |
| } |
| |
| Intrinsic::ID IID = II->getIntrinsicID(); |
| switch (IID) { |
| case Intrinsic::objectsize: |
| if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) |
| return replaceInstUsesWith(CI, V); |
| return nullptr; |
| case Intrinsic::abs: { |
| Value *IIOperand = II->getArgOperand(0); |
| bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); |
| |
| // abs(-x) -> abs(x) |
| // TODO: Copy nsw if it was present on the neg? |
| Value *X; |
| if (match(IIOperand, m_Neg(m_Value(X)))) |
| return replaceOperand(*II, 0, X); |
| if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) |
| return replaceOperand(*II, 0, X); |
| if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) |
| return replaceOperand(*II, 0, X); |
| |
| if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) { |
| // abs(x) -> x if x >= 0 |
| if (!*Sign) |
| return replaceInstUsesWith(*II, IIOperand); |
| |
| // abs(x) -> -x if x < 0 |
| if (IntMinIsPoison) |
| return BinaryOperator::CreateNSWNeg(IIOperand); |
| return BinaryOperator::CreateNeg(IIOperand); |
| } |
| |
| // abs (sext X) --> zext (abs X*) |
| // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. |
| if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { |
| Value *NarrowAbs = |
| Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); |
| return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); |
| } |
| |
| // Match a complicated way to check if a number is odd/even: |
| // abs (srem X, 2) --> and X, 1 |
| const APInt *C; |
| if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) |
| return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); |
| |
| break; |
| } |
| case Intrinsic::umin: { |
| Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); |
| // umin(x, 1) == zext(x != 0) |
| if (match(I1, m_One())) { |
| Value *Zero = Constant::getNullValue(I0->getType()); |
| Value *Cmp = Builder.CreateICmpNE(I0, Zero); |
| return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::umax: { |
| Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); |
| Value *X, *Y; |
| if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && |
| (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { |
| Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); |
| return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); |
| } |
| Constant *C; |
| if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && |
| I0->hasOneUse()) { |
| Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); |
| if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) { |
| Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); |
| return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); |
| } |
| } |
| // If both operands of unsigned min/max are sign-extended, it is still ok |
| // to narrow the operation. |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::smax: |
| case Intrinsic::smin: { |
| Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); |
| Value *X, *Y; |
| if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && |
| (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { |
| Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); |
| return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); |
| } |
| |
| Constant *C; |
| if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && |
| I0->hasOneUse()) { |
| Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); |
| if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) { |
| Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); |
| return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); |
| } |
| } |
| |
| if (IID == Intrinsic::smax || IID == Intrinsic::smin) { |
| // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y) |
| // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y) |
| // TODO: Canonicalize neg after min/max if I1 is constant. |
| if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) && |
| (I0->hasOneUse() || I1->hasOneUse())) { |
| Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); |
| Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); |
| return BinaryOperator::CreateNSWNeg(InvMaxMin); |
| } |
| } |
| |
| // If we can eliminate ~A and Y is free to invert: |
| // max ~A, Y --> ~(min A, ~Y) |
| // |
| // Examples: |
| // max ~A, ~Y --> ~(min A, Y) |
| // max ~A, C --> ~(min A, ~C) |
| // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z)) |
| auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { |
| Value *A; |
| if (match(X, m_OneUse(m_Not(m_Value(A)))) && |
| !isFreeToInvert(A, A->hasOneUse()) && |
| isFreeToInvert(Y, Y->hasOneUse())) { |
| Value *NotY = Builder.CreateNot(Y); |
| Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); |
| Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY); |
| return BinaryOperator::CreateNot(InvMaxMin); |
| } |
| return nullptr; |
| }; |
| |
| if (Instruction *I = moveNotAfterMinMax(I0, I1)) |
| return I; |
| if (Instruction *I = moveNotAfterMinMax(I1, I0)) |
| return I; |
| |
| if (Instruction *I = moveAddAfterMinMax(II, Builder)) |
| return I; |
| |
| // smax(X, -X) --> abs(X) |
| // smin(X, -X) --> -abs(X) |
| // umax(X, -X) --> -abs(X) |
| // umin(X, -X) --> abs(X) |
| if (isKnownNegation(I0, I1)) { |
| // We can choose either operand as the input to abs(), but if we can |
| // eliminate the only use of a value, that's better for subsequent |
| // transforms/analysis. |
| if (I0->hasOneUse() && !I1->hasOneUse()) |
| std::swap(I0, I1); |
| |
| // This is some variant of abs(). See if we can propagate 'nsw' to the abs |
| // operation and potentially its negation. |
| bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); |
| Value *Abs = Builder.CreateBinaryIntrinsic( |
| Intrinsic::abs, I0, |
| ConstantInt::getBool(II->getContext(), IntMinIsPoison)); |
| |
| // We don't have a "nabs" intrinsic, so negate if needed based on the |
| // max/min operation. |
| if (IID == Intrinsic::smin || IID == Intrinsic::umax) |
| Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison); |
| return replaceInstUsesWith(CI, Abs); |
| } |
| |
| if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) |
| return Sel; |
| |
| if (Instruction *SAdd = matchSAddSubSat(*II)) |
| return SAdd; |
| |
| if (match(I1, m_ImmConstant())) |
| if (auto *Sel = dyn_cast<SelectInst>(I0)) |
| if (Instruction *R = FoldOpIntoSelect(*II, Sel)) |
| return R; |
| |
| if (Instruction *NewMinMax = factorizeMinMaxTree(II)) |
| return NewMinMax; |
| |
| break; |
| } |
| case Intrinsic::bswap: { |
| Value *IIOperand = II->getArgOperand(0); |
| Value *X = nullptr; |
| |
| // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) |
| if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { |
| unsigned C = X->getType()->getScalarSizeInBits() - |
| IIOperand->getType()->getScalarSizeInBits(); |
| Value *CV = ConstantInt::get(X->getType(), C); |
| Value *V = Builder.CreateLShr(X, CV); |
| return new TruncInst(V, IIOperand->getType()); |
| } |
| break; |
| } |
| case Intrinsic::masked_load: |
| if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) |
| return replaceInstUsesWith(CI, SimplifiedMaskedOp); |
| break; |
| case Intrinsic::masked_store: |
| return simplifyMaskedStore(*II); |
| case Intrinsic::masked_gather: |
| return simplifyMaskedGather(*II); |
| case Intrinsic::masked_scatter: |
| return simplifyMaskedScatter(*II); |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) |
| return replaceInstUsesWith(*II, SkippedBarrier); |
| break; |
| case Intrinsic::powi: |
| if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { |
| // 0 and 1 are handled in instsimplify |
| // powi(x, -1) -> 1/x |
| if (Power->isMinusOne()) |
| return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), |
| II->getArgOperand(0), II); |
| // powi(x, 2) -> x*x |
| if (Power->equalsInt(2)) |
| return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), |
| II->getArgOperand(0), II); |
| |
| if (!Power->getValue()[0]) { |
| Value *X; |
| // If power is even: |
| // powi(-x, p) -> powi(x, p) |
| // powi(fabs(x), p) -> powi(x, p) |
| // powi(copysign(x, y), p) -> powi(x, p) |
| if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) || |
| match(II->getArgOperand(0), m_FAbs(m_Value(X))) || |
| match(II->getArgOperand(0), |
| m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value()))) |
| return replaceOperand(*II, 0, X); |
| } |
| } |
| break; |
| |
| case Intrinsic::cttz: |
| case Intrinsic::ctlz: |
| if (auto *I = foldCttzCtlz(*II, *this)) |
| return I; |
| break; |
| |
| case Intrinsic::ctpop: |
| if (auto *I = foldCtpop(*II, *this)) |
| return I; |
| break; |
| |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: { |
| Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); |
| Type *Ty = II->getType(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| Constant *ShAmtC; |
| if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) && |
| !ShAmtC->containsConstantExpression()) { |
| // Canonicalize a shift amount constant operand to modulo the bit-width. |
| Constant *WidthC = ConstantInt::get(Ty, BitWidth); |
| Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); |
| if (ModuloC != ShAmtC) |
| return replaceOperand(*II, 2, ModuloC); |
| |
| assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == |
| ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && |
| "Shift amount expected to be modulo bitwidth"); |
| |
| // Canonicalize funnel shift right by constant to funnel shift left. This |
| // is not entirely arbitrary. For historical reasons, the backend may |
| // recognize rotate left patterns but miss rotate right patterns. |
| if (IID == Intrinsic::fshr) { |
| // fshr X, Y, C --> fshl X, Y, (BitWidth - C) |
| Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); |
| Module *Mod = II->getModule(); |
| Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); |
| return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); |
| } |
| assert(IID == Intrinsic::fshl && |
| "All funnel shifts by simple constants should go left"); |
| |
| // fshl(X, 0, C) --> shl X, C |
| // fshl(X, undef, C) --> shl X, C |
| if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) |
| return BinaryOperator::CreateShl(Op0, ShAmtC); |
| |
| // fshl(0, X, C) --> lshr X, (BW-C) |
| // fshl(undef, X, C) --> lshr X, (BW-C) |
| if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) |
| return BinaryOperator::CreateLShr(Op1, |
| ConstantExpr::getSub(WidthC, ShAmtC)); |
| |
| // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) |
| if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { |
| Module *Mod = II->getModule(); |
| Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); |
| return CallInst::Create(Bswap, { Op0 }); |
| } |
| } |
| |
| // Left or right might be masked. |
| if (SimplifyDemandedInstructionBits(*II)) |
| return &CI; |
| |
| // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, |
| // so only the low bits of the shift amount are demanded if the bitwidth is |
| // a power-of-2. |
| if (!isPowerOf2_32(BitWidth)) |
| break; |
| APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); |
| KnownBits Op2Known(BitWidth); |
| if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) |
| return &CI; |
| break; |
| } |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: { |
| if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) |
| return I; |
| |
| // Given 2 constant operands whose sum does not overflow: |
| // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 |
| // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 |
| Value *X; |
| const APInt *C0, *C1; |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| bool IsSigned = IID == Intrinsic::sadd_with_overflow; |
| bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) |
| : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); |
| if (HasNWAdd && match(Arg1, m_APInt(C1))) { |
| bool Overflow; |
| APInt NewC = |
| IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); |
| if (!Overflow) |
| return replaceInstUsesWith( |
| *II, Builder.CreateBinaryIntrinsic( |
| IID, X, ConstantInt::get(Arg1->getType(), NewC))); |
| } |
| break; |
| } |
| |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) |
| return I; |
| break; |
| |
| case Intrinsic::ssub_with_overflow: { |
| if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) |
| return I; |
| |
| Constant *C; |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| // Given a constant C that is not the minimum signed value |
| // for an integer of a given bit width: |
| // |
| // ssubo X, C -> saddo X, -C |
| if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { |
| Value *NegVal = ConstantExpr::getNeg(C); |
| // Build a saddo call that is equivalent to the discovered |
| // ssubo call. |
| return replaceInstUsesWith( |
| *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, |
| Arg0, NegVal)); |
| } |
| |
| break; |
| } |
| |
| case Intrinsic::uadd_sat: |
| case Intrinsic::sadd_sat: |
| case Intrinsic::usub_sat: |
| case Intrinsic::ssub_sat: { |
| SaturatingInst *SI = cast<SaturatingInst>(II); |
| Type *Ty = SI->getType(); |
| Value *Arg0 = SI->getLHS(); |
| Value *Arg1 = SI->getRHS(); |
| |
| // Make use of known overflow information. |
| OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), |
| Arg0, Arg1, SI); |
| switch (OR) { |
| case OverflowResult::MayOverflow: |
| break; |
| case OverflowResult::NeverOverflows: |
| if (SI->isSigned()) |
| return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); |
| else |
| return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); |
| case OverflowResult::AlwaysOverflowsLow: { |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); |
| return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); |
| } |
| case OverflowResult::AlwaysOverflowsHigh: { |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); |
| return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); |
| } |
| } |
| |
| // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN |
| Constant *C; |
| if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && |
| C->isNotMinSignedValue()) { |
| Value *NegVal = ConstantExpr::getNeg(C); |
| return replaceInstUsesWith( |
| *II, Builder.CreateBinaryIntrinsic( |
| Intrinsic::sadd_sat, Arg0, NegVal)); |
| } |
| |
| // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) |
| // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) |
| // if Val and Val2 have the same sign |
| if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { |
| Value *X; |
| const APInt *Val, *Val2; |
| APInt NewVal; |
| bool IsUnsigned = |
| IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; |
| if (Other->getIntrinsicID() == IID && |
| match(Arg1, m_APInt(Val)) && |
| match(Other->getArgOperand(0), m_Value(X)) && |
| match(Other->getArgOperand(1), m_APInt(Val2))) { |
| if (IsUnsigned) |
| NewVal = Val->uadd_sat(*Val2); |
| else if (Val->isNonNegative() == Val2->isNonNegative()) { |
| bool Overflow; |
| NewVal = Val->sadd_ov(*Val2, Overflow); |
| if (Overflow) { |
| // Both adds together may add more than SignedMaxValue |
| // without saturating the final result. |
| break; |
| } |
| } else { |
| // Cannot fold saturated addition with different signs. |
| break; |
| } |
| |
| return replaceInstUsesWith( |
| *II, Builder.CreateBinaryIntrinsic( |
| IID, X, ConstantInt::get(II->getType(), NewVal))); |
| } |
| } |
| break; |
| } |
| |
| case Intrinsic::minnum: |
| case Intrinsic::maxnum: |
| case Intrinsic::minimum: |
| case Intrinsic::maximum: { |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| Value *X, *Y; |
| if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && |
| (Arg0->hasOneUse() || Arg1->hasOneUse())) { |
| // If both operands are negated, invert the call and negate the result: |
| // min(-X, -Y) --> -(max(X, Y)) |
| // max(-X, -Y) --> -(min(X, Y)) |
| Intrinsic::ID NewIID; |
| switch (IID) { |
| case Intrinsic::maxnum: |
| NewIID = Intrinsic::minnum; |
| break; |
| case Intrinsic::minnum: |
| NewIID = Intrinsic::maxnum; |
| break; |
| case Intrinsic::maximum: |
| NewIID = Intrinsic::minimum; |
| break; |
| case Intrinsic::minimum: |
| NewIID = Intrinsic::maximum; |
| break; |
| default: |
| llvm_unreachable("unexpected intrinsic ID"); |
| } |
| Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); |
| Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); |
| FNeg->copyIRFlags(II); |
| return FNeg; |
| } |
| |
| // m(m(X, C2), C1) -> m(X, C) |
| const APFloat *C1, *C2; |
| if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { |
| if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && |
| ((match(M->getArgOperand(0), m_Value(X)) && |
| match(M->getArgOperand(1), m_APFloat(C2))) || |
| (match(M->getArgOperand(1), m_Value(X)) && |
| match(M->getArgOperand(0), m_APFloat(C2))))) { |
| APFloat Res(0.0); |
| switch (IID) { |
| case Intrinsic::maxnum: |
| Res = maxnum(*C1, *C2); |
| break; |
| case Intrinsic::minnum: |
| Res = minnum(*C1, *C2); |
| break; |
| case Intrinsic::maximum: |
| Res = maximum(*C1, *C2); |
| break; |
| case Intrinsic::minimum: |
| Res = minimum(*C1, *C2); |
| break; |
| default: |
| llvm_unreachable("unexpected intrinsic ID"); |
| } |
| Instruction *NewCall = Builder.CreateBinaryIntrinsic( |
| IID, X, ConstantFP::get(Arg0->getType(), Res), II); |
| // TODO: Conservatively intersecting FMF. If Res == C2, the transform |
| // was a simplification (so Arg0 and its original flags could |
| // propagate?) |
| NewCall->andIRFlags(M); |
| return replaceInstUsesWith(*II, NewCall); |
| } |
| } |
| |
| // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) |
| if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && |
| match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && |
| X->getType() == Y->getType()) { |
| Value *NewCall = |
| Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); |
| return new FPExtInst(NewCall, II->getType()); |
| } |
| |
| // max X, -X --> fabs X |
| // min X, -X --> -(fabs X) |
| // TODO: Remove one-use limitation? That is obviously better for max. |
| // It would be an extra instruction for min (fnabs), but that is |
| // still likely better for analysis and codegen. |
| if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) || |
| (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) { |
| Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); |
| if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) |
| R = Builder.CreateFNegFMF(R, II); |
| return replaceInstUsesWith(*II, R); |
| } |
| |
| break; |
| } |
| case Intrinsic::fmuladd: { |
| // Canonicalize fast fmuladd to the separate fmul + fadd. |
| if (II->isFast()) { |
| BuilderTy::FastMathFlagGuard Guard(Builder); |
| Builder.setFastMathFlags(II->getFastMathFlags()); |
| Value *Mul = Builder.CreateFMul(II->getArgOperand(0), |
| II->getArgOperand(1)); |
| Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); |
| Add->takeName(II); |
| return replaceInstUsesWith(*II, Add); |
| } |
| |
| // Try to simplify the underlying FMul. |
| if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), |
| II->getFastMathFlags(), |
| SQ.getWithInstruction(II))) { |
| auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); |
| FAdd->copyFastMathFlags(II); |
| return FAdd; |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::fma: { |
| // fma fneg(x), fneg(y), z -> fma x, y, z |
| Value *Src0 = II->getArgOperand(0); |
| Value *Src1 = II->getArgOperand(1); |
| Value *X, *Y; |
| if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { |
| replaceOperand(*II, 0, X); |
| replaceOperand(*II, 1, Y); |
| return II; |
| } |
| |
| // fma fabs(x), fabs(x), z -> fma x, x, z |
| if (match(Src0, m_FAbs(m_Value(X))) && |
| match(Src1, m_FAbs(m_Specific(X)))) { |
| replaceOperand(*II, 0, X); |
| replaceOperand(*II, 1, X); |
| return II; |
| } |
| |
| // Try to simplify the underlying FMul. We can only apply simplifications |
| // that do not require rounding. |
| if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), |
| II->getFastMathFlags(), |
| SQ.getWithInstruction(II))) { |
| auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); |
| FAdd->copyFastMathFlags(II); |
| return FAdd; |
| } |
| |
| // fma x, y, 0 -> fmul x, y |
| // This is always valid for -0.0, but requires nsz for +0.0 as |
| // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. |
| if (match(II->getArgOperand(2), m_NegZeroFP()) || |
| (match(II->getArgOperand(2), m_PosZeroFP()) && |
| II->getFastMathFlags().noSignedZeros())) |
| return BinaryOperator::CreateFMulFMF(Src0, Src1, II); |
| |
| break; |
| } |
| case Intrinsic::copysign: { |
| Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); |
| if (SignBitMustBeZero(Sign, &TLI)) { |
| // If we know that the sign argument is positive, reduce to FABS: |
| // copysign Mag, +Sign --> fabs Mag |
| Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); |
| return replaceInstUsesWith(*II, Fabs); |
| } |
| // TODO: There should be a ValueTracking sibling like SignBitMustBeOne. |
| const APFloat *C; |
| if (match(Sign, m_APFloat(C)) && C->isNegative()) { |
| // If we know that the sign argument is negative, reduce to FNABS: |
| // copysign Mag, -Sign --> fneg (fabs Mag) |
| Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); |
| return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); |
| } |
| |
| // Propagate sign argument through nested calls: |
| // copysign Mag, (copysign ?, X) --> copysign Mag, X |
| Value *X; |
| if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) |
| return replaceOperand(*II, 1, X); |
| |
| // Peek through changes of magnitude's sign-bit. This call rewrites those: |
| // copysign (fabs X), Sign --> copysign X, Sign |
| // copysign (fneg X), Sign --> copysign X, Sign |
| if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) |
| return replaceOperand(*II, 0, X); |
| |
| break; |
| } |
| case Intrinsic::fabs: { |
| Value *Cond, *TVal, *FVal; |
| if (match(II->getArgOperand(0), |
| m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { |
| // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF |
| if (isa<Constant>(TVal) && isa<Constant>(FVal)) { |
| CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); |
| CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); |
| return SelectInst::Create(Cond, AbsT, AbsF); |
| } |
| // fabs (select Cond, -FVal, FVal) --> fabs FVal |
| if (match(TVal, m_FNeg(m_Specific(FVal)))) |
| return replaceOperand(*II, 0, FVal); |
| // fabs (select Cond, TVal, -TVal) --> fabs TVal |
| if (match(FVal, m_FNeg(m_Specific(TVal)))) |
| return replaceOperand(*II, 0, TVal); |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::ceil: |
| case Intrinsic::floor: |
| case Intrinsic::round: |
| case Intrinsic::roundeven: |
| case Intrinsic::nearbyint: |
| case Intrinsic::rint: |
| case Intrinsic::trunc: { |
| Value *ExtSrc; |
| if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { |
| // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) |
| Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); |
| return new FPExtInst(NarrowII, II->getType()); |
| } |
| break; |
| } |
| case Intrinsic::cos: |
| case Intrinsic::amdgcn_cos: { |
| Value *X; |
| Value *Src = II->getArgOperand(0); |
| if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { |
| // cos(-x) -> cos(x) |
| // cos(fabs(x)) -> cos(x) |
| return replaceOperand(*II, 0, X); |
| } |
| break; |
| } |
| case Intrinsic::sin: { |
| Value *X; |
| if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { |
| // sin(-x) --> -sin(x) |
| Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); |
| Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin); |
| FNeg->copyFastMathFlags(II); |
| return FNeg; |
| } |
| break; |
| } |
| |
| case Intrinsic::arm_neon_vtbl1: |
| case Intrinsic::aarch64_neon_tbl1: |
| if (Value *V = simplifyNeonTbl1(*II, Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::arm_neon_vmulls: |
| case Intrinsic::arm_neon_vmullu: |
| case Intrinsic::aarch64_neon_smull: |
| case Intrinsic::aarch64_neon_umull: { |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| |
| // Handle mul by zero first: |
| if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { |
| return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); |
| } |
| |
| // Check for constant LHS & RHS - in this case we just simplify. |
| bool Zext = (IID == Intrinsic::arm_neon_vmullu || |
| IID == Intrinsic::aarch64_neon_umull); |
| VectorType *NewVT = cast<VectorType>(II->getType()); |
| if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { |
| if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { |
| CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); |
| CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); |
| |
| return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); |
| } |
| |
| // Couldn't simplify - canonicalize constant to the RHS. |
| std::swap(Arg0, Arg1); |
| } |
| |
| // Handle mul by one: |
| if (Constant *CV1 = dyn_cast<Constant>(Arg1)) |
| if (ConstantInt *Splat = |
| dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) |
| if (Splat->isOne()) |
| return CastInst::CreateIntegerCast(Arg0, II->getType(), |
| /*isSigned=*/!Zext); |
| |
| break; |
| } |
| case Intrinsic::arm_neon_aesd: |
| case Intrinsic::arm_neon_aese: |
| case Intrinsic::aarch64_crypto_aesd: |
| case Intrinsic::aarch64_crypto_aese: { |
| Value *DataArg = II->getArgOperand(0); |
| Value *KeyArg = II->getArgOperand(1); |
| |
| // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR |
| Value *Data, *Key; |
| if (match(KeyArg, m_ZeroInt()) && |
| match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { |
| replaceOperand(*II, 0, Data); |
| replaceOperand(*II, 1, Key); |
| return II; |
| } |
| break; |
| } |
| case Intrinsic::hexagon_V6_vandvrt: |
| case Intrinsic::hexagon_V6_vandvrt_128B: { |
| // Simplify Q -> V -> Q conversion. |
| if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { |
| Intrinsic::ID ID0 = Op0->getIntrinsicID(); |
| if (ID0 != Intrinsic::hexagon_V6_vandqrt && |
| ID0 != Intrinsic::hexagon_V6_vandqrt_128B) |
| break; |
| Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); |
| uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); |
| uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); |
| // Check if every byte has common bits in Bytes and Mask. |
| uint64_t C = Bytes1 & Mask1; |
| if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) |
| return replaceInstUsesWith(*II, Op0->getArgOperand(0)); |
| } |
| break; |
| } |
| case Intrinsic::stackrestore: { |
| enum class ClassifyResult { |
| None, |
| Alloca, |
| StackRestore, |
| CallWithSideEffects, |
| }; |
| auto Classify = [](const Instruction *I) { |
| if (isa<AllocaInst>(I)) |
| return ClassifyResult::Alloca; |
| |
| if (auto *CI = dyn_cast<CallInst>(I)) { |
| if (auto *II = dyn_cast<IntrinsicInst>(CI)) { |
| if (II->getIntrinsicID() == Intrinsic::stackrestore) |
| return ClassifyResult::StackRestore; |
| |
| if (II->mayHaveSideEffects()) |
| return ClassifyResult::CallWithSideEffects; |
| } else { |
| // Consider all non-intrinsic calls to be side effects |
| return ClassifyResult::CallWithSideEffects; |
| } |
| } |
| |
| return ClassifyResult::None; |
| }; |
| |
| // If the stacksave and the stackrestore are in the same BB, and there is |
| // no intervening call, alloca, or stackrestore of a different stacksave, |
| // remove the restore. This can happen when variable allocas are DCE'd. |
| if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { |
| if (SS->getIntrinsicID() == Intrinsic::stacksave && |
| SS->getParent() == II->getParent()) { |
| BasicBlock::iterator BI(SS); |
| bool CannotRemove = false; |
| for (++BI; &*BI != II; ++BI) { |
| switch (Classify(&*BI)) { |
| case ClassifyResult::None: |
| // So far so good, look at next instructions. |
| break; |
| |
| case ClassifyResult::StackRestore: |
| // If we found an intervening stackrestore for a different |
| // stacksave, we can't remove the stackrestore. Otherwise, continue. |
| if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS) |
| CannotRemove = true; |
| break; |
| |
| case ClassifyResult::Alloca: |
| case ClassifyResult::CallWithSideEffects: |
| // If we found an alloca, a non-intrinsic call, or an intrinsic |
| // call with side effects, we can't remove the stackrestore. |
| CannotRemove = true; |
| break; |
| } |
| if (CannotRemove) |
| break; |
| } |
| |
| if (!CannotRemove) |
| return eraseInstFromFunction(CI); |
| } |
| } |
| |
| // Scan down this block to see if there is another stack restore in the |
| // same block without an intervening call/alloca. |
| BasicBlock::iterator BI(II); |
| Instruction *TI = II->getParent()->getTerminator(); |
| bool CannotRemove = false; |
| for (++BI; &*BI != TI; ++BI) { |
| switch (Classify(&*BI)) { |
| case ClassifyResult::None: |
| // So far so good, look at next instructions. |
| break; |
| |
| case ClassifyResult::StackRestore: |
| // If there is a stackrestore below this one, remove this one. |
| return eraseInstFromFunction(CI); |
| |
| case ClassifyResult::Alloca: |
| case ClassifyResult::CallWithSideEffects: |
| // If we found an alloca, a non-intrinsic call, or an intrinsic call |
| // with side effects (such as llvm.stacksave and llvm.read_register), |
| // we can't remove the stack restore. |
| CannotRemove = true; |
| break; |
| } |
| if (CannotRemove) |
| break; |
| } |
| |
| // If the stack restore is in a return, resume, or unwind block and if there |
| // are no allocas or calls between the restore and the return, nuke the |
| // restore. |
| if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) |
| return eraseInstFromFunction(CI); |
| break; |
| } |
| case Intrinsic::lifetime_end: |
| // Asan needs to poison memory to detect invalid access which is possible |
| // even for empty lifetime range. |
| if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || |
| II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || |
| II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) |
| break; |
| |
| if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { |
| return I.getIntrinsicID() == Intrinsic::lifetime_start; |
| })) |
| return nullptr; |
| break; |
| case Intrinsic::assume: { |
| Value *IIOperand = II->getArgOperand(0); |
| SmallVector<OperandBundleDef, 4> OpBundles; |
| II->getOperandBundlesAsDefs(OpBundles); |
| |
| /// This will remove the boolean Condition from the assume given as |
| /// argument and remove the assume if it becomes useless. |
| /// always returns nullptr for use as a return values. |
| auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { |
| assert(isa<AssumeInst>(Assume)); |
| if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) |
| return eraseInstFromFunction(CI); |
| replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); |
| return nullptr; |
| }; |
| // Remove an assume if it is followed by an identical assume. |
| // TODO: Do we need this? Unless there are conflicting assumptions, the |
| // computeKnownBits(IIOperand) below here eliminates redundant assumes. |
| Instruction *Next = II->getNextNonDebugInstruction(); |
| if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) |
| return RemoveConditionFromAssume(Next); |
| |
| // Canonicalize assume(a && b) -> assume(a); assume(b); |
| // Note: New assumption intrinsics created here are registered by |
| // the InstCombineIRInserter object. |
| FunctionType *AssumeIntrinsicTy = II->getFunctionType(); |
| Value *AssumeIntrinsic = II->getCalledOperand(); |
| Value *A, *B; |
| if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { |
| Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, |
| II->getName()); |
| Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); |
| return eraseInstFromFunction(*II); |
| } |
| // assume(!(a || b)) -> assume(!a); assume(!b); |
| if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { |
| Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, |
| Builder.CreateNot(A), OpBundles, II->getName()); |
| Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, |
| Builder.CreateNot(B), II->getName()); |
| return eraseInstFromFunction(*II); |
| } |
| |
| // assume( (load addr) != null ) -> add 'nonnull' metadata to load |
| // (if assume is valid at the load) |
| CmpInst::Predicate Pred; |
| Instruction *LHS; |
| if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && |
| Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && |
| LHS->getType()->isPointerTy() && |
| isValidAssumeForContext(II, LHS, &DT)) { |
| MDNode *MD = MDNode::get(II->getContext(), None); |
| LHS->setMetadata(LLVMContext::MD_nonnull, MD); |
| return RemoveConditionFromAssume(II); |
| |
| // TODO: apply nonnull return attributes to calls and invokes |
| // TODO: apply range metadata for range check patterns? |
| } |
| |
| // Convert nonnull assume like: |
| // %A = icmp ne i32* %PTR, null |
| // call void @llvm.assume(i1 %A) |
| // into |
| // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] |
| if (EnableKnowledgeRetention && |
| match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && |
| Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { |
| if (auto *Replacement = buildAssumeFromKnowledge( |
| {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { |
| |
| Replacement->insertBefore(Next); |
| AC.registerAssumption(Replacement); |
| return RemoveConditionFromAssume(II); |
| } |
| } |
| |
| // Convert alignment assume like: |
| // %B = ptrtoint i32* %A to i64 |
| // %C = and i64 %B, Constant |
| // %D = icmp eq i64 %C, 0 |
| // call void @llvm.assume(i1 %D) |
| // into |
| // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] |
| uint64_t AlignMask; |
| if (EnableKnowledgeRetention && |
| match(IIOperand, |
| m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), |
| m_Zero())) && |
| Pred == CmpInst::ICMP_EQ) { |
| if (isPowerOf2_64(AlignMask + 1)) { |
| uint64_t Offset = 0; |
| match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); |
| if (match(A, m_PtrToInt(m_Value(A)))) { |
| /// Note: this doesn't preserve the offset information but merges |
| /// offset and alignment. |
| /// TODO: we can generate a GEP instead of merging the alignment with |
| /// the offset. |
| RetainedKnowledge RK{Attribute::Alignment, |
| (unsigned)MinAlign(Offset, AlignMask + 1), A}; |
| if (auto *Replacement = |
| buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { |
| |
| Replacement->insertAfter(II); |
| AC.registerAssumption(Replacement); |
| } |
| return RemoveConditionFromAssume(II); |
| } |
| } |
| } |
| |
| /// Canonicalize Knowledge in operand bundles. |
| if (EnableKnowledgeRetention && II->hasOperandBundles()) { |
| for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { |
| auto &BOI = II->bundle_op_info_begin()[Idx]; |
| RetainedKnowledge RK = |
| llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); |
| if (BOI.End - BOI.Begin > 2) |
| continue; // Prevent reducing knowledge in an align with offset since |
| // extracting a RetainedKnowledge form them looses offset |
| // information |
| RetainedKnowledge CanonRK = |
| llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, |
| &getAssumptionCache(), |
| &getDominatorTree()); |
| if (CanonRK == RK) |
| continue; |
| if (!CanonRK) { |
| if (BOI.End - BOI.Begin > 0) { |
| Worklist.pushValue(II->op_begin()[BOI.Begin]); |
| Value::dropDroppableUse(II->op_begin()[BOI.Begin]); |
| } |
| continue; |
| } |
| assert(RK.AttrKind == CanonRK.AttrKind); |
| if (BOI.End - BOI.Begin > 0) |
| II->op_begin()[BOI.Begin].set(CanonRK.WasOn); |
| if (BOI.End - BOI.Begin > 1) |
| II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( |
| Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); |
| if (RK.WasOn) |
| Worklist.pushValue(RK.WasOn); |
| return II; |
| } |
| } |
| |
| // If there is a dominating assume with the same condition as this one, |
| // then this one is redundant, and should be removed. |
| KnownBits Known(1); |
| computeKnownBits(IIOperand, Known, 0, II); |
| if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) |
| return eraseInstFromFunction(*II); |
| |
| // Update the cache of affected values for this assumption (we might be |
| // here because we just simplified the condition). |
| AC.updateAffectedValues(cast<AssumeInst>(II)); |
| break; |
| } |
| case Intrinsic::experimental_guard: { |
| // Is this guard followed by another guard? We scan forward over a small |
| // fixed window of instructions to handle common cases with conditions |
| // computed between guards. |
| Instruction *NextInst = II->getNextNonDebugInstruction(); |
| for (unsigned i = 0; i < GuardWideningWindow; i++) { |
| // Note: Using context-free form to avoid compile time blow up |
| if (!isSafeToSpeculativelyExecute(NextInst)) |
| break; |
| NextInst = NextInst->getNextNonDebugInstruction(); |
| } |
| Value *NextCond = nullptr; |
| if (match(NextInst, |
| m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { |
| Value *CurrCond = II->getArgOperand(0); |
| |
| // Remove a guard that it is immediately preceded by an identical guard. |
| // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). |
| if (CurrCond != NextCond) { |
| Instruction *MoveI = II->getNextNonDebugInstruction(); |
| while (MoveI != NextInst) { |
| auto *Temp = MoveI; |
| MoveI = MoveI->getNextNonDebugInstruction(); |
| Temp->moveBefore(II); |
| } |
| replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); |
| } |
| eraseInstFromFunction(*NextInst); |
| return II; |
| } |
| break; |
| } |
| case Intrinsic::experimental_vector_insert: { |
| Value *Vec = II->getArgOperand(0); |
| Value *SubVec = II->getArgOperand(1); |
| Value *Idx = II->getArgOperand(2); |
| auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); |
| auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); |
| auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); |
| |
| // Only canonicalize if the destination vector, Vec, and SubVec are all |
| // fixed vectors. |
| if (DstTy && VecTy && SubVecTy) { |
| unsigned DstNumElts = DstTy->getNumElements(); |
| unsigned VecNumElts = VecTy->getNumElements(); |
| unsigned SubVecNumElts = SubVecTy->getNumElements(); |
| unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); |
| |
| // An insert that entirely overwrites Vec with SubVec is a nop. |
| if (VecNumElts == SubVecNumElts) |
| return replaceInstUsesWith(CI, SubVec); |
| |
| // Widen SubVec into a vector of the same width as Vec, since |
| // shufflevector requires the two input vectors to be the same width. |
| // Elements beyond the bounds of SubVec within the widened vector are |
| // undefined. |
| SmallVector<int, 8> WidenMask; |
| unsigned i; |
| for (i = 0; i != SubVecNumElts; ++i) |
| WidenMask.push_back(i); |
| for (; i != VecNumElts; ++i) |
| WidenMask.push_back(UndefMaskElem); |
| |
| Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); |
| |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0; i != IdxN; ++i) |
| Mask.push_back(i); |
| for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) |
| Mask.push_back(i); |
| for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) |
| Mask.push_back(i); |
| |
| Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); |
| return replaceInstUsesWith(CI, Shuffle); |
| } |
| break; |
| } |
| case Intrinsic::experimental_vector_extract: { |
| Value *Vec = II->getArgOperand(0); |
| Value *Idx = II->getArgOperand(1); |
| |
| auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); |
| auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); |
| |
| // Only canonicalize if the the destination vector and Vec are fixed |
| // vectors. |
| if (DstTy && VecTy) { |
| unsigned DstNumElts = DstTy->getNumElements(); |
| unsigned VecNumElts = VecTy->getNumElements(); |
| unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); |
| |
| // Extracting the entirety of Vec is a nop. |
| if (VecNumElts == DstNumElts) { |
| replaceInstUsesWith(CI, Vec); |
| return eraseInstFromFunction(CI); |
| } |
| |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0; i != DstNumElts; ++i) |
| Mask.push_back(IdxN + i); |
| |
| Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); |
| return replaceInstUsesWith(CI, Shuffle); |
| } |
| break; |
| } |
| case Intrinsic::experimental_vector_reverse: { |
| Value *BO0, *BO1, *X, *Y; |
| Value *Vec = II->getArgOperand(0); |
| if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) { |
| auto *OldBinOp = cast<BinaryOperator>(Vec); |
| if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>( |
| m_Value(X)))) { |
| // rev(binop rev(X), rev(Y)) --> binop X, Y |
| if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>( |
| m_Value(Y)))) |
| return replaceInstUsesWith(CI, |
| BinaryOperator::CreateWithCopiedFlags( |
| OldBinOp->getOpcode(), X, Y, OldBinOp, |
| OldBinOp->getName(), II)); |
| // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat |
| if (isSplatValue(BO1)) |
| return replaceInstUsesWith(CI, |
| BinaryOperator::CreateWithCopiedFlags( |
| OldBinOp->getOpcode(), X, BO1, |
| OldBinOp, OldBinOp->getName(), II)); |
| } |
| // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y |
| if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>( |
| m_Value(Y))) && |
| isSplatValue(BO0)) |
| return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( |
| OldBinOp->getOpcode(), BO0, Y, |
| OldBinOp, OldBinOp->getName(), II)); |
| } |
| // rev(unop rev(X)) --> unop X |
| if (match(Vec, m_OneUse(m_UnOp( |
| m_Intrinsic<Intrinsic::experimental_vector_reverse>( |
| m_Value(X)))))) { |
| auto *OldUnOp = cast<UnaryOperator>(Vec); |
| auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags( |
| OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II); |
| return replaceInstUsesWith(CI, NewUnOp); |
| } |
| break; |
| } |
| case Intrinsic::vector_reduce_or: |
| case Intrinsic::vector_reduce_and: { |
| // Canonicalize logical or/and reductions: |
| // Or reduction for i1 is represented as: |
| // %val = bitcast <ReduxWidth x i1> to iReduxWidth |
| // %res = cmp ne iReduxWidth %val, 0 |
| // And reduction for i1 is represented as: |
| // %val = bitcast <ReduxWidth x i1> to iReduxWidth |
| // %res = cmp eq iReduxWidth %val, 11111 |
| Value *Arg = II->getArgOperand(0); |
| Value *Vect; |
| if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) |
| if (FTy->getElementType() == Builder.getInt1Ty()) { |
| Value *Res = Builder.CreateBitCast( |
| Vect, Builder.getIntNTy(FTy->getNumElements())); |
| if (IID == Intrinsic::vector_reduce_and) { |
| Res = Builder.CreateICmpEQ( |
| Res, ConstantInt::getAllOnesValue(Res->getType())); |
| } else { |
| assert(IID == Intrinsic::vector_reduce_or && |
| "Expected or reduction."); |
| Res = Builder.CreateIsNotNull(Res); |
| } |
| if (Arg != Vect) |
| Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, |
| II->getType()); |
| return replaceInstUsesWith(CI, Res); |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::vector_reduce_add: { |
| if (IID == Intrinsic::vector_reduce_add) { |
| // Convert vector_reduce_add(ZExt(<n x i1>)) to |
| // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). |
| // Convert vector_reduce_add(SExt(<n x i1>)) to |
| // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). |
| // Convert vector_reduce_add(<n x i1>) to |
| // Trunc(ctpop(bitcast <n x i1> to in)). |
| Value *Arg = II->getArgOperand(0); |
| Value *Vect; |
| if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) |
| if (FTy->getElementType() == Builder.getInt1Ty()) { |
| Value *V = Builder.CreateBitCast( |
| Vect, Builder.getIntNTy(FTy->getNumElements())); |
| Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); |
| if (Res->getType() != II->getType()) |
| Res = Builder.CreateZExtOrTrunc(Res, II->getType()); |
| if (Arg != Vect && |
| cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) |
| Res = Builder.CreateNeg(Res); |
| return replaceInstUsesWith(CI, Res); |
| } |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::vector_reduce_xor: { |
| if (IID == Intrinsic::vector_reduce_xor) { |
| // Exclusive disjunction reduction over the vector with |
| // (potentially-extended) i1 element type is actually a |
| // (potentially-extended) arithmetic `add` reduction over the original |
| // non-extended value: |
| // vector_reduce_xor(?ext(<n x i1>)) |
| // --> |
| // ?ext(vector_reduce_add(<n x i1>)) |
| Value *Arg = II->getArgOperand(0); |
| Value *Vect; |
| if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) |
| if (FTy->getElementType() == Builder.getInt1Ty()) { |
| Value *Res = Builder.CreateAddReduce(Vect); |
| if (Arg != Vect) |
| Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, |
| II->getType()); |
| return replaceInstUsesWith(CI, Res); |
| } |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::vector_reduce_mul: { |
| if (IID == Intrinsic::vector_reduce_mul) { |
| // Multiplicative reduction over the vector with (potentially-extended) |
| // i1 element type is actually a (potentially zero-extended) |
| // logical `and` reduction over the original non-extended value: |
| // vector_reduce_mul(?ext(<n x i1>)) |
| // --> |
| // zext(vector_reduce_and(<n x i1>)) |
| Value *Arg = II->getArgOperand(0); |
| Value *Vect; |
| if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) |
| if (FTy->getElementType() == Builder.getInt1Ty()) { |
| Value *Res = Builder.CreateAndReduce(Vect); |
| if (Res->getType() != II->getType()) |
| Res = Builder.CreateZExt(Res, II->getType()); |
| return replaceInstUsesWith(CI, Res); |
| } |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::vector_reduce_umin: |
| case Intrinsic::vector_reduce_umax: { |
| if (IID == Intrinsic::vector_reduce_umin || |
| IID == Intrinsic::vector_reduce_umax) { |
| // UMin/UMax reduction over the vector with (potentially-extended) |
| // i1 element type is actually a (potentially-extended) |
| // logical `and`/`or` reduction over the original non-extended value: |
| // vector_reduce_u{min,max}(?ext(<n x i1>)) |
| // --> |
| // ?ext(vector_reduce_{and,or}(<n x i1>)) |
| Value *Arg = II->getArgOperand(0); |
| Value *Vect; |
| if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) |
| if (FTy->getElementType() == Builder.getInt1Ty()) { |
| Value *Res = IID == Intrinsic::vector_reduce_umin |
| ? Builder.CreateAndReduce(Vect) |
| : Builder.CreateOrReduce(Vect); |
| if (Arg != Vect) |
| Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, |
| II->getType()); |
| return replaceInstUsesWith(CI, Res); |
| } |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::vector_reduce_smin: |
| case Intrinsic::vector_reduce_smax: { |
| if (IID == Intrinsic::vector_reduce_smin || |
| IID == Intrinsic::vector_reduce_smax) { |
| // SMin/SMax reduction over the vector with (potentially-extended) |
| // i1 element type is actually a (potentially-extended) |
| // logical `and`/`or` reduction over the original non-extended value: |
| // vector_reduce_s{min,max}(<n x i1>) |
| // --> |
| // vector_reduce_{or,and}(<n x i1>) |
| // and |
| // vector_reduce_s{min,max}(sext(<n x i1>)) |
| // --> |
| // sext(vector_reduce_{or,and}(<n x i1>)) |
| // and |
| // vector_reduce_s{min,max}(zext(<n x i1>)) |
| // --> |
| // zext(vector_reduce_{and,or}(<n x i1>)) |
| Value *Arg = II->getArgOperand(0); |
| Value *Vect; |
| if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) |
| if (FTy->getElementType() == Builder.getInt1Ty()) { |
| Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd; |
| if (Arg != Vect) |
| ExtOpc = cast<CastInst>(Arg)->getOpcode(); |
| Value *Res = ((IID == Intrinsic::vector_reduce_smin) == |
| (ExtOpc == Instruction::CastOps::ZExt)) |
| ? Builder.CreateAndReduce(Vect) |
| : Builder.CreateOrReduce(Vect); |
| if (Arg != Vect) |
| Res = Builder.CreateCast(ExtOpc, Res, II->getType()); |
| return replaceInstUsesWith(CI, Res); |
| } |
| } |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::vector_reduce_fmax: |
| case Intrinsic::vector_reduce_fmin: |
| case Intrinsic::vector_reduce_fadd: |
| case Intrinsic::vector_reduce_fmul: { |
| bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd && |
| IID != Intrinsic::vector_reduce_fmul) || |
| II->hasAllowReassoc(); |
| const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || |
| IID == Intrinsic::vector_reduce_fmul) |
| ? 1 |
| : 0; |
| Value *Arg = II->getArgOperand(ArgIdx); |
| Value *V; |
| ArrayRef<int> Mask; |
| if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated || |
| !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || |
| !cast<ShuffleVectorInst>(Arg)->isSingleSource()) |
| break; |
| int Sz = Mask.size(); |
| SmallBitVector UsedIndices(Sz); |
| for (int Idx : Mask) { |
| if (Idx == UndefMaskElem || UsedIndices.test(Idx)) |
| break; |
| UsedIndices.set(Idx); |
| } |
| // Can remove shuffle iff just shuffled elements, no repeats, undefs, or |
| // other changes. |
| if (UsedIndices.all()) { |
| replaceUse(II->getOperandUse(ArgIdx), V); |
| return nullptr; |
| } |
| break; |
| } |
| default: { |
| // Handle target specific intrinsics |
| Optional<Instruction *> V = targetInstCombineIntrinsic(*II); |
| if (V.hasValue()) |
| return V.getValue(); |
| break; |
| } |
| } |
| // Some intrinsics (like experimental_gc_statepoint) can be used in invoke |
| // context, so it is handled in visitCallBase and we should trigger it. |
| return visitCallBase(*II); |
| } |
| |
| // Fence instruction simplification |
| Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { |
| // Remove identical consecutive fences. |
| Instruction *Next = FI.getNextNonDebugInstruction(); |
| if (auto *NFI = dyn_cast<FenceInst>(Next)) |
| if (FI.isIdenticalTo(NFI)) |
| return eraseInstFromFunction(FI); |
| return nullptr; |
| } |
| |
| // InvokeInst simplification |
| Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { |
| return visitCallBase(II); |
| } |
| |
| // CallBrInst simplification |
| Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { |
| return visitCallBase(CBI); |
| } |
| |
| /// If this cast does not affect the value passed through the varargs area, we |
| /// can eliminate the use of the cast. |
| static bool isSafeToEliminateVarargsCast(const CallBase &Call, |
| const DataLayout &DL, |
| const CastInst *const CI, |
| const int ix) { |
| if (!CI->isLosslessCast()) |
| return false; |
| |
| // If this is a GC intrinsic, avoid munging types. We need types for |
| // statepoint reconstruction in SelectionDAG. |
| // TODO: This is probably something which should be expanded to all |
| // intrinsics since the entire point of intrinsics is that |
| // they are understandable by the optimizer. |
| if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || |
| isa<GCResultInst>(Call)) |
| return false; |
| |
| // Opaque pointers are compatible with any byval types. |
| PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType()); |
| if (SrcTy->isOpaque()) |
| return true; |
| |
| // The size of ByVal or InAlloca arguments is derived from the type, so we |
| // can't change to a type with a different size. If the size were |
| // passed explicitly we could avoid this check. |
| if (!Call.isPassPointeeByValueArgument(ix)) |
| return true; |
| |
| // The transform currently only handles type replacement for byval, not other |
| // type-carrying attributes. |
| if (!Call.isByValArgument(ix)) |
| return false; |
| |
| Type *SrcElemTy = SrcTy->getElementType(); |
| Type *DstElemTy = Call.getParamByValType(ix); |
| if (!SrcElemTy->isSized() || !DstElemTy->isSized()) |
| return false; |
| if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy)) |
| return false; |
| return true; |
| } |
| |
| Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { |
| if (!CI->getCalledFunction()) return nullptr; |
| |
| auto InstCombineRAUW = [this](Instruction *From, Value *With) { |
| replaceInstUsesWith(*From, With); |
| }; |
| auto InstCombineErase = [this](Instruction *I) { |
| eraseInstFromFunction(*I); |
| }; |
| LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, |
| InstCombineErase); |
| if (Value *With = Simplifier.optimizeCall(CI, Builder)) { |
| ++NumSimplified; |
| return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); |
| } |
| |
| return nullptr; |
| } |
| |
| static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { |
| // Strip off at most one level of pointer casts, looking for an alloca. This |
| // is good enough in practice and simpler than handling any number of casts. |
| Value *Underlying = TrampMem->stripPointerCasts(); |
| if (Underlying != TrampMem && |
| (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) |
| return nullptr; |
| if (!isa<AllocaInst>(Underlying)) |
| return nullptr; |
| |
| IntrinsicInst *InitTrampoline = nullptr; |
| for (User *U : TrampMem->users()) { |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); |
| if (!II) |
| return nullptr; |
| if (II->getIntrinsicID() == Intrinsic::init_trampoline) { |
| if (InitTrampoline) |
| // More than one init_trampoline writes to this value. Give up. |
| return nullptr; |
| InitTrampoline = II; |
| continue; |
| } |
| if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) |
| // Allow any number of calls to adjust.trampoline. |
| continue; |
| return nullptr; |
| } |
| |
| // No call to init.trampoline found. |
| if (!InitTrampoline) |
| return nullptr; |
| |
| // Check that the alloca is being used in the expected way. |
| if (InitTrampoline->getOperand(0) != TrampMem) |
| return nullptr; |
| |
| return InitTrampoline; |
| } |
| |
| static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, |
| Value *TrampMem) { |
| // Visit all the previous instructions in the basic block, and try to find a |
| // init.trampoline which has a direct path to the adjust.trampoline. |
| for (BasicBlock::
|