| //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/ModuleSummaryAnalysis.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TypeMetadataUtils.h" |
| #include "llvm/Bitcode/BitcodeWriter.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Object/ModuleSymbolTable.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/FunctionAttrs.h" |
| #include "llvm/Transforms/IPO/FunctionImport.h" |
| #include "llvm/Transforms/IPO/LowerTypeTests.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| // Determine if a promotion alias should be created for a symbol name. |
| static bool allowPromotionAlias(const std::string &Name) { |
| // Promotion aliases are used only in inline assembly. It's safe to |
| // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() |
| // and MCAsmInfoXCOFF::isAcceptableChar(). |
| for (const char &C : Name) { |
| if (isAlnum(C) || C == '_' || C == '.') |
| continue; |
| return false; |
| } |
| return true; |
| } |
| |
| // Promote each local-linkage entity defined by ExportM and used by ImportM by |
| // changing visibility and appending the given ModuleId. |
| void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, |
| SetVector<GlobalValue *> &PromoteExtra) { |
| DenseMap<const Comdat *, Comdat *> RenamedComdats; |
| for (auto &ExportGV : ExportM.global_values()) { |
| if (!ExportGV.hasLocalLinkage()) |
| continue; |
| |
| auto Name = ExportGV.getName(); |
| GlobalValue *ImportGV = nullptr; |
| if (!PromoteExtra.count(&ExportGV)) { |
| ImportGV = ImportM.getNamedValue(Name); |
| if (!ImportGV) |
| continue; |
| ImportGV->removeDeadConstantUsers(); |
| if (ImportGV->use_empty()) { |
| ImportGV->eraseFromParent(); |
| continue; |
| } |
| } |
| |
| std::string OldName = Name.str(); |
| std::string NewName = (Name + ModuleId).str(); |
| |
| if (const auto *C = ExportGV.getComdat()) |
| if (C->getName() == Name) |
| RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); |
| |
| ExportGV.setName(NewName); |
| ExportGV.setLinkage(GlobalValue::ExternalLinkage); |
| ExportGV.setVisibility(GlobalValue::HiddenVisibility); |
| |
| if (ImportGV) { |
| ImportGV->setName(NewName); |
| ImportGV->setVisibility(GlobalValue::HiddenVisibility); |
| } |
| |
| if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) { |
| // Create a local alias with the original name to avoid breaking |
| // references from inline assembly. |
| std::string Alias = ".set " + OldName + "," + NewName + "\n"; |
| ExportM.appendModuleInlineAsm(Alias); |
| } |
| } |
| |
| if (!RenamedComdats.empty()) |
| for (auto &GO : ExportM.global_objects()) |
| if (auto *C = GO.getComdat()) { |
| auto Replacement = RenamedComdats.find(C); |
| if (Replacement != RenamedComdats.end()) |
| GO.setComdat(Replacement->second); |
| } |
| } |
| |
| // Promote all internal (i.e. distinct) type ids used by the module by replacing |
| // them with external type ids formed using the module id. |
| // |
| // Note that this needs to be done before we clone the module because each clone |
| // will receive its own set of distinct metadata nodes. |
| void promoteTypeIds(Module &M, StringRef ModuleId) { |
| DenseMap<Metadata *, Metadata *> LocalToGlobal; |
| auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { |
| Metadata *MD = |
| cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); |
| |
| if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { |
| Metadata *&GlobalMD = LocalToGlobal[MD]; |
| if (!GlobalMD) { |
| std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); |
| GlobalMD = MDString::get(M.getContext(), NewName); |
| } |
| |
| CI->setArgOperand(ArgNo, |
| MetadataAsValue::get(M.getContext(), GlobalMD)); |
| } |
| }; |
| |
| if (Function *TypeTestFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { |
| for (const Use &U : TypeTestFunc->uses()) { |
| auto CI = cast<CallInst>(U.getUser()); |
| ExternalizeTypeId(CI, 1); |
| } |
| } |
| |
| if (Function *TypeCheckedLoadFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { |
| for (const Use &U : TypeCheckedLoadFunc->uses()) { |
| auto CI = cast<CallInst>(U.getUser()); |
| ExternalizeTypeId(CI, 2); |
| } |
| } |
| |
| for (GlobalObject &GO : M.global_objects()) { |
| SmallVector<MDNode *, 1> MDs; |
| GO.getMetadata(LLVMContext::MD_type, MDs); |
| |
| GO.eraseMetadata(LLVMContext::MD_type); |
| for (auto MD : MDs) { |
| auto I = LocalToGlobal.find(MD->getOperand(1)); |
| if (I == LocalToGlobal.end()) { |
| GO.addMetadata(LLVMContext::MD_type, *MD); |
| continue; |
| } |
| GO.addMetadata( |
| LLVMContext::MD_type, |
| *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); |
| } |
| } |
| } |
| |
| // Drop unused globals, and drop type information from function declarations. |
| // FIXME: If we made functions typeless then there would be no need to do this. |
| void simplifyExternals(Module &M) { |
| FunctionType *EmptyFT = |
| FunctionType::get(Type::getVoidTy(M.getContext()), false); |
| |
| for (Function &F : llvm::make_early_inc_range(M)) { |
| if (F.isDeclaration() && F.use_empty()) { |
| F.eraseFromParent(); |
| continue; |
| } |
| |
| if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || |
| // Changing the type of an intrinsic may invalidate the IR. |
| F.getName().startswith("llvm.")) |
| continue; |
| |
| Function *NewF = |
| Function::Create(EmptyFT, GlobalValue::ExternalLinkage, |
| F.getAddressSpace(), "", &M); |
| NewF->copyAttributesFrom(&F); |
| // Only copy function attribtues. |
| NewF->setAttributes(AttributeList::get(M.getContext(), |
| AttributeList::FunctionIndex, |
| F.getAttributes().getFnAttrs())); |
| NewF->takeName(&F); |
| F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); |
| F.eraseFromParent(); |
| } |
| |
| for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { |
| if (GV.isDeclaration() && GV.use_empty()) { |
| GV.eraseFromParent(); |
| continue; |
| } |
| } |
| } |
| |
| static void |
| filterModule(Module *M, |
| function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { |
| std::vector<GlobalValue *> V; |
| for (GlobalValue &GV : M->global_values()) |
| if (!ShouldKeepDefinition(&GV)) |
| V.push_back(&GV); |
| |
| for (GlobalValue *GV : V) |
| if (!convertToDeclaration(*GV)) |
| GV->eraseFromParent(); |
| } |
| |
| void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { |
| if (auto *F = dyn_cast<Function>(C)) |
| return Fn(F); |
| if (isa<GlobalValue>(C)) |
| return; |
| for (Value *Op : C->operands()) |
| forEachVirtualFunction(cast<Constant>(Op), Fn); |
| } |
| |
| // Clone any @llvm[.compiler].used over to the new module and append |
| // values whose defs were cloned into that module. |
| static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, |
| bool CompilerUsed) { |
| SmallVector<GlobalValue *, 4> Used, NewUsed; |
| // First collect those in the llvm[.compiler].used set. |
| collectUsedGlobalVariables(SrcM, Used, CompilerUsed); |
| // Next build a set of the equivalent values defined in DestM. |
| for (auto *V : Used) { |
| auto *GV = DestM.getNamedValue(V->getName()); |
| if (GV && !GV->isDeclaration()) |
| NewUsed.push_back(GV); |
| } |
| // Finally, add them to a llvm[.compiler].used variable in DestM. |
| if (CompilerUsed) |
| appendToCompilerUsed(DestM, NewUsed); |
| else |
| appendToUsed(DestM, NewUsed); |
| } |
| |
| // If it's possible to split M into regular and thin LTO parts, do so and write |
| // a multi-module bitcode file with the two parts to OS. Otherwise, write only a |
| // regular LTO bitcode file to OS. |
| void splitAndWriteThinLTOBitcode( |
| raw_ostream &OS, raw_ostream *ThinLinkOS, |
| function_ref<AAResults &(Function &)> AARGetter, Module &M) { |
| std::string ModuleId = getUniqueModuleId(&M); |
| if (ModuleId.empty()) { |
| // We couldn't generate a module ID for this module, write it out as a |
| // regular LTO module with an index for summary-based dead stripping. |
| ProfileSummaryInfo PSI(M); |
| M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); |
| ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); |
| WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); |
| |
| if (ThinLinkOS) |
| // We don't have a ThinLTO part, but still write the module to the |
| // ThinLinkOS if requested so that the expected output file is produced. |
| WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, |
| &Index); |
| |
| return; |
| } |
| |
| promoteTypeIds(M, ModuleId); |
| |
| // Returns whether a global or its associated global has attached type |
| // metadata. The former may participate in CFI or whole-program |
| // devirtualization, so they need to appear in the merged module instead of |
| // the thin LTO module. Similarly, globals that are associated with globals |
| // with type metadata need to appear in the merged module because they will |
| // reference the global's section directly. |
| auto HasTypeMetadata = [](const GlobalObject *GO) { |
| if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) |
| if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) |
| if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) |
| if (AssocGO->hasMetadata(LLVMContext::MD_type)) |
| return true; |
| return GO->hasMetadata(LLVMContext::MD_type); |
| }; |
| |
| // Collect the set of virtual functions that are eligible for virtual constant |
| // propagation. Each eligible function must not access memory, must return |
| // an integer of width <=64 bits, must take at least one argument, must not |
| // use its first argument (assumed to be "this") and all arguments other than |
| // the first one must be of <=64 bit integer type. |
| // |
| // Note that we test whether this copy of the function is readnone, rather |
| // than testing function attributes, which must hold for any copy of the |
| // function, even a less optimized version substituted at link time. This is |
| // sound because the virtual constant propagation optimizations effectively |
| // inline all implementations of the virtual function into each call site, |
| // rather than using function attributes to perform local optimization. |
| DenseSet<const Function *> EligibleVirtualFns; |
| // If any member of a comdat lives in MergedM, put all members of that |
| // comdat in MergedM to keep the comdat together. |
| DenseSet<const Comdat *> MergedMComdats; |
| for (GlobalVariable &GV : M.globals()) |
| if (HasTypeMetadata(&GV)) { |
| if (const auto *C = GV.getComdat()) |
| MergedMComdats.insert(C); |
| forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { |
| auto *RT = dyn_cast<IntegerType>(F->getReturnType()); |
| if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || |
| !F->arg_begin()->use_empty()) |
| return; |
| for (auto &Arg : drop_begin(F->args())) { |
| auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); |
| if (!ArgT || ArgT->getBitWidth() > 64) |
| return; |
| } |
| if (!F->isDeclaration() && |
| computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) |
| EligibleVirtualFns.insert(F); |
| }); |
| } |
| |
| ValueToValueMapTy VMap; |
| std::unique_ptr<Module> MergedM( |
| CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { |
| if (const auto *C = GV->getComdat()) |
| if (MergedMComdats.count(C)) |
| return true; |
| if (auto *F = dyn_cast<Function>(GV)) |
| return EligibleVirtualFns.count(F); |
| if (auto *GVar = |
| dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) |
| return HasTypeMetadata(GVar); |
| return false; |
| })); |
| StripDebugInfo(*MergedM); |
| MergedM->setModuleInlineAsm(""); |
| |
| // Clone any llvm.*used globals to ensure the included values are |
| // not deleted. |
| cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); |
| cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); |
| |
| for (Function &F : *MergedM) |
| if (!F.isDeclaration()) { |
| // Reset the linkage of all functions eligible for virtual constant |
| // propagation. The canonical definitions live in the thin LTO module so |
| // that they can be imported. |
| F.setLinkage(GlobalValue::AvailableExternallyLinkage); |
| F.setComdat(nullptr); |
| } |
| |
| SetVector<GlobalValue *> CfiFunctions; |
| for (auto &F : M) |
| if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) |
| CfiFunctions.insert(&F); |
| |
| // Remove all globals with type metadata, globals with comdats that live in |
| // MergedM, and aliases pointing to such globals from the thin LTO module. |
| filterModule(&M, [&](const GlobalValue *GV) { |
| if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) |
| if (HasTypeMetadata(GVar)) |
| return false; |
| if (const auto *C = GV->getComdat()) |
| if (MergedMComdats.count(C)) |
| return false; |
| return true; |
| }); |
| |
| promoteInternals(*MergedM, M, ModuleId, CfiFunctions); |
| promoteInternals(M, *MergedM, ModuleId, CfiFunctions); |
| |
| auto &Ctx = MergedM->getContext(); |
| SmallVector<MDNode *, 8> CfiFunctionMDs; |
| for (auto V : CfiFunctions) { |
| Function &F = *cast<Function>(V); |
| SmallVector<MDNode *, 2> Types; |
| F.getMetadata(LLVMContext::MD_type, Types); |
| |
| SmallVector<Metadata *, 4> Elts; |
| Elts.push_back(MDString::get(Ctx, F.getName())); |
| CfiFunctionLinkage Linkage; |
| if (lowertypetests::isJumpTableCanonical(&F)) |
| Linkage = CFL_Definition; |
| else if (F.hasExternalWeakLinkage()) |
| Linkage = CFL_WeakDeclaration; |
| else |
| Linkage = CFL_Declaration; |
| Elts.push_back(ConstantAsMetadata::get( |
| llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); |
| append_range(Elts, Types); |
| CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); |
| } |
| |
| if(!CfiFunctionMDs.empty()) { |
| NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); |
| for (auto MD : CfiFunctionMDs) |
| NMD->addOperand(MD); |
| } |
| |
| SmallVector<MDNode *, 8> FunctionAliases; |
| for (auto &A : M.aliases()) { |
| if (!isa<Function>(A.getAliasee())) |
| continue; |
| |
| auto *F = cast<Function>(A.getAliasee()); |
| |
| Metadata *Elts[] = { |
| MDString::get(Ctx, A.getName()), |
| MDString::get(Ctx, F->getName()), |
| ConstantAsMetadata::get( |
| ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), |
| ConstantAsMetadata::get( |
| ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), |
| }; |
| |
| FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); |
| } |
| |
| if (!FunctionAliases.empty()) { |
| NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); |
| for (auto MD : FunctionAliases) |
| NMD->addOperand(MD); |
| } |
| |
| SmallVector<MDNode *, 8> Symvers; |
| ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { |
| Function *F = M.getFunction(Name); |
| if (!F || F->use_empty()) |
| return; |
| |
| Symvers.push_back(MDTuple::get( |
| Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); |
| }); |
| |
| if (!Symvers.empty()) { |
| NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); |
| for (auto MD : Symvers) |
| NMD->addOperand(MD); |
| } |
| |
| simplifyExternals(*MergedM); |
| |
| // FIXME: Try to re-use BSI and PFI from the original module here. |
| ProfileSummaryInfo PSI(M); |
| ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); |
| |
| // Mark the merged module as requiring full LTO. We still want an index for |
| // it though, so that it can participate in summary-based dead stripping. |
| MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); |
| ModuleSummaryIndex MergedMIndex = |
| buildModuleSummaryIndex(*MergedM, nullptr, &PSI); |
| |
| SmallVector<char, 0> Buffer; |
| |
| BitcodeWriter W(Buffer); |
| // Save the module hash produced for the full bitcode, which will |
| // be used in the backends, and use that in the minimized bitcode |
| // produced for the full link. |
| ModuleHash ModHash = {{0}}; |
| W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, |
| /*GenerateHash=*/true, &ModHash); |
| W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); |
| W.writeSymtab(); |
| W.writeStrtab(); |
| OS << Buffer; |
| |
| // If a minimized bitcode module was requested for the thin link, only |
| // the information that is needed by thin link will be written in the |
| // given OS (the merged module will be written as usual). |
| if (ThinLinkOS) { |
| Buffer.clear(); |
| BitcodeWriter W2(Buffer); |
| StripDebugInfo(M); |
| W2.writeThinLinkBitcode(M, Index, ModHash); |
| W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, |
| &MergedMIndex); |
| W2.writeSymtab(); |
| W2.writeStrtab(); |
| *ThinLinkOS << Buffer; |
| } |
| } |
| |
| // Check if the LTO Unit splitting has been enabled. |
| bool enableSplitLTOUnit(Module &M) { |
| bool EnableSplitLTOUnit = false; |
| if (auto *MD = mdconst::extract_or_null<ConstantInt>( |
| M.getModuleFlag("EnableSplitLTOUnit"))) |
| EnableSplitLTOUnit = MD->getZExtValue(); |
| return EnableSplitLTOUnit; |
| } |
| |
| // Returns whether this module needs to be split because it uses type metadata. |
| bool hasTypeMetadata(Module &M) { |
| for (auto &GO : M.global_objects()) { |
| if (GO.hasMetadata(LLVMContext::MD_type)) |
| return true; |
| } |
| return false; |
| } |
| |
| void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, |
| function_ref<AAResults &(Function &)> AARGetter, |
| Module &M, const ModuleSummaryIndex *Index) { |
| std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; |
| // See if this module has any type metadata. If so, we try to split it |
| // or at least promote type ids to enable WPD. |
| if (hasTypeMetadata(M)) { |
| if (enableSplitLTOUnit(M)) |
| return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); |
| // Promote type ids as needed for index-based WPD. |
| std::string ModuleId = getUniqueModuleId(&M); |
| if (!ModuleId.empty()) { |
| promoteTypeIds(M, ModuleId); |
| // Need to rebuild the index so that it contains type metadata |
| // for the newly promoted type ids. |
| // FIXME: Probably should not bother building the index at all |
| // in the caller of writeThinLTOBitcode (which does so via the |
| // ModuleSummaryIndexAnalysis pass), since we have to rebuild it |
| // anyway whenever there is type metadata (here or in |
| // splitAndWriteThinLTOBitcode). Just always build it once via the |
| // buildModuleSummaryIndex when Module(s) are ready. |
| ProfileSummaryInfo PSI(M); |
| NewIndex = std::make_unique<ModuleSummaryIndex>( |
| buildModuleSummaryIndex(M, nullptr, &PSI)); |
| Index = NewIndex.get(); |
| } |
| } |
| |
| // Write it out as an unsplit ThinLTO module. |
| |
| // Save the module hash produced for the full bitcode, which will |
| // be used in the backends, and use that in the minimized bitcode |
| // produced for the full link. |
| ModuleHash ModHash = {{0}}; |
| WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, |
| /*GenerateHash=*/true, &ModHash); |
| // If a minimized bitcode module was requested for the thin link, only |
| // the information that is needed by thin link will be written in the |
| // given OS. |
| if (ThinLinkOS && Index) |
| WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); |
| } |
| |
| class WriteThinLTOBitcode : public ModulePass { |
| raw_ostream &OS; // raw_ostream to print on |
| // The output stream on which to emit a minimized module for use |
| // just in the thin link, if requested. |
| raw_ostream *ThinLinkOS; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { |
| initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) |
| : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { |
| initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } |
| |
| bool runOnModule(Module &M) override { |
| const ModuleSummaryIndex *Index = |
| &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); |
| writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); |
| return true; |
| } |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<ModuleSummaryIndexWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |
| }; |
| } // anonymous namespace |
| |
| char WriteThinLTOBitcode::ID = 0; |
| INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", |
| "Write ThinLTO Bitcode", false, true) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", |
| "Write ThinLTO Bitcode", false, true) |
| |
| ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, |
| raw_ostream *ThinLinkOS) { |
| return new WriteThinLTOBitcode(Str, ThinLinkOS); |
| } |
| |
| PreservedAnalyses |
| llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| writeThinLTOBitcode(OS, ThinLinkOS, |
| [&FAM](Function &F) -> AAResults & { |
| return FAM.getResult<AAManager>(F); |
| }, |
| M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); |
| return PreservedAnalyses::all(); |
| } |