| //====- SHA256.cpp - SHA256 implementation ---*- C++ -* ======// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /* |
| * The SHA-256 Secure Hash Standard was published by NIST in 2002. |
| * |
| * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf |
| * |
| * The implementation is based on nacl's sha256 implementation [0] and LLVM's |
| * pre-exsiting SHA1 code [1]. |
| * |
| * [0] https://hyperelliptic.org/nacl/nacl-20110221.tar.bz2 (public domain |
| * code) |
| * [1] llvm/lib/Support/SHA1.{h,cpp} |
| */ |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/SHA256.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Host.h" |
| #include <string.h> |
| |
| namespace llvm { |
| |
| #if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN |
| #define SHA_BIG_ENDIAN |
| #endif |
| |
| #define SHR(x, c) ((x) >> (c)) |
| #define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n)))) |
| |
| #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) |
| #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| |
| #define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
| #define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
| |
| #define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
| #define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
| |
| #define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k) \ |
| do { \ |
| H += SIGMA_1(E) + CH(E, F, G) + M1 + k; \ |
| D += H; \ |
| H += SIGMA_0(A) + MAJ(A, B, C); \ |
| M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4); \ |
| } while (0); |
| |
| void SHA256::init() { |
| InternalState.State[0] = 0x6A09E667; |
| InternalState.State[1] = 0xBB67AE85; |
| InternalState.State[2] = 0x3C6EF372; |
| InternalState.State[3] = 0xA54FF53A; |
| InternalState.State[4] = 0x510E527F; |
| InternalState.State[5] = 0x9B05688C; |
| InternalState.State[6] = 0x1F83D9AB; |
| InternalState.State[7] = 0x5BE0CD19; |
| InternalState.ByteCount = 0; |
| InternalState.BufferOffset = 0; |
| } |
| |
| void SHA256::hashBlock() { |
| uint32_t A = InternalState.State[0]; |
| uint32_t B = InternalState.State[1]; |
| uint32_t C = InternalState.State[2]; |
| uint32_t D = InternalState.State[3]; |
| uint32_t E = InternalState.State[4]; |
| uint32_t F = InternalState.State[5]; |
| uint32_t G = InternalState.State[6]; |
| uint32_t H = InternalState.State[7]; |
| |
| uint32_t W00 = InternalState.Buffer.L[0]; |
| uint32_t W01 = InternalState.Buffer.L[1]; |
| uint32_t W02 = InternalState.Buffer.L[2]; |
| uint32_t W03 = InternalState.Buffer.L[3]; |
| uint32_t W04 = InternalState.Buffer.L[4]; |
| uint32_t W05 = InternalState.Buffer.L[5]; |
| uint32_t W06 = InternalState.Buffer.L[6]; |
| uint32_t W07 = InternalState.Buffer.L[7]; |
| uint32_t W08 = InternalState.Buffer.L[8]; |
| uint32_t W09 = InternalState.Buffer.L[9]; |
| uint32_t W10 = InternalState.Buffer.L[10]; |
| uint32_t W11 = InternalState.Buffer.L[11]; |
| uint32_t W12 = InternalState.Buffer.L[12]; |
| uint32_t W13 = InternalState.Buffer.L[13]; |
| uint32_t W14 = InternalState.Buffer.L[14]; |
| uint32_t W15 = InternalState.Buffer.L[15]; |
| |
| F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98); |
| F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491); |
| F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF); |
| F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5); |
| F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B); |
| F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1); |
| F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4); |
| F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5); |
| F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98); |
| F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01); |
| F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE); |
| F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3); |
| F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74); |
| F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE); |
| F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7); |
| F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174); |
| |
| F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1); |
| F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786); |
| F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6); |
| F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC); |
| F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F); |
| F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA); |
| F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC); |
| F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA); |
| F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152); |
| F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D); |
| F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8); |
| F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7); |
| F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3); |
| F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147); |
| F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351); |
| F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967); |
| |
| F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85); |
| F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138); |
| F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC); |
| F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13); |
| F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354); |
| F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB); |
| F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E); |
| F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85); |
| F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1); |
| F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B); |
| F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70); |
| F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3); |
| F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819); |
| F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624); |
| F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585); |
| F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070); |
| |
| F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116); |
| F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08); |
| F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C); |
| F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5); |
| F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3); |
| F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A); |
| F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F); |
| F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3); |
| F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE); |
| F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F); |
| F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814); |
| F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208); |
| F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA); |
| F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB); |
| F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7); |
| F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2); |
| |
| InternalState.State[0] += A; |
| InternalState.State[1] += B; |
| InternalState.State[2] += C; |
| InternalState.State[3] += D; |
| InternalState.State[4] += E; |
| InternalState.State[5] += F; |
| InternalState.State[6] += G; |
| InternalState.State[7] += H; |
| } |
| |
| void SHA256::addUncounted(uint8_t Data) { |
| #ifdef SHA_BIG_ENDIAN |
| InternalState.Buffer.C[InternalState.BufferOffset] = Data; |
| #else |
| InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data; |
| #endif |
| |
| InternalState.BufferOffset++; |
| if (InternalState.BufferOffset == BLOCK_LENGTH) { |
| hashBlock(); |
| InternalState.BufferOffset = 0; |
| } |
| } |
| |
| void SHA256::writebyte(uint8_t Data) { |
| ++InternalState.ByteCount; |
| addUncounted(Data); |
| } |
| |
| void SHA256::update(ArrayRef<uint8_t> Data) { |
| InternalState.ByteCount += Data.size(); |
| |
| // Finish the current block. |
| if (InternalState.BufferOffset > 0) { |
| const size_t Remainder = std::min<size_t>( |
| Data.size(), BLOCK_LENGTH - InternalState.BufferOffset); |
| for (size_t I = 0; I < Remainder; ++I) |
| addUncounted(Data[I]); |
| Data = Data.drop_front(Remainder); |
| } |
| |
| // Fast buffer filling for large inputs. |
| while (Data.size() >= BLOCK_LENGTH) { |
| assert(InternalState.BufferOffset == 0); |
| static_assert(BLOCK_LENGTH % 4 == 0, ""); |
| constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4; |
| for (size_t I = 0; I < BLOCK_LENGTH_32; ++I) |
| InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]); |
| hashBlock(); |
| Data = Data.drop_front(BLOCK_LENGTH); |
| } |
| |
| // Finish the remainder. |
| for (uint8_t C : Data) |
| addUncounted(C); |
| } |
| |
| void SHA256::update(StringRef Str) { |
| update( |
| ArrayRef<uint8_t>((uint8_t *)const_cast<char *>(Str.data()), Str.size())); |
| } |
| |
| void SHA256::pad() { |
| // Implement SHA-2 padding (fips180-2 5.1.1) |
| |
| // Pad with 0x80 followed by 0x00 until the end of the block |
| addUncounted(0x80); |
| while (InternalState.BufferOffset != 56) |
| addUncounted(0x00); |
| |
| uint64_t len = InternalState.ByteCount << 3; // bit size |
| |
| // Append length in the last 8 bytes big edian encoded |
| addUncounted(len >> 56); |
| addUncounted(len >> 48); |
| addUncounted(len >> 40); |
| addUncounted(len >> 32); |
| addUncounted(len >> 24); |
| addUncounted(len >> 16); |
| addUncounted(len >> 8); |
| addUncounted(len); |
| } |
| |
| StringRef SHA256::final() { |
| // Pad to complete the last block |
| pad(); |
| |
| #ifdef SHA_BIG_ENDIAN |
| // Just copy the current state |
| for (int i = 0; i < 8; i++) { |
| HashResult[i] = InternalState.State[i]; |
| } |
| #else |
| // Swap byte order back |
| for (int i = 0; i < 8; i++) { |
| HashResult[i] = (((InternalState.State[i]) << 24) & 0xff000000) | |
| (((InternalState.State[i]) << 8) & 0x00ff0000) | |
| (((InternalState.State[i]) >> 8) & 0x0000ff00) | |
| (((InternalState.State[i]) >> 24) & 0x000000ff); |
| } |
| #endif |
| |
| // Return pointer to hash (32 characters) |
| return StringRef((char *)HashResult, HASH_LENGTH); |
| } |
| |
| StringRef SHA256::result() { |
| auto StateToRestore = InternalState; |
| |
| auto Hash = final(); |
| |
| // Restore the state |
| InternalState = StateToRestore; |
| |
| // Return pointer to hash (32 characters) |
| return Hash; |
| } |
| |
| std::array<uint8_t, 32> SHA256::hash(ArrayRef<uint8_t> Data) { |
| SHA256 Hash; |
| Hash.update(Data); |
| StringRef S = Hash.final(); |
| |
| std::array<uint8_t, 32> Arr; |
| memcpy(Arr.data(), S.data(), S.size()); |
| return Arr; |
| } |
| |
| } // namespace llvm |