| //===----- DivisonByConstantInfo.cpp - division by constant -*- C++ -*-----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// This file implements support for optimizing divisions by a constant |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/DivisionByConstantInfo.h" |
| |
| using namespace llvm; |
| |
| /// Calculate the magic numbers required to implement a signed integer division |
| /// by a constant as a sequence of multiplies, adds and shifts. Requires that |
| /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. |
| /// Warren, Jr., Chapter 10. |
| SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) { |
| unsigned P; |
| APInt AD, ANC, Delta, Q1, R1, Q2, R2, T; |
| APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); |
| struct SignedDivisionByConstantInfo Retval; |
| |
| AD = D.abs(); |
| T = SignedMin + (D.lshr(D.getBitWidth() - 1)); |
| ANC = T - 1 - T.urem(AD); // absolute value of NC |
| P = D.getBitWidth() - 1; // initialize P |
| Q1 = SignedMin.udiv(ANC); // initialize Q1 = 2P/abs(NC) |
| R1 = SignedMin - Q1 * ANC; // initialize R1 = rem(2P,abs(NC)) |
| Q2 = SignedMin.udiv(AD); // initialize Q2 = 2P/abs(D) |
| R2 = SignedMin - Q2 * AD; // initialize R2 = rem(2P,abs(D)) |
| do { |
| P = P + 1; |
| Q1 = Q1 << 1; // update Q1 = 2P/abs(NC) |
| R1 = R1 << 1; // update R1 = rem(2P/abs(NC)) |
| if (R1.uge(ANC)) { // must be unsigned comparison |
| Q1 = Q1 + 1; |
| R1 = R1 - ANC; |
| } |
| Q2 = Q2 << 1; // update Q2 = 2P/abs(D) |
| R2 = R2 << 1; // update R2 = rem(2P/abs(D)) |
| if (R2.uge(AD)) { // must be unsigned comparison |
| Q2 = Q2 + 1; |
| R2 = R2 - AD; |
| } |
| Delta = AD - R2; |
| } while (Q1.ult(Delta) || (Q1 == Delta && R1 == 0)); |
| |
| Retval.Magic = Q2 + 1; |
| if (D.isNegative()) |
| Retval.Magic = -Retval.Magic; // resulting magic number |
| Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift |
| return Retval; |
| } |
| |
| /// Calculate the magic numbers required to implement an unsigned integer |
| /// division by a constant as a sequence of multiplies, adds and shifts. |
| /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry |
| /// S. Warren, Jr., chapter 10. |
| /// LeadingZeros can be used to simplify the calculation if the upper bits |
| /// of the divided value are known zero. |
| UnsignedDivisonByConstantInfo |
| UnsignedDivisonByConstantInfo::get(const APInt &D, unsigned LeadingZeros) { |
| unsigned P; |
| APInt NC, Delta, Q1, R1, Q2, R2; |
| struct UnsignedDivisonByConstantInfo Retval; |
| Retval.IsAdd = 0; // initialize "add" indicator |
| APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros); |
| APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); |
| APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth()); |
| |
| NC = AllOnes - (AllOnes - D).urem(D); |
| P = D.getBitWidth() - 1; // initialize P |
| Q1 = SignedMin.udiv(NC); // initialize Q1 = 2P/NC |
| R1 = SignedMin - Q1 * NC; // initialize R1 = rem(2P,NC) |
| Q2 = SignedMax.udiv(D); // initialize Q2 = (2P-1)/D |
| R2 = SignedMax - Q2 * D; // initialize R2 = rem((2P-1),D) |
| do { |
| P = P + 1; |
| if (R1.uge(NC - R1)) { |
| Q1 = Q1 + Q1 + 1; // update Q1 |
| R1 = R1 + R1 - NC; // update R1 |
| } else { |
| Q1 = Q1 + Q1; // update Q1 |
| R1 = R1 + R1; // update R1 |
| } |
| if ((R2 + 1).uge(D - R2)) { |
| if (Q2.uge(SignedMax)) |
| Retval.IsAdd = 1; |
| Q2 = Q2 + Q2 + 1; // update Q2 |
| R2 = R2 + R2 + 1 - D; // update R2 |
| } else { |
| if (Q2.uge(SignedMin)) |
| Retval.IsAdd = 1; |
| Q2 = Q2 + Q2; // update Q2 |
| R2 = R2 + R2 + 1; // update R2 |
| } |
| Delta = D - 1 - R2; |
| } while (P < D.getBitWidth() * 2 && |
| (Q1.ult(Delta) || (Q1 == Delta && R1 == 0))); |
| Retval.Magic = Q2 + 1; // resulting magic number |
| Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift |
| return Retval; |
| } |