| //===- Attributes.cpp - Implement AttributesList --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // \file |
| // This file implements the Attribute, AttributeImpl, AttrBuilder, |
| // AttributeListImpl, and AttributeList classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Attributes.h" |
| #include "AttributeImpl.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute Construction Methods |
| //===----------------------------------------------------------------------===// |
| |
| // allocsize has two integer arguments, but because they're both 32 bits, we can |
| // pack them into one 64-bit value, at the cost of making said value |
| // nonsensical. |
| // |
| // In order to do this, we need to reserve one value of the second (optional) |
| // allocsize argument to signify "not present." |
| static const unsigned AllocSizeNumElemsNotPresent = -1; |
| |
| static uint64_t packAllocSizeArgs(unsigned ElemSizeArg, |
| const Optional<unsigned> &NumElemsArg) { |
| assert((!NumElemsArg.hasValue() || |
| *NumElemsArg != AllocSizeNumElemsNotPresent) && |
| "Attempting to pack a reserved value"); |
| |
| return uint64_t(ElemSizeArg) << 32 | |
| NumElemsArg.getValueOr(AllocSizeNumElemsNotPresent); |
| } |
| |
| static std::pair<unsigned, Optional<unsigned>> |
| unpackAllocSizeArgs(uint64_t Num) { |
| unsigned NumElems = Num & std::numeric_limits<unsigned>::max(); |
| unsigned ElemSizeArg = Num >> 32; |
| |
| Optional<unsigned> NumElemsArg; |
| if (NumElems != AllocSizeNumElemsNotPresent) |
| NumElemsArg = NumElems; |
| return std::make_pair(ElemSizeArg, NumElemsArg); |
| } |
| |
| static uint64_t packVScaleRangeArgs(unsigned MinValue, unsigned MaxValue) { |
| return uint64_t(MinValue) << 32 | MaxValue; |
| } |
| |
| static std::pair<unsigned, unsigned> unpackVScaleRangeArgs(uint64_t Value) { |
| unsigned MaxValue = Value & std::numeric_limits<unsigned>::max(); |
| unsigned MinValue = Value >> 32; |
| |
| return std::make_pair(MinValue, MaxValue); |
| } |
| |
| Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, |
| uint64_t Val) { |
| if (Val) |
| assert(Attribute::isIntAttrKind(Kind) && "Not an int attribute"); |
| else |
| assert(Attribute::isEnumAttrKind(Kind) && "Not an enum attribute"); |
| |
| LLVMContextImpl *pImpl = Context.pImpl; |
| FoldingSetNodeID ID; |
| ID.AddInteger(Kind); |
| if (Val) ID.AddInteger(Val); |
| |
| void *InsertPoint; |
| AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| if (!PA) { |
| // If we didn't find any existing attributes of the same shape then create a |
| // new one and insert it. |
| if (!Val) |
| PA = new (pImpl->Alloc) EnumAttributeImpl(Kind); |
| else |
| PA = new (pImpl->Alloc) IntAttributeImpl(Kind, Val); |
| pImpl->AttrsSet.InsertNode(PA, InsertPoint); |
| } |
| |
| // Return the Attribute that we found or created. |
| return Attribute(PA); |
| } |
| |
| Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) { |
| LLVMContextImpl *pImpl = Context.pImpl; |
| FoldingSetNodeID ID; |
| ID.AddString(Kind); |
| if (!Val.empty()) ID.AddString(Val); |
| |
| void *InsertPoint; |
| AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| if (!PA) { |
| // If we didn't find any existing attributes of the same shape then create a |
| // new one and insert it. |
| void *Mem = |
| pImpl->Alloc.Allocate(StringAttributeImpl::totalSizeToAlloc(Kind, Val), |
| alignof(StringAttributeImpl)); |
| PA = new (Mem) StringAttributeImpl(Kind, Val); |
| pImpl->AttrsSet.InsertNode(PA, InsertPoint); |
| } |
| |
| // Return the Attribute that we found or created. |
| return Attribute(PA); |
| } |
| |
| Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, |
| Type *Ty) { |
| assert(Attribute::isTypeAttrKind(Kind) && "Not a type attribute"); |
| LLVMContextImpl *pImpl = Context.pImpl; |
| FoldingSetNodeID ID; |
| ID.AddInteger(Kind); |
| ID.AddPointer(Ty); |
| |
| void *InsertPoint; |
| AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| if (!PA) { |
| // If we didn't find any existing attributes of the same shape then create a |
| // new one and insert it. |
| PA = new (pImpl->Alloc) TypeAttributeImpl(Kind, Ty); |
| pImpl->AttrsSet.InsertNode(PA, InsertPoint); |
| } |
| |
| // Return the Attribute that we found or created. |
| return Attribute(PA); |
| } |
| |
| Attribute Attribute::getWithAlignment(LLVMContext &Context, Align A) { |
| assert(A <= llvm::Value::MaximumAlignment && "Alignment too large."); |
| return get(Context, Alignment, A.value()); |
| } |
| |
| Attribute Attribute::getWithStackAlignment(LLVMContext &Context, Align A) { |
| assert(A <= 0x100 && "Alignment too large."); |
| return get(Context, StackAlignment, A.value()); |
| } |
| |
| Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context, |
| uint64_t Bytes) { |
| assert(Bytes && "Bytes must be non-zero."); |
| return get(Context, Dereferenceable, Bytes); |
| } |
| |
| Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context, |
| uint64_t Bytes) { |
| assert(Bytes && "Bytes must be non-zero."); |
| return get(Context, DereferenceableOrNull, Bytes); |
| } |
| |
| Attribute Attribute::getWithByValType(LLVMContext &Context, Type *Ty) { |
| return get(Context, ByVal, Ty); |
| } |
| |
| Attribute Attribute::getWithStructRetType(LLVMContext &Context, Type *Ty) { |
| return get(Context, StructRet, Ty); |
| } |
| |
| Attribute Attribute::getWithByRefType(LLVMContext &Context, Type *Ty) { |
| return get(Context, ByRef, Ty); |
| } |
| |
| Attribute Attribute::getWithPreallocatedType(LLVMContext &Context, Type *Ty) { |
| return get(Context, Preallocated, Ty); |
| } |
| |
| Attribute Attribute::getWithInAllocaType(LLVMContext &Context, Type *Ty) { |
| return get(Context, InAlloca, Ty); |
| } |
| |
| Attribute |
| Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg, |
| const Optional<unsigned> &NumElemsArg) { |
| assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) && |
| "Invalid allocsize arguments -- given allocsize(0, 0)"); |
| return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg)); |
| } |
| |
| Attribute Attribute::getWithVScaleRangeArgs(LLVMContext &Context, |
| unsigned MinValue, |
| unsigned MaxValue) { |
| return get(Context, VScaleRange, packVScaleRangeArgs(MinValue, MaxValue)); |
| } |
| |
| Attribute::AttrKind Attribute::getAttrKindFromName(StringRef AttrName) { |
| return StringSwitch<Attribute::AttrKind>(AttrName) |
| #define GET_ATTR_NAMES |
| #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ |
| .Case(#DISPLAY_NAME, Attribute::ENUM_NAME) |
| #include "llvm/IR/Attributes.inc" |
| .Default(Attribute::None); |
| } |
| |
| StringRef Attribute::getNameFromAttrKind(Attribute::AttrKind AttrKind) { |
| switch (AttrKind) { |
| #define GET_ATTR_NAMES |
| #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ |
| case Attribute::ENUM_NAME: \ |
| return #DISPLAY_NAME; |
| #include "llvm/IR/Attributes.inc" |
| case Attribute::None: |
| return "none"; |
| default: |
| llvm_unreachable("invalid Kind"); |
| } |
| } |
| |
| bool Attribute::isExistingAttribute(StringRef Name) { |
| return StringSwitch<bool>(Name) |
| #define GET_ATTR_NAMES |
| #define ATTRIBUTE_ALL(ENUM_NAME, DISPLAY_NAME) .Case(#DISPLAY_NAME, true) |
| #include "llvm/IR/Attributes.inc" |
| .Default(false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute Accessor Methods |
| //===----------------------------------------------------------------------===// |
| |
| bool Attribute::isEnumAttribute() const { |
| return pImpl && pImpl->isEnumAttribute(); |
| } |
| |
| bool Attribute::isIntAttribute() const { |
| return pImpl && pImpl->isIntAttribute(); |
| } |
| |
| bool Attribute::isStringAttribute() const { |
| return pImpl && pImpl->isStringAttribute(); |
| } |
| |
| bool Attribute::isTypeAttribute() const { |
| return pImpl && pImpl->isTypeAttribute(); |
| } |
| |
| Attribute::AttrKind Attribute::getKindAsEnum() const { |
| if (!pImpl) return None; |
| assert((isEnumAttribute() || isIntAttribute() || isTypeAttribute()) && |
| "Invalid attribute type to get the kind as an enum!"); |
| return pImpl->getKindAsEnum(); |
| } |
| |
| uint64_t Attribute::getValueAsInt() const { |
| if (!pImpl) return 0; |
| assert(isIntAttribute() && |
| "Expected the attribute to be an integer attribute!"); |
| return pImpl->getValueAsInt(); |
| } |
| |
| bool Attribute::getValueAsBool() const { |
| if (!pImpl) return false; |
| assert(isStringAttribute() && |
| "Expected the attribute to be a string attribute!"); |
| return pImpl->getValueAsBool(); |
| } |
| |
| StringRef Attribute::getKindAsString() const { |
| if (!pImpl) return {}; |
| assert(isStringAttribute() && |
| "Invalid attribute type to get the kind as a string!"); |
| return pImpl->getKindAsString(); |
| } |
| |
| StringRef Attribute::getValueAsString() const { |
| if (!pImpl) return {}; |
| assert(isStringAttribute() && |
| "Invalid attribute type to get the value as a string!"); |
| return pImpl->getValueAsString(); |
| } |
| |
| Type *Attribute::getValueAsType() const { |
| if (!pImpl) return {}; |
| assert(isTypeAttribute() && |
| "Invalid attribute type to get the value as a type!"); |
| return pImpl->getValueAsType(); |
| } |
| |
| |
| bool Attribute::hasAttribute(AttrKind Kind) const { |
| return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None); |
| } |
| |
| bool Attribute::hasAttribute(StringRef Kind) const { |
| if (!isStringAttribute()) return false; |
| return pImpl && pImpl->hasAttribute(Kind); |
| } |
| |
| MaybeAlign Attribute::getAlignment() const { |
| assert(hasAttribute(Attribute::Alignment) && |
| "Trying to get alignment from non-alignment attribute!"); |
| return MaybeAlign(pImpl->getValueAsInt()); |
| } |
| |
| MaybeAlign Attribute::getStackAlignment() const { |
| assert(hasAttribute(Attribute::StackAlignment) && |
| "Trying to get alignment from non-alignment attribute!"); |
| return MaybeAlign(pImpl->getValueAsInt()); |
| } |
| |
| uint64_t Attribute::getDereferenceableBytes() const { |
| assert(hasAttribute(Attribute::Dereferenceable) && |
| "Trying to get dereferenceable bytes from " |
| "non-dereferenceable attribute!"); |
| return pImpl->getValueAsInt(); |
| } |
| |
| uint64_t Attribute::getDereferenceableOrNullBytes() const { |
| assert(hasAttribute(Attribute::DereferenceableOrNull) && |
| "Trying to get dereferenceable bytes from " |
| "non-dereferenceable attribute!"); |
| return pImpl->getValueAsInt(); |
| } |
| |
| std::pair<unsigned, Optional<unsigned>> Attribute::getAllocSizeArgs() const { |
| assert(hasAttribute(Attribute::AllocSize) && |
| "Trying to get allocsize args from non-allocsize attribute"); |
| return unpackAllocSizeArgs(pImpl->getValueAsInt()); |
| } |
| |
| std::pair<unsigned, unsigned> Attribute::getVScaleRangeArgs() const { |
| assert(hasAttribute(Attribute::VScaleRange) && |
| "Trying to get vscale args from non-vscale attribute"); |
| return unpackVScaleRangeArgs(pImpl->getValueAsInt()); |
| } |
| |
| std::string Attribute::getAsString(bool InAttrGrp) const { |
| if (!pImpl) return {}; |
| |
| if (isEnumAttribute()) |
| return getNameFromAttrKind(getKindAsEnum()).str(); |
| |
| if (isTypeAttribute()) { |
| std::string Result = getNameFromAttrKind(getKindAsEnum()).str(); |
| Result += '('; |
| raw_string_ostream OS(Result); |
| getValueAsType()->print(OS, false, true); |
| OS.flush(); |
| Result += ')'; |
| return Result; |
| } |
| |
| // FIXME: These should be output like this: |
| // |
| // align=4 |
| // alignstack=8 |
| // |
| if (hasAttribute(Attribute::Alignment)) { |
| std::string Result; |
| Result += "align"; |
| Result += (InAttrGrp) ? "=" : " "; |
| Result += utostr(getValueAsInt()); |
| return Result; |
| } |
| |
| auto AttrWithBytesToString = [&](const char *Name) { |
| std::string Result; |
| Result += Name; |
| if (InAttrGrp) { |
| Result += "="; |
| Result += utostr(getValueAsInt()); |
| } else { |
| Result += "("; |
| Result += utostr(getValueAsInt()); |
| Result += ")"; |
| } |
| return Result; |
| }; |
| |
| if (hasAttribute(Attribute::StackAlignment)) |
| return AttrWithBytesToString("alignstack"); |
| |
| if (hasAttribute(Attribute::Dereferenceable)) |
| return AttrWithBytesToString("dereferenceable"); |
| |
| if (hasAttribute(Attribute::DereferenceableOrNull)) |
| return AttrWithBytesToString("dereferenceable_or_null"); |
| |
| if (hasAttribute(Attribute::AllocSize)) { |
| unsigned ElemSize; |
| Optional<unsigned> NumElems; |
| std::tie(ElemSize, NumElems) = getAllocSizeArgs(); |
| |
| std::string Result = "allocsize("; |
| Result += utostr(ElemSize); |
| if (NumElems.hasValue()) { |
| Result += ','; |
| Result += utostr(*NumElems); |
| } |
| Result += ')'; |
| return Result; |
| } |
| |
| if (hasAttribute(Attribute::VScaleRange)) { |
| unsigned MinValue, MaxValue; |
| std::tie(MinValue, MaxValue) = getVScaleRangeArgs(); |
| |
| std::string Result = "vscale_range("; |
| Result += utostr(MinValue); |
| Result += ','; |
| Result += utostr(MaxValue); |
| Result += ')'; |
| return Result; |
| } |
| |
| // Convert target-dependent attributes to strings of the form: |
| // |
| // "kind" |
| // "kind" = "value" |
| // |
| if (isStringAttribute()) { |
| std::string Result; |
| { |
| raw_string_ostream OS(Result); |
| OS << '"' << getKindAsString() << '"'; |
| |
| // Since some attribute strings contain special characters that cannot be |
| // printable, those have to be escaped to make the attribute value |
| // printable as is. e.g. "\01__gnu_mcount_nc" |
| const auto &AttrVal = pImpl->getValueAsString(); |
| if (!AttrVal.empty()) { |
| OS << "=\""; |
| printEscapedString(AttrVal, OS); |
| OS << "\""; |
| } |
| } |
| return Result; |
| } |
| |
| llvm_unreachable("Unknown attribute"); |
| } |
| |
| bool Attribute::hasParentContext(LLVMContext &C) const { |
| assert(isValid() && "invalid Attribute doesn't refer to any context"); |
| FoldingSetNodeID ID; |
| pImpl->Profile(ID); |
| void *Unused; |
| return C.pImpl->AttrsSet.FindNodeOrInsertPos(ID, Unused) == pImpl; |
| } |
| |
| bool Attribute::operator<(Attribute A) const { |
| if (!pImpl && !A.pImpl) return false; |
| if (!pImpl) return true; |
| if (!A.pImpl) return false; |
| return *pImpl < *A.pImpl; |
| } |
| |
| void Attribute::Profile(FoldingSetNodeID &ID) const { |
| ID.AddPointer(pImpl); |
| } |
| |
| enum AttributeProperty { |
| FnAttr = (1 << 0), |
| ParamAttr = (1 << 1), |
| RetAttr = (1 << 2), |
| }; |
| |
| #define GET_ATTR_PROP_TABLE |
| #include "llvm/IR/Attributes.inc" |
| |
| static bool hasAttributeProperty(Attribute::AttrKind Kind, |
| AttributeProperty Prop) { |
| unsigned Index = Kind - 1; |
| assert(Index < sizeof(AttrPropTable) / sizeof(AttrPropTable[0]) && |
| "Invalid attribute kind"); |
| return AttrPropTable[Index] & Prop; |
| } |
| |
| bool Attribute::canUseAsFnAttr(AttrKind Kind) { |
| return hasAttributeProperty(Kind, AttributeProperty::FnAttr); |
| } |
| |
| bool Attribute::canUseAsParamAttr(AttrKind Kind) { |
| return hasAttributeProperty(Kind, AttributeProperty::ParamAttr); |
| } |
| |
| bool Attribute::canUseAsRetAttr(AttrKind Kind) { |
| return hasAttributeProperty(Kind, AttributeProperty::RetAttr); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeImpl Definition |
| //===----------------------------------------------------------------------===// |
| |
| bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { |
| if (isStringAttribute()) return false; |
| return getKindAsEnum() == A; |
| } |
| |
| bool AttributeImpl::hasAttribute(StringRef Kind) const { |
| if (!isStringAttribute()) return false; |
| return getKindAsString() == Kind; |
| } |
| |
| Attribute::AttrKind AttributeImpl::getKindAsEnum() const { |
| assert(isEnumAttribute() || isIntAttribute() || isTypeAttribute()); |
| return static_cast<const EnumAttributeImpl *>(this)->getEnumKind(); |
| } |
| |
| uint64_t AttributeImpl::getValueAsInt() const { |
| assert(isIntAttribute()); |
| return static_cast<const IntAttributeImpl *>(this)->getValue(); |
| } |
| |
| bool AttributeImpl::getValueAsBool() const { |
| assert(getValueAsString().empty() || getValueAsString() == "false" || getValueAsString() == "true"); |
| return getValueAsString() == "true"; |
| } |
| |
| StringRef AttributeImpl::getKindAsString() const { |
| assert(isStringAttribute()); |
| return static_cast<const StringAttributeImpl *>(this)->getStringKind(); |
| } |
| |
| StringRef AttributeImpl::getValueAsString() const { |
| assert(isStringAttribute()); |
| return static_cast<const StringAttributeImpl *>(this)->getStringValue(); |
| } |
| |
| Type *AttributeImpl::getValueAsType() const { |
| assert(isTypeAttribute()); |
| return static_cast<const TypeAttributeImpl *>(this)->getTypeValue(); |
| } |
| |
| bool AttributeImpl::operator<(const AttributeImpl &AI) const { |
| if (this == &AI) |
| return false; |
| |
| // This sorts the attributes with Attribute::AttrKinds coming first (sorted |
| // relative to their enum value) and then strings. |
| if (!isStringAttribute()) { |
| if (AI.isStringAttribute()) |
| return true; |
| if (getKindAsEnum() != AI.getKindAsEnum()) |
| return getKindAsEnum() < AI.getKindAsEnum(); |
| assert(!AI.isEnumAttribute() && "Non-unique attribute"); |
| assert(!AI.isTypeAttribute() && "Comparison of types would be unstable"); |
| // TODO: Is this actually needed? |
| assert(AI.isIntAttribute() && "Only possibility left"); |
| return getValueAsInt() < AI.getValueAsInt(); |
| } |
| |
| if (!AI.isStringAttribute()) |
| return false; |
| if (getKindAsString() == AI.getKindAsString()) |
| return getValueAsString() < AI.getValueAsString(); |
| return getKindAsString() < AI.getKindAsString(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeSet Definition |
| //===----------------------------------------------------------------------===// |
| |
| AttributeSet AttributeSet::get(LLVMContext &C, const AttrBuilder &B) { |
| return AttributeSet(AttributeSetNode::get(C, B)); |
| } |
| |
| AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<Attribute> Attrs) { |
| return AttributeSet(AttributeSetNode::get(C, Attrs)); |
| } |
| |
| AttributeSet AttributeSet::addAttribute(LLVMContext &C, |
| Attribute::AttrKind Kind) const { |
| if (hasAttribute(Kind)) return *this; |
| AttrBuilder B; |
| B.addAttribute(Kind); |
| return addAttributes(C, AttributeSet::get(C, B)); |
| } |
| |
| AttributeSet AttributeSet::addAttribute(LLVMContext &C, StringRef Kind, |
| StringRef Value) const { |
| AttrBuilder B; |
| B.addAttribute(Kind, Value); |
| return addAttributes(C, AttributeSet::get(C, B)); |
| } |
| |
| AttributeSet AttributeSet::addAttributes(LLVMContext &C, |
| const AttributeSet AS) const { |
| if (!hasAttributes()) |
| return AS; |
| |
| if (!AS.hasAttributes()) |
| return *this; |
| |
| AttrBuilder B(AS); |
| for (const auto &I : *this) |
| B.addAttribute(I); |
| |
| return get(C, B); |
| } |
| |
| AttributeSet AttributeSet::removeAttribute(LLVMContext &C, |
| Attribute::AttrKind Kind) const { |
| if (!hasAttribute(Kind)) return *this; |
| AttrBuilder B(*this); |
| B.removeAttribute(Kind); |
| return get(C, B); |
| } |
| |
| AttributeSet AttributeSet::removeAttribute(LLVMContext &C, |
| StringRef Kind) const { |
| if (!hasAttribute(Kind)) return *this; |
| AttrBuilder B(*this); |
| B.removeAttribute(Kind); |
| return get(C, B); |
| } |
| |
| AttributeSet AttributeSet::removeAttributes(LLVMContext &C, |
| const AttrBuilder &Attrs) const { |
| AttrBuilder B(*this); |
| // If there is nothing to remove, directly return the original set. |
| if (!B.overlaps(Attrs)) |
| return *this; |
| |
| B.remove(Attrs); |
| return get(C, B); |
| } |
| |
| unsigned AttributeSet::getNumAttributes() const { |
| return SetNode ? SetNode->getNumAttributes() : 0; |
| } |
| |
| bool AttributeSet::hasAttribute(Attribute::AttrKind Kind) const { |
| return SetNode ? SetNode->hasAttribute(Kind) : false; |
| } |
| |
| bool AttributeSet::hasAttribute(StringRef Kind) const { |
| return SetNode ? SetNode->hasAttribute(Kind) : false; |
| } |
| |
| Attribute AttributeSet::getAttribute(Attribute::AttrKind Kind) const { |
| return SetNode ? SetNode->getAttribute(Kind) : Attribute(); |
| } |
| |
| Attribute AttributeSet::getAttribute(StringRef Kind) const { |
| return SetNode ? SetNode->getAttribute(Kind) : Attribute(); |
| } |
| |
| MaybeAlign AttributeSet::getAlignment() const { |
| return SetNode ? SetNode->getAlignment() : None; |
| } |
| |
| MaybeAlign AttributeSet::getStackAlignment() const { |
| return SetNode ? SetNode->getStackAlignment() : None; |
| } |
| |
| uint64_t AttributeSet::getDereferenceableBytes() const { |
| return SetNode ? SetNode->getDereferenceableBytes() : 0; |
| } |
| |
| uint64_t AttributeSet::getDereferenceableOrNullBytes() const { |
| return SetNode ? SetNode->getDereferenceableOrNullBytes() : 0; |
| } |
| |
| Type *AttributeSet::getByRefType() const { |
| return SetNode ? SetNode->getAttributeType(Attribute::ByRef) : nullptr; |
| } |
| |
| Type *AttributeSet::getByValType() const { |
| return SetNode ? SetNode->getAttributeType(Attribute::ByVal) : nullptr; |
| } |
| |
| Type *AttributeSet::getStructRetType() const { |
| return SetNode ? SetNode->getAttributeType(Attribute::StructRet) : nullptr; |
| } |
| |
| Type *AttributeSet::getPreallocatedType() const { |
| return SetNode ? SetNode->getAttributeType(Attribute::Preallocated) : nullptr; |
| } |
| |
| Type *AttributeSet::getInAllocaType() const { |
| return SetNode ? SetNode->getAttributeType(Attribute::InAlloca) : nullptr; |
| } |
| |
| Type *AttributeSet::getElementType() const { |
| return SetNode ? SetNode->getAttributeType(Attribute::ElementType) : nullptr; |
| } |
| |
| std::pair<unsigned, Optional<unsigned>> AttributeSet::getAllocSizeArgs() const { |
| return SetNode ? SetNode->getAllocSizeArgs() |
| : std::pair<unsigned, Optional<unsigned>>(0, 0); |
| } |
| |
| std::pair<unsigned, unsigned> AttributeSet::getVScaleRangeArgs() const { |
| return SetNode ? SetNode->getVScaleRangeArgs() |
| : std::pair<unsigned, unsigned>(0, 0); |
| } |
| |
| std::string AttributeSet::getAsString(bool InAttrGrp) const { |
| return SetNode ? SetNode->getAsString(InAttrGrp) : ""; |
| } |
| |
| bool AttributeSet::hasParentContext(LLVMContext &C) const { |
| assert(hasAttributes() && "empty AttributeSet doesn't refer to any context"); |
| FoldingSetNodeID ID; |
| SetNode->Profile(ID); |
| void *Unused; |
| return C.pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, Unused) == SetNode; |
| } |
| |
| AttributeSet::iterator AttributeSet::begin() const { |
| return SetNode ? SetNode->begin() : nullptr; |
| } |
| |
| AttributeSet::iterator AttributeSet::end() const { |
| return SetNode ? SetNode->end() : nullptr; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void AttributeSet::dump() const { |
| dbgs() << "AS =\n"; |
| dbgs() << " { "; |
| dbgs() << getAsString(true) << " }\n"; |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeSetNode Definition |
| //===----------------------------------------------------------------------===// |
| |
| AttributeSetNode::AttributeSetNode(ArrayRef<Attribute> Attrs) |
| : NumAttrs(Attrs.size()) { |
| // There's memory after the node where we can store the entries in. |
| llvm::copy(Attrs, getTrailingObjects<Attribute>()); |
| |
| for (const auto &I : *this) { |
| if (I.isStringAttribute()) |
| StringAttrs.insert({ I.getKindAsString(), I }); |
| else |
| AvailableAttrs.addAttribute(I.getKindAsEnum()); |
| } |
| } |
| |
| AttributeSetNode *AttributeSetNode::get(LLVMContext &C, |
| ArrayRef<Attribute> Attrs) { |
| SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end()); |
| llvm::sort(SortedAttrs); |
| return getSorted(C, SortedAttrs); |
| } |
| |
| AttributeSetNode *AttributeSetNode::getSorted(LLVMContext &C, |
| ArrayRef<Attribute> SortedAttrs) { |
| if (SortedAttrs.empty()) |
| return nullptr; |
| |
| // Build a key to look up the existing attributes. |
| LLVMContextImpl *pImpl = C.pImpl; |
| FoldingSetNodeID ID; |
| |
| assert(llvm::is_sorted(SortedAttrs) && "Expected sorted attributes!"); |
| for (const auto &Attr : SortedAttrs) |
| Attr.Profile(ID); |
| |
| void *InsertPoint; |
| AttributeSetNode *PA = |
| pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| // If we didn't find any existing attributes of the same shape then create a |
| // new one and insert it. |
| if (!PA) { |
| // Coallocate entries after the AttributeSetNode itself. |
| void *Mem = ::operator new(totalSizeToAlloc<Attribute>(SortedAttrs.size())); |
| PA = new (Mem) AttributeSetNode(SortedAttrs); |
| pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); |
| } |
| |
| // Return the AttributeSetNode that we found or created. |
| return PA; |
| } |
| |
| AttributeSetNode *AttributeSetNode::get(LLVMContext &C, const AttrBuilder &B) { |
| // Add target-independent attributes. |
| SmallVector<Attribute, 8> Attrs; |
| for (Attribute::AttrKind Kind = Attribute::None; |
| Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) { |
| if (!B.contains(Kind)) |
| continue; |
| |
| Attribute Attr; |
| if (Attribute::isTypeAttrKind(Kind)) |
| Attr = Attribute::get(C, Kind, B.getTypeAttr(Kind)); |
| else if (Attribute::isIntAttrKind(Kind)) |
| Attr = Attribute::get(C, Kind, B.getRawIntAttr(Kind)); |
| else |
| Attr = Attribute::get(C, Kind); |
| Attrs.push_back(Attr); |
| } |
| |
| // Add target-dependent (string) attributes. |
| for (const auto &TDA : B.td_attrs()) |
| Attrs.emplace_back(Attribute::get(C, TDA.first, TDA.second)); |
| |
| return getSorted(C, Attrs); |
| } |
| |
| bool AttributeSetNode::hasAttribute(StringRef Kind) const { |
| return StringAttrs.count(Kind); |
| } |
| |
| Optional<Attribute> |
| AttributeSetNode::findEnumAttribute(Attribute::AttrKind Kind) const { |
| // Do a quick presence check. |
| if (!hasAttribute(Kind)) |
| return None; |
| |
| // Attributes in a set are sorted by enum value, followed by string |
| // attributes. Binary search the one we want. |
| const Attribute *I = |
| std::lower_bound(begin(), end() - StringAttrs.size(), Kind, |
| [](Attribute A, Attribute::AttrKind Kind) { |
| return A.getKindAsEnum() < Kind; |
| }); |
| assert(I != end() && I->hasAttribute(Kind) && "Presence check failed?"); |
| return *I; |
| } |
| |
| Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const { |
| if (auto A = findEnumAttribute(Kind)) |
| return *A; |
| return {}; |
| } |
| |
| Attribute AttributeSetNode::getAttribute(StringRef Kind) const { |
| return StringAttrs.lookup(Kind); |
| } |
| |
| MaybeAlign AttributeSetNode::getAlignment() const { |
| if (auto A = findEnumAttribute(Attribute::Alignment)) |
| return A->getAlignment(); |
| return None; |
| } |
| |
| MaybeAlign AttributeSetNode::getStackAlignment() const { |
| if (auto A = findEnumAttribute(Attribute::StackAlignment)) |
| return A->getStackAlignment(); |
| return None; |
| } |
| |
| Type *AttributeSetNode::getAttributeType(Attribute::AttrKind Kind) const { |
| if (auto A = findEnumAttribute(Kind)) |
| return A->getValueAsType(); |
| return nullptr; |
| } |
| |
| uint64_t AttributeSetNode::getDereferenceableBytes() const { |
| if (auto A = findEnumAttribute(Attribute::Dereferenceable)) |
| return A->getDereferenceableBytes(); |
| return 0; |
| } |
| |
| uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const { |
| if (auto A = findEnumAttribute(Attribute::DereferenceableOrNull)) |
| return A->getDereferenceableOrNullBytes(); |
| return 0; |
| } |
| |
| std::pair<unsigned, Optional<unsigned>> |
| AttributeSetNode::getAllocSizeArgs() const { |
| if (auto A = findEnumAttribute(Attribute::AllocSize)) |
| return A->getAllocSizeArgs(); |
| return std::make_pair(0, 0); |
| } |
| |
| std::pair<unsigned, unsigned> AttributeSetNode::getVScaleRangeArgs() const { |
| if (auto A = findEnumAttribute(Attribute::VScaleRange)) |
| return A->getVScaleRangeArgs(); |
| return std::make_pair(0, 0); |
| } |
| |
| std::string AttributeSetNode::getAsString(bool InAttrGrp) const { |
| std::string Str; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| if (I != begin()) |
| Str += ' '; |
| Str += I->getAsString(InAttrGrp); |
| } |
| return Str; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeListImpl Definition |
| //===----------------------------------------------------------------------===// |
| |
| /// Map from AttributeList index to the internal array index. Adding one happens |
| /// to work, because -1 wraps around to 0. |
| static unsigned attrIdxToArrayIdx(unsigned Index) { |
| return Index + 1; |
| } |
| |
| AttributeListImpl::AttributeListImpl(ArrayRef<AttributeSet> Sets) |
| : NumAttrSets(Sets.size()) { |
| assert(!Sets.empty() && "pointless AttributeListImpl"); |
| |
| // There's memory after the node where we can store the entries in. |
| llvm::copy(Sets, getTrailingObjects<AttributeSet>()); |
| |
| // Initialize AvailableFunctionAttrs and AvailableSomewhereAttrs |
| // summary bitsets. |
| for (const auto &I : Sets[attrIdxToArrayIdx(AttributeList::FunctionIndex)]) |
| if (!I.isStringAttribute()) |
| AvailableFunctionAttrs.addAttribute(I.getKindAsEnum()); |
| |
| for (const auto &Set : Sets) |
| for (const auto &I : Set) |
| if (!I.isStringAttribute()) |
| AvailableSomewhereAttrs.addAttribute(I.getKindAsEnum()); |
| } |
| |
| void AttributeListImpl::Profile(FoldingSetNodeID &ID) const { |
| Profile(ID, makeArrayRef(begin(), end())); |
| } |
| |
| void AttributeListImpl::Profile(FoldingSetNodeID &ID, |
| ArrayRef<AttributeSet> Sets) { |
| for (const auto &Set : Sets) |
| ID.AddPointer(Set.SetNode); |
| } |
| |
| bool AttributeListImpl::hasAttrSomewhere(Attribute::AttrKind Kind, |
| unsigned *Index) const { |
| if (!AvailableSomewhereAttrs.hasAttribute(Kind)) |
| return false; |
| |
| if (Index) { |
| for (unsigned I = 0, E = NumAttrSets; I != E; ++I) { |
| if (begin()[I].hasAttribute(Kind)) { |
| *Index = I - 1; |
| break; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void AttributeListImpl::dump() const { |
| AttributeList(const_cast<AttributeListImpl *>(this)).dump(); |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeList Construction and Mutation Methods |
| //===----------------------------------------------------------------------===// |
| |
| AttributeList AttributeList::getImpl(LLVMContext &C, |
| ArrayRef<AttributeSet> AttrSets) { |
| assert(!AttrSets.empty() && "pointless AttributeListImpl"); |
| |
| LLVMContextImpl *pImpl = C.pImpl; |
| FoldingSetNodeID ID; |
| AttributeListImpl::Profile(ID, AttrSets); |
| |
| void *InsertPoint; |
| AttributeListImpl *PA = |
| pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| // If we didn't find any existing attributes of the same shape then |
| // create a new one and insert it. |
| if (!PA) { |
| // Coallocate entries after the AttributeListImpl itself. |
| void *Mem = pImpl->Alloc.Allocate( |
| AttributeListImpl::totalSizeToAlloc<AttributeSet>(AttrSets.size()), |
| alignof(AttributeListImpl)); |
| PA = new (Mem) AttributeListImpl(AttrSets); |
| pImpl->AttrsLists.InsertNode(PA, InsertPoint); |
| } |
| |
| // Return the AttributesList that we found or created. |
| return AttributeList(PA); |
| } |
| |
| AttributeList |
| AttributeList::get(LLVMContext &C, |
| ArrayRef<std::pair<unsigned, Attribute>> Attrs) { |
| // If there are no attributes then return a null AttributesList pointer. |
| if (Attrs.empty()) |
| return {}; |
| |
| assert(llvm::is_sorted(Attrs, |
| [](const std::pair<unsigned, Attribute> &LHS, |
| const std::pair<unsigned, Attribute> &RHS) { |
| return LHS.first < RHS.first; |
| }) && |
| "Misordered Attributes list!"); |
| assert(llvm::all_of(Attrs, |
| [](const std::pair<unsigned, Attribute> &Pair) { |
| return Pair.second.isValid(); |
| }) && |
| "Pointless attribute!"); |
| |
| // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes |
| // list. |
| SmallVector<std::pair<unsigned, AttributeSet>, 8> AttrPairVec; |
| for (ArrayRef<std::pair<unsigned, Attribute>>::iterator I = Attrs.begin(), |
| E = Attrs.end(); I != E; ) { |
| unsigned Index = I->first; |
| SmallVector<Attribute, 4> AttrVec; |
| while (I != E && I->first == Index) { |
| AttrVec.push_back(I->second); |
| ++I; |
| } |
| |
| AttrPairVec.emplace_back(Index, AttributeSet::get(C, AttrVec)); |
| } |
| |
| return get(C, AttrPairVec); |
| } |
| |
| AttributeList |
| AttributeList::get(LLVMContext &C, |
| ArrayRef<std::pair<unsigned, AttributeSet>> Attrs) { |
| // If there are no attributes then return a null AttributesList pointer. |
| if (Attrs.empty()) |
| return {}; |
| |
| assert(llvm::is_sorted(Attrs, |
| [](const std::pair<unsigned, AttributeSet> &LHS, |
| const std::pair<unsigned, AttributeSet> &RHS) { |
| return LHS.first < RHS.first; |
| }) && |
| "Misordered Attributes list!"); |
| assert(llvm::none_of(Attrs, |
| [](const std::pair<unsigned, AttributeSet> &Pair) { |
| return !Pair.second.hasAttributes(); |
| }) && |
| "Pointless attribute!"); |
| |
| unsigned MaxIndex = Attrs.back().first; |
| // If the MaxIndex is FunctionIndex and there are other indices in front |
| // of it, we need to use the largest of those to get the right size. |
| if (MaxIndex == FunctionIndex && Attrs.size() > 1) |
| MaxIndex = Attrs[Attrs.size() - 2].first; |
| |
| SmallVector<AttributeSet, 4> AttrVec(attrIdxToArrayIdx(MaxIndex) + 1); |
| for (const auto &Pair : Attrs) |
| AttrVec[attrIdxToArrayIdx(Pair.first)] = Pair.second; |
| |
| return getImpl(C, AttrVec); |
| } |
| |
| AttributeList AttributeList::get(LLVMContext &C, AttributeSet FnAttrs, |
| AttributeSet RetAttrs, |
| ArrayRef<AttributeSet> ArgAttrs) { |
| // Scan from the end to find the last argument with attributes. Most |
| // arguments don't have attributes, so it's nice if we can have fewer unique |
| // AttributeListImpls by dropping empty attribute sets at the end of the list. |
| unsigned NumSets = 0; |
| for (size_t I = ArgAttrs.size(); I != 0; --I) { |
| if (ArgAttrs[I - 1].hasAttributes()) { |
| NumSets = I + 2; |
| break; |
| } |
| } |
| if (NumSets == 0) { |
| // Check function and return attributes if we didn't have argument |
| // attributes. |
| if (RetAttrs.hasAttributes()) |
| NumSets = 2; |
| else if (FnAttrs.hasAttributes()) |
| NumSets = 1; |
| } |
| |
| // If all attribute sets were empty, we can use the empty attribute list. |
| if (NumSets == 0) |
| return {}; |
| |
| SmallVector<AttributeSet, 8> AttrSets; |
| AttrSets.reserve(NumSets); |
| // If we have any attributes, we always have function attributes. |
| AttrSets.push_back(FnAttrs); |
| if (NumSets > 1) |
| AttrSets.push_back(RetAttrs); |
| if (NumSets > 2) { |
| // Drop the empty argument attribute sets at the end. |
| ArgAttrs = ArgAttrs.take_front(NumSets - 2); |
| llvm::append_range(AttrSets, ArgAttrs); |
| } |
| |
| return getImpl(C, AttrSets); |
| } |
| |
| AttributeList AttributeList::get(LLVMContext &C, unsigned Index, |
| const AttrBuilder &B) { |
| if (!B.hasAttributes()) |
| return {}; |
| Index = attrIdxToArrayIdx(Index); |
| SmallVector<AttributeSet, 8> AttrSets(Index + 1); |
| AttrSets[Index] = AttributeSet::get(C, B); |
| return getImpl(C, AttrSets); |
| } |
| |
| AttributeList AttributeList::get(LLVMContext &C, unsigned Index, |
| ArrayRef<Attribute::AttrKind> Kinds) { |
| SmallVector<std::pair<unsigned, Attribute>, 8> Attrs; |
| for (const auto K : Kinds) |
| Attrs.emplace_back(Index, Attribute::get(C, K)); |
| return get(C, Attrs); |
| } |
| |
| AttributeList AttributeList::get(LLVMContext &C, unsigned Index, |
| ArrayRef<Attribute::AttrKind> Kinds, |
| ArrayRef<uint64_t> Values) { |
| assert(Kinds.size() == Values.size() && "Mismatched attribute values."); |
| SmallVector<std::pair<unsigned, Attribute>, 8> Attrs; |
| auto VI = Values.begin(); |
| for (const auto K : Kinds) |
| Attrs.emplace_back(Index, Attribute::get(C, K, *VI++)); |
| return get(C, Attrs); |
| } |
| |
| AttributeList AttributeList::get(LLVMContext &C, unsigned Index, |
| ArrayRef<StringRef> Kinds) { |
| SmallVector<std::pair<unsigned, Attribute>, 8> Attrs; |
| for (const auto &K : Kinds) |
| Attrs.emplace_back(Index, Attribute::get(C, K)); |
| return get(C, Attrs); |
| } |
| |
| AttributeList AttributeList::get(LLVMContext &C, |
| ArrayRef<AttributeList> Attrs) { |
| if (Attrs.empty()) |
| return {}; |
| if (Attrs.size() == 1) |
| return Attrs[0]; |
| |
| unsigned MaxSize = 0; |
| for (const auto &List : Attrs) |
| MaxSize = std::max(MaxSize, List.getNumAttrSets()); |
| |
| // If every list was empty, there is no point in merging the lists. |
| if (MaxSize == 0) |
| return {}; |
| |
| SmallVector<AttributeSet, 8> NewAttrSets(MaxSize); |
| for (unsigned I = 0; I < MaxSize; ++I) { |
| AttrBuilder CurBuilder; |
| for (const auto &List : Attrs) |
| CurBuilder.merge(List.getAttributes(I - 1)); |
| NewAttrSets[I] = AttributeSet::get(C, CurBuilder); |
| } |
| |
| return getImpl(C, NewAttrSets); |
| } |
| |
| AttributeList |
| AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index, |
| Attribute::AttrKind Kind) const { |
| if (hasAttributeAtIndex(Index, Kind)) |
| return *this; |
| AttributeSet Attrs = getAttributes(Index); |
| // TODO: Insert at correct position and avoid sort. |
| SmallVector<Attribute, 8> NewAttrs(Attrs.begin(), Attrs.end()); |
| NewAttrs.push_back(Attribute::get(C, Kind)); |
| return setAttributesAtIndex(C, Index, AttributeSet::get(C, NewAttrs)); |
| } |
| |
| AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index, |
| StringRef Kind, |
| StringRef Value) const { |
| AttrBuilder B; |
| B.addAttribute(Kind, Value); |
| return addAttributesAtIndex(C, Index, B); |
| } |
| |
| AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index, |
| Attribute A) const { |
| AttrBuilder B; |
| B.addAttribute(A); |
| return addAttributesAtIndex(C, Index, B); |
| } |
| |
| AttributeList AttributeList::setAttributesAtIndex(LLVMContext &C, |
| unsigned Index, |
| AttributeSet Attrs) const { |
| Index = attrIdxToArrayIdx(Index); |
| SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end()); |
| if (Index >= AttrSets.size()) |
| AttrSets.resize(Index + 1); |
| AttrSets[Index] = Attrs; |
| return AttributeList::getImpl(C, AttrSets); |
| } |
| |
| AttributeList AttributeList::addAttributesAtIndex(LLVMContext &C, |
| unsigned Index, |
| const AttrBuilder &B) const { |
| if (!B.hasAttributes()) |
| return *this; |
| |
| if (!pImpl) |
| return AttributeList::get(C, {{Index, AttributeSet::get(C, B)}}); |
| |
| #ifndef NDEBUG |
| // FIXME it is not obvious how this should work for alignment. For now, say |
| // we can't change a known alignment. |
| const MaybeAlign OldAlign = getAttributes(Index).getAlignment(); |
| const MaybeAlign NewAlign = B.getAlignment(); |
| assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && |
| "Attempt to change alignment!"); |
| #endif |
| |
| AttrBuilder Merged(getAttributes(Index)); |
| Merged.merge(B); |
| return setAttributesAtIndex(C, Index, AttributeSet::get(C, Merged)); |
| } |
| |
| AttributeList AttributeList::addParamAttribute(LLVMContext &C, |
| ArrayRef<unsigned> ArgNos, |
| Attribute A) const { |
| assert(llvm::is_sorted(ArgNos)); |
| |
| SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end()); |
| unsigned MaxIndex = attrIdxToArrayIdx(ArgNos.back() + FirstArgIndex); |
| if (MaxIndex >= AttrSets.size()) |
| AttrSets.resize(MaxIndex + 1); |
| |
| for (unsigned ArgNo : ArgNos) { |
| unsigned Index = attrIdxToArrayIdx(ArgNo + FirstArgIndex); |
| AttrBuilder B(AttrSets[Index]); |
| B.addAttribute(A); |
| AttrSets[Index] = AttributeSet::get(C, B); |
| } |
| |
| return getImpl(C, AttrSets); |
| } |
| |
| AttributeList |
| AttributeList::removeAttributeAtIndex(LLVMContext &C, unsigned Index, |
| Attribute::AttrKind Kind) const { |
| if (!hasAttributeAtIndex(Index, Kind)) |
| return *this; |
| |
| Index = attrIdxToArrayIdx(Index); |
| SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end()); |
| assert(Index < AttrSets.size()); |
| |
| AttrSets[Index] = AttrSets[Index].removeAttribute(C, Kind); |
| |
| return getImpl(C, AttrSets); |
| } |
| |
| AttributeList AttributeList::removeAttributeAtIndex(LLVMContext &C, |
| unsigned Index, |
| StringRef Kind) const { |
| if (!hasAttributeAtIndex(Index, Kind)) |
| return *this; |
| |
| Index = attrIdxToArrayIdx(Index); |
| SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end()); |
| assert(Index < AttrSets.size()); |
| |
| AttrSets[Index] = AttrSets[Index].removeAttribute(C, Kind); |
| |
| return getImpl(C, AttrSets); |
| } |
| |
| AttributeList |
| AttributeList::removeAttributesAtIndex(LLVMContext &C, unsigned Index, |
| const AttrBuilder &AttrsToRemove) const { |
| AttributeSet Attrs = getAttributes(Index); |
| AttributeSet NewAttrs = Attrs.removeAttributes(C, AttrsToRemove); |
| // If nothing was removed, return the original list. |
| if (Attrs == NewAttrs) |
| return *this; |
| return setAttributesAtIndex(C, Index, NewAttrs); |
| } |
| |
| AttributeList |
| AttributeList::removeAttributesAtIndex(LLVMContext &C, |
| unsigned WithoutIndex) const { |
| if (!pImpl) |
| return {}; |
| WithoutIndex = attrIdxToArrayIdx(WithoutIndex); |
| if (WithoutIndex >= getNumAttrSets()) |
| return *this; |
| SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end()); |
| AttrSets[WithoutIndex] = AttributeSet(); |
| return getImpl(C, AttrSets); |
| } |
| |
| AttributeList AttributeList::addDereferenceableRetAttr(LLVMContext &C, |
| uint64_t Bytes) const { |
| AttrBuilder B; |
| B.addDereferenceableAttr(Bytes); |
| return addRetAttributes(C, B); |
| } |
| |
| AttributeList AttributeList::addDereferenceableParamAttr(LLVMContext &C, |
| unsigned Index, |
| uint64_t Bytes) const { |
| AttrBuilder B; |
| B.addDereferenceableAttr(Bytes); |
| return addParamAttributes(C, Index, B); |
| } |
| |
| AttributeList |
| AttributeList::addDereferenceableOrNullParamAttr(LLVMContext &C, unsigned Index, |
| uint64_t Bytes) const { |
| AttrBuilder B; |
| B.addDereferenceableOrNullAttr(Bytes); |
| return addParamAttributes(C, Index, B); |
| } |
| |
| AttributeList |
| AttributeList::addAllocSizeParamAttr(LLVMContext &C, unsigned Index, |
| unsigned ElemSizeArg, |
| const Optional<unsigned> &NumElemsArg) { |
| AttrBuilder B; |
| B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); |
| return addParamAttributes(C, Index, B); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeList Accessor Methods |
| //===----------------------------------------------------------------------===// |
| |
| AttributeSet AttributeList::getParamAttrs(unsigned ArgNo) const { |
| return getAttributes(ArgNo + FirstArgIndex); |
| } |
| |
| AttributeSet AttributeList::getRetAttrs() const { |
| return getAttributes(ReturnIndex); |
| } |
| |
| AttributeSet AttributeList::getFnAttrs() const { |
| return getAttributes(FunctionIndex); |
| } |
| |
| bool AttributeList::hasAttributeAtIndex(unsigned Index, |
| Attribute::AttrKind Kind) const { |
| return getAttributes(Index).hasAttribute(Kind); |
| } |
| |
| bool AttributeList::hasAttributeAtIndex(unsigned Index, StringRef Kind) const { |
| return getAttributes(Index).hasAttribute(Kind); |
| } |
| |
| bool AttributeList::hasAttributesAtIndex(unsigned Index) const { |
| return getAttributes(Index).hasAttributes(); |
| } |
| |
| bool AttributeList::hasFnAttr(Attribute::AttrKind Kind) const { |
| return pImpl && pImpl->hasFnAttribute(Kind); |
| } |
| |
| bool AttributeList::hasFnAttr(StringRef Kind) const { |
| return hasAttributeAtIndex(AttributeList::FunctionIndex, Kind); |
| } |
| |
| bool AttributeList::hasAttrSomewhere(Attribute::AttrKind Attr, |
| unsigned *Index) const { |
| return pImpl && pImpl->hasAttrSomewhere(Attr, Index); |
| } |
| |
| Attribute AttributeList::getAttributeAtIndex(unsigned Index, |
| Attribute::AttrKind Kind) const { |
| return getAttributes(Index).getAttribute(Kind); |
| } |
| |
| Attribute AttributeList::getAttributeAtIndex(unsigned Index, |
| StringRef Kind) const { |
| return getAttributes(Index).getAttribute(Kind); |
| } |
| |
| MaybeAlign AttributeList::getRetAlignment() const { |
| return getAttributes(ReturnIndex).getAlignment(); |
| } |
| |
| MaybeAlign AttributeList::getParamAlignment(unsigned ArgNo) const { |
| return getAttributes(ArgNo + FirstArgIndex).getAlignment(); |
| } |
| |
| MaybeAlign AttributeList::getParamStackAlignment(unsigned ArgNo) const { |
| return getAttributes(ArgNo + FirstArgIndex).getStackAlignment(); |
| } |
| |
| Type *AttributeList::getParamByValType(unsigned Index) const { |
| return getAttributes(Index+FirstArgIndex).getByValType(); |
| } |
| |
| Type *AttributeList::getParamStructRetType(unsigned Index) const { |
| return getAttributes(Index + FirstArgIndex).getStructRetType(); |
| } |
| |
| Type *AttributeList::getParamByRefType(unsigned Index) const { |
| return getAttributes(Index + FirstArgIndex).getByRefType(); |
| } |
| |
| Type *AttributeList::getParamPreallocatedType(unsigned Index) const { |
| return getAttributes(Index + FirstArgIndex).getPreallocatedType(); |
| } |
| |
| Type *AttributeList::getParamInAllocaType(unsigned Index) const { |
| return getAttributes(Index + FirstArgIndex).getInAllocaType(); |
| } |
| |
| Type *AttributeList::getParamElementType(unsigned Index) const { |
| return getAttributes(Index + FirstArgIndex).getElementType(); |
| } |
| |
| MaybeAlign AttributeList::getFnStackAlignment() const { |
| return getFnAttrs().getStackAlignment(); |
| } |
| |
| MaybeAlign AttributeList::getRetStackAlignment() const { |
| return getRetAttrs().getStackAlignment(); |
| } |
| |
| uint64_t AttributeList::getRetDereferenceableBytes() const { |
| return getRetAttrs().getDereferenceableBytes(); |
| } |
| |
| uint64_t AttributeList::getParamDereferenceableBytes(unsigned Index) const { |
| return getParamAttrs(Index).getDereferenceableBytes(); |
| } |
| |
| uint64_t AttributeList::getRetDereferenceableOrNullBytes() const { |
| return getRetAttrs().getDereferenceableOrNullBytes(); |
| } |
| |
| uint64_t |
| AttributeList::getParamDereferenceableOrNullBytes(unsigned Index) const { |
| return getParamAttrs(Index).getDereferenceableOrNullBytes(); |
| } |
| |
| std::string AttributeList::getAsString(unsigned Index, bool InAttrGrp) const { |
| return getAttributes(Index).getAsString(InAttrGrp); |
| } |
| |
| AttributeSet AttributeList::getAttributes(unsigned Index) const { |
| Index = attrIdxToArrayIdx(Index); |
| if (!pImpl || Index >= getNumAttrSets()) |
| return {}; |
| return pImpl->begin()[Index]; |
| } |
| |
| bool AttributeList::hasParentContext(LLVMContext &C) const { |
| assert(!isEmpty() && "an empty attribute list has no parent context"); |
| FoldingSetNodeID ID; |
| pImpl->Profile(ID); |
| void *Unused; |
| return C.pImpl->AttrsLists.FindNodeOrInsertPos(ID, Unused) == pImpl; |
| } |
| |
| AttributeList::iterator AttributeList::begin() const { |
| return pImpl ? pImpl->begin() : nullptr; |
| } |
| |
| AttributeList::iterator AttributeList::end() const { |
| return pImpl ? pImpl->end() : nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeList Introspection Methods |
| //===----------------------------------------------------------------------===// |
| |
| unsigned AttributeList::getNumAttrSets() const { |
| return pImpl ? pImpl->NumAttrSets : 0; |
| } |
| |
| void AttributeList::print(raw_ostream &O) const { |
| O << "AttributeList[\n"; |
| |
| for (unsigned i : indexes()) { |
| if (!getAttributes(i).hasAttributes()) |
| continue; |
| O << " { "; |
| switch (i) { |
| case AttrIndex::ReturnIndex: |
| O << "return"; |
| break; |
| case AttrIndex::FunctionIndex: |
| O << "function"; |
| break; |
| default: |
| O << "arg(" << i - AttrIndex::FirstArgIndex << ")"; |
| } |
| O << " => " << getAsString(i) << " }\n"; |
| } |
| |
| O << "]\n"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void AttributeList::dump() const { print(dbgs()); } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // AttrBuilder Method Implementations |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: Remove this ctor, use AttributeSet. |
| AttrBuilder::AttrBuilder(AttributeList AL, unsigned Index) { |
| AttributeSet AS = AL.getAttributes(Index); |
| for (const auto &A : AS) |
| addAttribute(A); |
| } |
| |
| AttrBuilder::AttrBuilder(AttributeSet AS) { |
| for (const auto &A : AS) |
| addAttribute(A); |
| } |
| |
| void AttrBuilder::clear() { |
| Attrs.reset(); |
| TargetDepAttrs.clear(); |
| IntAttrs = {}; |
| TypeAttrs = {}; |
| } |
| |
| Optional<unsigned> |
| AttrBuilder::kindToIntIndex(Attribute::AttrKind Kind) const { |
| if (Attribute::isIntAttrKind(Kind)) |
| return Kind - Attribute::FirstIntAttr; |
| return None; |
| } |
| |
| Optional<unsigned> |
| AttrBuilder::kindToTypeIndex(Attribute::AttrKind Kind) const { |
| if (Attribute::isTypeAttrKind(Kind)) |
| return Kind - Attribute::FirstTypeAttr; |
| return None; |
| } |
| |
| AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) { |
| if (Attr.isStringAttribute()) { |
| addAttribute(Attr.getKindAsString(), Attr.getValueAsString()); |
| return *this; |
| } |
| |
| Attribute::AttrKind Kind = Attr.getKindAsEnum(); |
| Attrs[Kind] = true; |
| |
| if (Optional<unsigned> TypeIndex = kindToTypeIndex(Kind)) |
| TypeAttrs[*TypeIndex] = Attr.getValueAsType(); |
| else if (Optional<unsigned> IntIndex = kindToIntIndex(Kind)) |
| IntAttrs[*IntIndex] = Attr.getValueAsInt(); |
| |
| return *this; |
| } |
| |
| AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) { |
| TargetDepAttrs[A] = V; |
| return *this; |
| } |
| |
| AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { |
| assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!"); |
| Attrs[Val] = false; |
| |
| if (Optional<unsigned> TypeIndex = kindToTypeIndex(Val)) |
| TypeAttrs[*TypeIndex] = nullptr; |
| else if (Optional<unsigned> IntIndex = kindToIntIndex(Val)) |
| IntAttrs[*IntIndex] = 0; |
| |
| return *this; |
| } |
| |
| AttrBuilder &AttrBuilder::removeAttributes(AttributeList A, uint64_t Index) { |
| remove(A.getAttributes(Index)); |
| return *this; |
| } |
| |
| AttrBuilder &AttrBuilder::removeAttribute(StringRef A) { |
| TargetDepAttrs.erase(A); |
| return *this; |
| } |
| |
| uint64_t AttrBuilder::getRawIntAttr(Attribute::AttrKind Kind) const { |
| Optional<unsigned> IntIndex = kindToIntIndex(Kind); |
| assert(IntIndex && "Not an int attribute"); |
| return IntAttrs[*IntIndex]; |
| } |
| |
| AttrBuilder &AttrBuilder::addRawIntAttr(Attribute::AttrKind Kind, |
| uint64_t Value) { |
| Optional<unsigned> IntIndex = kindToIntIndex(Kind); |
| assert(IntIndex && "Not an int attribute"); |
| assert(Value && "Value cannot be zero"); |
| Attrs[Kind] = true; |
| IntAttrs[*IntIndex] = Value; |
| return *this; |
| } |
| |
| std::pair<unsigned, Optional<unsigned>> AttrBuilder::getAllocSizeArgs() const { |
| return unpackAllocSizeArgs(getRawIntAttr(Attribute::AllocSize)); |
| } |
| |
| std::pair<unsigned, unsigned> AttrBuilder::getVScaleRangeArgs() const { |
| return unpackVScaleRangeArgs(getRawIntAttr(Attribute::VScaleRange)); |
| } |
| |
| AttrBuilder &AttrBuilder::addAlignmentAttr(MaybeAlign Align) { |
| if (!Align) |
| return *this; |
| |
| assert(*Align <= llvm::Value::MaximumAlignment && "Alignment too large."); |
| return addRawIntAttr(Attribute::Alignment, Align->value()); |
| } |
| |
| AttrBuilder &AttrBuilder::addStackAlignmentAttr(MaybeAlign Align) { |
| // Default alignment, allow the target to define how to align it. |
| if (!Align) |
| return *this; |
| |
| assert(*Align <= 0x100 && "Alignment too large."); |
| return addRawIntAttr(Attribute::StackAlignment, Align->value()); |
| } |
| |
| AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) { |
| if (Bytes == 0) return *this; |
| |
| return addRawIntAttr(Attribute::Dereferenceable, Bytes); |
| } |
| |
| AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) { |
| if (Bytes == 0) |
| return *this; |
| |
| return addRawIntAttr(Attribute::DereferenceableOrNull, Bytes); |
| } |
| |
| AttrBuilder &AttrBuilder::addAllocSizeAttr(unsigned ElemSize, |
| const Optional<unsigned> &NumElems) { |
| return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems)); |
| } |
| |
| AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) { |
| // (0, 0) is our "not present" value, so we need to check for it here. |
| assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)"); |
| return addRawIntAttr(Attribute::AllocSize, RawArgs); |
| } |
| |
| AttrBuilder &AttrBuilder::addVScaleRangeAttr(unsigned MinValue, |
| unsigned MaxValue) { |
| return addVScaleRangeAttrFromRawRepr(packVScaleRangeArgs(MinValue, MaxValue)); |
| } |
| |
| AttrBuilder &AttrBuilder::addVScaleRangeAttrFromRawRepr(uint64_t RawArgs) { |
| // (0, 0) is not present hence ignore this case |
| if (RawArgs == 0) |
| return *this; |
| |
| return addRawIntAttr(Attribute::VScaleRange, RawArgs); |
| } |
| |
| Type *AttrBuilder::getTypeAttr(Attribute::AttrKind Kind) const { |
| Optional<unsigned> TypeIndex = kindToTypeIndex(Kind); |
| assert(TypeIndex && "Not a type attribute"); |
| return TypeAttrs[*TypeIndex]; |
| } |
| |
| AttrBuilder &AttrBuilder::addTypeAttr(Attribute::AttrKind Kind, Type *Ty) { |
| Optional<unsigned> TypeIndex = kindToTypeIndex(Kind); |
| assert(TypeIndex && "Not a type attribute"); |
| Attrs[Kind] = true; |
| TypeAttrs[*TypeIndex] = Ty; |
| return *this; |
| } |
| |
| AttrBuilder &AttrBuilder::addByValAttr(Type *Ty) { |
| return addTypeAttr(Attribute::ByVal, Ty); |
| } |
| |
| AttrBuilder &AttrBuilder::addStructRetAttr(Type *Ty) { |
| return addTypeAttr(Attribute::StructRet, Ty); |
| } |
| |
| AttrBuilder &AttrBuilder::addByRefAttr(Type *Ty) { |
| return addTypeAttr(Attribute::ByRef, Ty); |
| } |
| |
| AttrBuilder &AttrBuilder::addPreallocatedAttr(Type *Ty) { |
| return addTypeAttr(Attribute::Preallocated, Ty); |
| } |
| |
| AttrBuilder &AttrBuilder::addInAllocaAttr(Type *Ty) { |
| return addTypeAttr(Attribute::InAlloca, Ty); |
| } |
| |
| AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) { |
| // FIXME: What if both have an int/type attribute, but they don't match?! |
| for (unsigned Index = 0; Index < Attribute::NumIntAttrKinds; ++Index) |
| if (!IntAttrs[Index]) |
| IntAttrs[Index] = B.IntAttrs[Index]; |
| |
| for (unsigned Index = 0; Index < Attribute::NumTypeAttrKinds; ++Index) |
| if (!TypeAttrs[Index]) |
| TypeAttrs[Index] = B.TypeAttrs[Index]; |
| |
| Attrs |= B.Attrs; |
| |
| for (const auto &I : B.td_attrs()) |
| TargetDepAttrs[I.first] = I.second; |
| |
| return *this; |
| } |
| |
| AttrBuilder &AttrBuilder::remove(const AttrBuilder &B) { |
| // FIXME: What if both have an int/type attribute, but they don't match?! |
| for (unsigned Index = 0; Index < Attribute::NumIntAttrKinds; ++Index) |
| if (B.IntAttrs[Index]) |
| IntAttrs[Index] = 0; |
| |
| for (unsigned Index = 0; Index < Attribute::NumTypeAttrKinds; ++Index) |
| if (B.TypeAttrs[Index]) |
| TypeAttrs[Index] = nullptr; |
| |
| Attrs &= ~B.Attrs; |
| |
| for (const auto &I : B.td_attrs()) |
| TargetDepAttrs.erase(I.first); |
| |
| return *this; |
| } |
| |
| bool AttrBuilder::overlaps(const AttrBuilder &B) const { |
| // First check if any of the target independent attributes overlap. |
| if ((Attrs & B.Attrs).any()) |
| return true; |
| |
| // Then check if any target dependent ones do. |
| for (const auto &I : td_attrs()) |
| if (B.contains(I.first)) |
| return true; |
| |
| return false; |
| } |
| |
| bool AttrBuilder::contains(StringRef A) const { |
| return TargetDepAttrs.find(A) != TargetDepAttrs.end(); |
| } |
| |
| bool AttrBuilder::hasAttributes() const { |
| return !Attrs.none() || !TargetDepAttrs.empty(); |
| } |
| |
| bool AttrBuilder::hasAttributes(AttributeList AL, uint64_t Index) const { |
| AttributeSet AS = AL.getAttributes(Index); |
| |
| for (const auto &Attr : AS) { |
| if (Attr.isEnumAttribute() || Attr.isIntAttribute()) { |
| if (contains(Attr.getKindAsEnum())) |
| return true; |
| } else { |
| assert(Attr.isStringAttribute() && "Invalid attribute kind!"); |
| return contains(Attr.getKindAsString()); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AttrBuilder::hasAlignmentAttr() const { |
| return getRawIntAttr(Attribute::Alignment) != 0; |
| } |
| |
| bool AttrBuilder::operator==(const AttrBuilder &B) const { |
| if (Attrs != B.Attrs) |
| return false; |
| |
| for (const auto &TDA : TargetDepAttrs) |
| if (B.TargetDepAttrs.find(TDA.first) == B.TargetDepAttrs.end()) |
| return false; |
| |
| return IntAttrs == B.IntAttrs && TypeAttrs == B.TypeAttrs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AttributeFuncs Function Defintions |
| //===----------------------------------------------------------------------===// |
| |
| /// Which attributes cannot be applied to a type. |
| AttrBuilder AttributeFuncs::typeIncompatible(Type *Ty) { |
| AttrBuilder Incompatible; |
| |
| if (!Ty->isIntegerTy()) |
| // Attribute that only apply to integers. |
| Incompatible.addAttribute(Attribute::SExt) |
| .addAttribute(Attribute::ZExt); |
| |
| if (!Ty->isPointerTy()) |
| // Attribute that only apply to pointers. |
| Incompatible.addAttribute(Attribute::Nest) |
| .addAttribute(Attribute::NoAlias) |
| .addAttribute(Attribute::NoCapture) |
| .addAttribute(Attribute::NonNull) |
| .addAttribute(Attribute::ReadNone) |
| .addAttribute(Attribute::ReadOnly) |
| .addAttribute(Attribute::SwiftError) |
| .addAlignmentAttr(1) // the int here is ignored |
| .addDereferenceableAttr(1) // the int here is ignored |
| .addDereferenceableOrNullAttr(1) // the int here is ignored |
| .addPreallocatedAttr(Ty) |
| .addInAllocaAttr(Ty) |
| .addByValAttr(Ty) |
| .addStructRetAttr(Ty) |
| .addByRefAttr(Ty) |
| .addTypeAttr(Attribute::ElementType, Ty); |
| |
| // Some attributes can apply to all "values" but there are no `void` values. |
| if (Ty->isVoidTy()) |
| Incompatible.addAttribute(Attribute::NoUndef); |
| |
| return Incompatible; |
| } |
| |
| AttrBuilder AttributeFuncs::getUBImplyingAttributes() { |
| AttrBuilder B; |
| B.addAttribute(Attribute::NoUndef); |
| B.addDereferenceableAttr(1); |
| B.addDereferenceableOrNullAttr(1); |
| return B; |
| } |
| |
| template<typename AttrClass> |
| static bool isEqual(const Function &Caller, const Function &Callee) { |
| return Caller.getFnAttribute(AttrClass::getKind()) == |
| Callee.getFnAttribute(AttrClass::getKind()); |
| } |
| |
| /// Compute the logical AND of the attributes of the caller and the |
| /// callee. |
| /// |
| /// This function sets the caller's attribute to false if the callee's attribute |
| /// is false. |
| template<typename AttrClass> |
| static void setAND(Function &Caller, const Function &Callee) { |
| if (AttrClass::isSet(Caller, AttrClass::getKind()) && |
| !AttrClass::isSet(Callee, AttrClass::getKind())) |
| AttrClass::set(Caller, AttrClass::getKind(), false); |
| } |
| |
| /// Compute the logical OR of the attributes of the caller and the |
| /// callee. |
| /// |
| /// This function sets the caller's attribute to true if the callee's attribute |
| /// is true. |
| template<typename AttrClass> |
| static void setOR(Function &Caller, const Function &Callee) { |
| if (!AttrClass::isSet(Caller, AttrClass::getKind()) && |
| AttrClass::isSet(Callee, AttrClass::getKind())) |
| AttrClass::set(Caller, AttrClass::getKind(), true); |
| } |
| |
| /// If the inlined function had a higher stack protection level than the |
| /// calling function, then bump up the caller's stack protection level. |
| static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) { |
| // If upgrading the SSP attribute, clear out the old SSP Attributes first. |
| // Having multiple SSP attributes doesn't actually hurt, but it adds useless |
| // clutter to the IR. |
| AttrBuilder OldSSPAttr; |
| OldSSPAttr.addAttribute(Attribute::StackProtect) |
| .addAttribute(Attribute::StackProtectStrong) |
| .addAttribute(Attribute::StackProtectReq); |
| |
| if (Callee.hasFnAttribute(Attribute::StackProtectReq)) { |
| Caller.removeFnAttrs(OldSSPAttr); |
| Caller.addFnAttr(Attribute::StackProtectReq); |
| } else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) && |
| !Caller.hasFnAttribute(Attribute::StackProtectReq)) { |
| Caller.removeFnAttrs(OldSSPAttr); |
| Caller.addFnAttr(Attribute::StackProtectStrong); |
| } else if (Callee.hasFnAttribute(Attribute::StackProtect) && |
| !Caller.hasFnAttribute(Attribute::StackProtectReq) && |
| !Caller.hasFnAttribute(Attribute::StackProtectStrong)) |
| Caller.addFnAttr(Attribute::StackProtect); |
| } |
| |
| /// If the inlined function required stack probes, then ensure that |
| /// the calling function has those too. |
| static void adjustCallerStackProbes(Function &Caller, const Function &Callee) { |
| if (!Caller.hasFnAttribute("probe-stack") && |
| Callee.hasFnAttribute("probe-stack")) { |
| Caller.addFnAttr(Callee.getFnAttribute("probe-stack")); |
| } |
| } |
| |
| /// If the inlined function defines the size of guard region |
| /// on the stack, then ensure that the calling function defines a guard region |
| /// that is no larger. |
| static void |
| adjustCallerStackProbeSize(Function &Caller, const Function &Callee) { |
| Attribute CalleeAttr = Callee.getFnAttribute("stack-probe-size"); |
| if (CalleeAttr.isValid()) { |
| Attribute CallerAttr = Caller.getFnAttribute("stack-probe-size"); |
| if (CallerAttr.isValid()) { |
| uint64_t CallerStackProbeSize, CalleeStackProbeSize; |
| CallerAttr.getValueAsString().getAsInteger(0, CallerStackProbeSize); |
| CalleeAttr.getValueAsString().getAsInteger(0, CalleeStackProbeSize); |
| |
| if (CallerStackProbeSize > CalleeStackProbeSize) { |
| Caller.addFnAttr(CalleeAttr); |
| } |
| } else { |
| Caller.addFnAttr(CalleeAttr); |
| } |
| } |
| } |
| |
| /// If the inlined function defines a min legal vector width, then ensure |
| /// the calling function has the same or larger min legal vector width. If the |
| /// caller has the attribute, but the callee doesn't, we need to remove the |
| /// attribute from the caller since we can't make any guarantees about the |
| /// caller's requirements. |
| /// This function is called after the inlining decision has been made so we have |
| /// to merge the attribute this way. Heuristics that would use |
| /// min-legal-vector-width to determine inline compatibility would need to be |
| /// handled as part of inline cost analysis. |
| static void |
| adjustMinLegalVectorWidth(Function &Caller, const Function &Callee) { |
| Attribute CallerAttr = Caller.getFnAttribute("min-legal-vector-width"); |
| if (CallerAttr.isValid()) { |
| Attribute CalleeAttr = Callee.getFnAttribute("min-legal-vector-width"); |
| if (CalleeAttr.isValid()) { |
| uint64_t CallerVectorWidth, CalleeVectorWidth; |
| CallerAttr.getValueAsString().getAsInteger(0, CallerVectorWidth); |
| CalleeAttr.getValueAsString().getAsInteger(0, CalleeVectorWidth); |
| if (CallerVectorWidth < CalleeVectorWidth) |
| Caller.addFnAttr(CalleeAttr); |
| } else { |
| // If the callee doesn't have the attribute then we don't know anything |
| // and must drop the attribute from the caller. |
| Caller.removeFnAttr("min-legal-vector-width"); |
| } |
| } |
| } |
| |
| /// If the inlined function has null_pointer_is_valid attribute, |
| /// set this attribute in the caller post inlining. |
| static void |
| adjustNullPointerValidAttr(Function &Caller, const Function &Callee) { |
| if (Callee.nullPointerIsDefined() && !Caller.nullPointerIsDefined()) { |
| Caller.addFnAttr(Attribute::NullPointerIsValid); |
| } |
| } |
| |
| struct EnumAttr { |
| static bool isSet(const Function &Fn, |
| Attribute::AttrKind Kind) { |
| return Fn.hasFnAttribute(Kind); |
| } |
| |
| static void set(Function &Fn, |
| Attribute::AttrKind Kind, bool Val) { |
| if (Val) |
| Fn.addFnAttr(Kind); |
| else |
| Fn.removeFnAttr(Kind); |
| } |
| }; |
| |
| struct StrBoolAttr { |
| static bool isSet(const Function &Fn, |
| StringRef Kind) { |
| auto A = Fn.getFnAttribute(Kind); |
| return A.getValueAsString().equals("true"); |
| } |
| |
| static void set(Function &Fn, |
| StringRef Kind, bool Val) { |
| Fn.addFnAttr(Kind, Val ? "true" : "false"); |
| } |
| }; |
| |
| #define GET_ATTR_NAMES |
| #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ |
| struct ENUM_NAME##Attr : EnumAttr { \ |
| static enum Attribute::AttrKind getKind() { \ |
| return llvm::Attribute::ENUM_NAME; \ |
| } \ |
| }; |
| #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ |
| struct ENUM_NAME##Attr : StrBoolAttr { \ |
| static StringRef getKind() { return #DISPLAY_NAME; } \ |
| }; |
| #include "llvm/IR/Attributes.inc" |
| |
| #define GET_ATTR_COMPAT_FUNC |
| #include "llvm/IR/Attributes.inc" |
| |
| bool AttributeFuncs::areInlineCompatible(const Function &Caller, |
| const Function &Callee) { |
| return hasCompatibleFnAttrs(Caller, Callee); |
| } |
| |
| bool AttributeFuncs::areOutlineCompatible(const Function &A, |
| const Function &B) { |
| return hasCompatibleFnAttrs(A, B); |
| } |
| |
| void AttributeFuncs::mergeAttributesForInlining(Function &Caller, |
| const Function &Callee) { |
| mergeFnAttrs(Caller, Callee); |
| } |
| |
| void AttributeFuncs::mergeAttributesForOutlining(Function &Base, |
| const Function &ToMerge) { |
| |
| // We merge functions so that they meet the most general case. |
| // For example, if the NoNansFPMathAttr is set in one function, but not in |
| // the other, in the merged function we can say that the NoNansFPMathAttr |
| // is not set. |
| // However if we have the SpeculativeLoadHardeningAttr set true in one |
| // function, but not the other, we make sure that the function retains |
| // that aspect in the merged function. |
| mergeFnAttrs(Base, ToMerge); |
| } |