| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the common interface used by the various execution engine |
| // subclasses. |
| // |
| // FIXME: This file needs to be updated to support scalable vectors |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/ExecutionEngine/JITEventListener.h" |
| #include "llvm/ExecutionEngine/ObjectCache.h" |
| #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Mangler.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Object/Archive.h" |
| #include "llvm/Object/ObjectFile.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DynamicLibrary.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Host.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cmath> |
| #include <cstring> |
| #include <mutex> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "jit" |
| |
| STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); |
| STATISTIC(NumGlobals , "Number of global vars initialized"); |
| |
| ExecutionEngine *(*ExecutionEngine::MCJITCtor)( |
| std::unique_ptr<Module> M, std::string *ErrorStr, |
| std::shared_ptr<MCJITMemoryManager> MemMgr, |
| std::shared_ptr<LegacyJITSymbolResolver> Resolver, |
| std::unique_ptr<TargetMachine> TM) = nullptr; |
| |
| ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, |
| std::string *ErrorStr) =nullptr; |
| |
| void JITEventListener::anchor() {} |
| |
| void ObjectCache::anchor() {} |
| |
| void ExecutionEngine::Init(std::unique_ptr<Module> M) { |
| CompilingLazily = false; |
| GVCompilationDisabled = false; |
| SymbolSearchingDisabled = false; |
| |
| // IR module verification is enabled by default in debug builds, and disabled |
| // by default in release builds. |
| #ifndef NDEBUG |
| VerifyModules = true; |
| #else |
| VerifyModules = false; |
| #endif |
| |
| assert(M && "Module is null?"); |
| Modules.push_back(std::move(M)); |
| } |
| |
| ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) |
| : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { |
| Init(std::move(M)); |
| } |
| |
| ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) |
| : DL(std::move(DL)), LazyFunctionCreator(nullptr) { |
| Init(std::move(M)); |
| } |
| |
| ExecutionEngine::~ExecutionEngine() { |
| clearAllGlobalMappings(); |
| } |
| |
| namespace { |
| /// Helper class which uses a value handler to automatically deletes the |
| /// memory block when the GlobalVariable is destroyed. |
| class GVMemoryBlock final : public CallbackVH { |
| GVMemoryBlock(const GlobalVariable *GV) |
| : CallbackVH(const_cast<GlobalVariable*>(GV)) {} |
| |
| public: |
| /// Returns the address the GlobalVariable should be written into. The |
| /// GVMemoryBlock object prefixes that. |
| static char *Create(const GlobalVariable *GV, const DataLayout& TD) { |
| Type *ElTy = GV->getValueType(); |
| size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); |
| void *RawMemory = ::operator new( |
| alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize); |
| new(RawMemory) GVMemoryBlock(GV); |
| return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); |
| } |
| |
| void deleted() override { |
| // We allocated with operator new and with some extra memory hanging off the |
| // end, so don't just delete this. I'm not sure if this is actually |
| // required. |
| this->~GVMemoryBlock(); |
| ::operator delete(this); |
| } |
| }; |
| } // anonymous namespace |
| |
| char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { |
| return GVMemoryBlock::Create(GV, getDataLayout()); |
| } |
| |
| void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { |
| llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); |
| } |
| |
| void |
| ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { |
| llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); |
| } |
| |
| void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { |
| llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); |
| } |
| |
| bool ExecutionEngine::removeModule(Module *M) { |
| for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { |
| Module *Found = I->get(); |
| if (Found == M) { |
| I->release(); |
| Modules.erase(I); |
| clearGlobalMappingsFromModule(M); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| Function *F = Modules[i]->getFunction(FnName); |
| if (F && !F->isDeclaration()) |
| return F; |
| } |
| return nullptr; |
| } |
| |
| GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); |
| if (GV && !GV->isDeclaration()) |
| return GV; |
| } |
| return nullptr; |
| } |
| |
| uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { |
| GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); |
| uint64_t OldVal; |
| |
| // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the |
| // GlobalAddressMap. |
| if (I == GlobalAddressMap.end()) |
| OldVal = 0; |
| else { |
| GlobalAddressReverseMap.erase(I->second); |
| OldVal = I->second; |
| GlobalAddressMap.erase(I); |
| } |
| |
| return OldVal; |
| } |
| |
| std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { |
| assert(GV->hasName() && "Global must have name."); |
| |
| std::lock_guard<sys::Mutex> locked(lock); |
| SmallString<128> FullName; |
| |
| const DataLayout &DL = |
| GV->getParent()->getDataLayout().isDefault() |
| ? getDataLayout() |
| : GV->getParent()->getDataLayout(); |
| |
| Mangler::getNameWithPrefix(FullName, GV->getName(), DL); |
| return std::string(FullName.str()); |
| } |
| |
| void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| addGlobalMapping(getMangledName(GV), (uint64_t) Addr); |
| } |
| |
| void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| |
| assert(!Name.empty() && "Empty GlobalMapping symbol name!"); |
| |
| LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); |
| uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; |
| assert((!CurVal || !Addr) && "GlobalMapping already established!"); |
| CurVal = Addr; |
| |
| // If we are using the reverse mapping, add it too. |
| if (!EEState.getGlobalAddressReverseMap().empty()) { |
| std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
| assert((!V.empty() || !Name.empty()) && |
| "GlobalMapping already established!"); |
| V = std::string(Name); |
| } |
| } |
| |
| void ExecutionEngine::clearAllGlobalMappings() { |
| std::lock_guard<sys::Mutex> locked(lock); |
| |
| EEState.getGlobalAddressMap().clear(); |
| EEState.getGlobalAddressReverseMap().clear(); |
| } |
| |
| void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| |
| for (GlobalObject &GO : M->global_objects()) |
| EEState.RemoveMapping(getMangledName(&GO)); |
| } |
| |
| uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, |
| void *Addr) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); |
| } |
| |
| uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| |
| ExecutionEngineState::GlobalAddressMapTy &Map = |
| EEState.getGlobalAddressMap(); |
| |
| // Deleting from the mapping? |
| if (!Addr) |
| return EEState.RemoveMapping(Name); |
| |
| uint64_t &CurVal = Map[Name]; |
| uint64_t OldVal = CurVal; |
| |
| if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) |
| EEState.getGlobalAddressReverseMap().erase(CurVal); |
| CurVal = Addr; |
| |
| // If we are using the reverse mapping, add it too. |
| if (!EEState.getGlobalAddressReverseMap().empty()) { |
| std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
| assert((!V.empty() || !Name.empty()) && |
| "GlobalMapping already established!"); |
| V = std::string(Name); |
| } |
| return OldVal; |
| } |
| |
| uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| uint64_t Address = 0; |
| ExecutionEngineState::GlobalAddressMapTy::iterator I = |
| EEState.getGlobalAddressMap().find(S); |
| if (I != EEState.getGlobalAddressMap().end()) |
| Address = I->second; |
| return Address; |
| } |
| |
| |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) |
| return Address; |
| return nullptr; |
| } |
| |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| return getPointerToGlobalIfAvailable(getMangledName(GV)); |
| } |
| |
| const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
| std::lock_guard<sys::Mutex> locked(lock); |
| |
| // If we haven't computed the reverse mapping yet, do so first. |
| if (EEState.getGlobalAddressReverseMap().empty()) { |
| for (ExecutionEngineState::GlobalAddressMapTy::iterator |
| I = EEState.getGlobalAddressMap().begin(), |
| E = EEState.getGlobalAddressMap().end(); I != E; ++I) { |
| StringRef Name = I->first(); |
| uint64_t Addr = I->second; |
| EEState.getGlobalAddressReverseMap().insert( |
| std::make_pair(Addr, std::string(Name))); |
| } |
| } |
| |
| std::map<uint64_t, std::string>::iterator I = |
| EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); |
| |
| if (I != EEState.getGlobalAddressReverseMap().end()) { |
| StringRef Name = I->second; |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) |
| if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) |
| return GV; |
| } |
| return nullptr; |
| } |
| |
| namespace { |
| class ArgvArray { |
| std::unique_ptr<char[]> Array; |
| std::vector<std::unique_ptr<char[]>> Values; |
| public: |
| /// Turn a vector of strings into a nice argv style array of pointers to null |
| /// terminated strings. |
| void *reset(LLVMContext &C, ExecutionEngine *EE, |
| const std::vector<std::string> &InputArgv); |
| }; |
| } // anonymous namespace |
| void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, |
| const std::vector<std::string> &InputArgv) { |
| Values.clear(); // Free the old contents. |
| Values.reserve(InputArgv.size()); |
| unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
| Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize); |
| |
| LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); |
| Type *SBytePtr = Type::getInt8PtrTy(C); |
| |
| for (unsigned i = 0; i != InputArgv.size(); ++i) { |
| unsigned Size = InputArgv[i].size()+1; |
| auto Dest = std::make_unique<char[]>(Size); |
| LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() |
| << "\n"); |
| |
| std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); |
| Dest[Size-1] = 0; |
| |
| // Endian safe: Array[i] = (PointerTy)Dest; |
| EE->StoreValueToMemory(PTOGV(Dest.get()), |
| (GenericValue*)(&Array[i*PtrSize]), SBytePtr); |
| Values.push_back(std::move(Dest)); |
| } |
| |
| // Null terminate it |
| EE->StoreValueToMemory(PTOGV(nullptr), |
| (GenericValue*)(&Array[InputArgv.size()*PtrSize]), |
| SBytePtr); |
| return Array.get(); |
| } |
| |
| void ExecutionEngine::runStaticConstructorsDestructors(Module &module, |
| bool isDtors) { |
| StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); |
| GlobalVariable *GV = module.getNamedGlobal(Name); |
| |
| // If this global has internal linkage, or if it has a use, then it must be |
| // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
| // this is the case, don't execute any of the global ctors, __main will do |
| // it. |
| if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; |
| |
| // Should be an array of '{ i32, void ()* }' structs. The first value is |
| // the init priority, which we ignore. |
| ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); |
| if (!InitList) |
| return; |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); |
| if (!CS) continue; |
| |
| Constant *FP = CS->getOperand(1); |
| if (FP->isNullValue()) |
| continue; // Found a sentinal value, ignore. |
| |
| // Strip off constant expression casts. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) |
| if (CE->isCast()) |
| FP = CE->getOperand(0); |
| |
| // Execute the ctor/dtor function! |
| if (Function *F = dyn_cast<Function>(FP)) |
| runFunction(F, None); |
| |
| // FIXME: It is marginally lame that we just do nothing here if we see an |
| // entry we don't recognize. It might not be unreasonable for the verifier |
| // to not even allow this and just assert here. |
| } |
| } |
| |
| void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
| // Execute global ctors/dtors for each module in the program. |
| for (std::unique_ptr<Module> &M : Modules) |
| runStaticConstructorsDestructors(*M, isDtors); |
| } |
| |
| #ifndef NDEBUG |
| /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. |
| static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { |
| unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
| for (unsigned i = 0; i < PtrSize; ++i) |
| if (*(i + (uint8_t*)Loc)) |
| return false; |
| return true; |
| } |
| #endif |
| |
| int ExecutionEngine::runFunctionAsMain(Function *Fn, |
| const std::vector<std::string> &argv, |
| const char * const * envp) { |
| std::vector<GenericValue> GVArgs; |
| GenericValue GVArgc; |
| GVArgc.IntVal = APInt(32, argv.size()); |
| |
| // Check main() type |
| unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
| FunctionType *FTy = Fn->getFunctionType(); |
| Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); |
| |
| // Check the argument types. |
| if (NumArgs > 3) |
| report_fatal_error("Invalid number of arguments of main() supplied"); |
| if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) |
| report_fatal_error("Invalid type for third argument of main() supplied"); |
| if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) |
| report_fatal_error("Invalid type for second argument of main() supplied"); |
| if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) |
| report_fatal_error("Invalid type for first argument of main() supplied"); |
| if (!FTy->getReturnType()->isIntegerTy() && |
| !FTy->getReturnType()->isVoidTy()) |
| report_fatal_error("Invalid return type of main() supplied"); |
| |
| ArgvArray CArgv; |
| ArgvArray CEnv; |
| if (NumArgs) { |
| GVArgs.push_back(GVArgc); // Arg #0 = argc. |
| if (NumArgs > 1) { |
| // Arg #1 = argv. |
| GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); |
| assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && |
| "argv[0] was null after CreateArgv"); |
| if (NumArgs > 2) { |
| std::vector<std::string> EnvVars; |
| for (unsigned i = 0; envp[i]; ++i) |
| EnvVars.emplace_back(envp[i]); |
| // Arg #2 = envp. |
| GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); |
| } |
| } |
| } |
| |
| return runFunction(Fn, GVArgs).IntVal.getZExtValue(); |
| } |
| |
| EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} |
| |
| EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) |
| : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), |
| OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr) { |
| // IR module verification is enabled by default in debug builds, and disabled |
| // by default in release builds. |
| #ifndef NDEBUG |
| VerifyModules = true; |
| #else |
| VerifyModules = false; |
| #endif |
| } |
| |
| EngineBuilder::~EngineBuilder() = default; |
| |
| EngineBuilder &EngineBuilder::setMCJITMemoryManager( |
| std::unique_ptr<RTDyldMemoryManager> mcjmm) { |
| auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); |
| MemMgr = SharedMM; |
| Resolver = SharedMM; |
| return *this; |
| } |
| |
| EngineBuilder& |
| EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { |
| MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); |
| return *this; |
| } |
| |
| EngineBuilder & |
| EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { |
| Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); |
| return *this; |
| } |
| |
| ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { |
| std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. |
| |
| // Make sure we can resolve symbols in the program as well. The zero arg |
| // to the function tells DynamicLibrary to load the program, not a library. |
| if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) |
| return nullptr; |
| |
| // If the user specified a memory manager but didn't specify which engine to |
| // create, we assume they only want the JIT, and we fail if they only want |
| // the interpreter. |
| if (MemMgr) { |
| if (WhichEngine & EngineKind::JIT) |
| WhichEngine = EngineKind::JIT; |
| else { |
| if (ErrorStr) |
| *ErrorStr = "Cannot create an interpreter with a memory manager."; |
| return nullptr; |
| } |
| } |
| |
| // Unless the interpreter was explicitly selected or the JIT is not linked, |
| // try making a JIT. |
| if ((WhichEngine & EngineKind::JIT) && TheTM) { |
| if (!TM->getTarget().hasJIT()) { |
| errs() << "WARNING: This target JIT is not designed for the host" |
| << " you are running. If bad things happen, please choose" |
| << " a different -march switch.\n"; |
| } |
| |
| ExecutionEngine *EE = nullptr; |
| if (ExecutionEngine::MCJITCtor) |
| EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), |
| std::move(Resolver), std::move(TheTM)); |
| |
| if (EE) { |
| EE->setVerifyModules(VerifyModules); |
| return EE; |
| } |
| } |
| |
| // If we can't make a JIT and we didn't request one specifically, try making |
| // an interpreter instead. |
| if (WhichEngine & EngineKind::Interpreter) { |
| if (ExecutionEngine::InterpCtor) |
| return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); |
| if (ErrorStr) |
| *ErrorStr = "Interpreter has not been linked in."; |
| return nullptr; |
| } |
| |
| if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { |
| if (ErrorStr) |
| *ErrorStr = "JIT has not been linked in."; |
| } |
| |
| return nullptr; |
| } |
| |
| void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
| if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) |
| return getPointerToFunction(F); |
| |
| std::lock_guard<sys::Mutex> locked(lock); |
| if (void* P = getPointerToGlobalIfAvailable(GV)) |
| return P; |
| |
| // Global variable might have been added since interpreter started. |
| if (GlobalVariable *GVar = |
| const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) |
| emitGlobalVariable(GVar); |
| else |
| llvm_unreachable("Global hasn't had an address allocated yet!"); |
| |
| return getPointerToGlobalIfAvailable(GV); |
| } |
| |
| /// Converts a Constant* into a GenericValue, including handling of |
| /// ConstantExpr values. |
| GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
| // If its undefined, return the garbage. |
| if (isa<UndefValue>(C)) { |
| GenericValue Result; |
| switch (C->getType()->getTypeID()) { |
| default: |
| break; |
| case Type::IntegerTyID: |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| case Type::PPC_FP128TyID: |
| // Although the value is undefined, we still have to construct an APInt |
| // with the correct bit width. |
| Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); |
| break; |
| case Type::StructTyID: { |
| // if the whole struct is 'undef' just reserve memory for the value. |
| if(StructType *STy = dyn_cast<StructType>(C->getType())) { |
| unsigned int elemNum = STy->getNumElements(); |
| Result.AggregateVal.resize(elemNum); |
| for (unsigned int i = 0; i < elemNum; ++i) { |
| Type *ElemTy = STy->getElementType(i); |
| if (ElemTy->isIntegerTy()) |
| Result.AggregateVal[i].IntVal = |
| APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
| else if (ElemTy->isAggregateType()) { |
| const Constant *ElemUndef = UndefValue::get(ElemTy); |
| Result.AggregateVal[i] = getConstantValue(ElemUndef); |
| } |
| } |
| } |
| } |
| break; |
| case Type::ScalableVectorTyID: |
| report_fatal_error( |
| "Scalable vector support not yet implemented in ExecutionEngine"); |
| case Type::FixedVectorTyID: |
| // if the whole vector is 'undef' just reserve memory for the value. |
| auto *VTy = cast<FixedVectorType>(C->getType()); |
| Type *ElemTy = VTy->getElementType(); |
| unsigned int elemNum = VTy->getNumElements(); |
| Result.AggregateVal.resize(elemNum); |
| if (ElemTy->isIntegerTy()) |
| for (unsigned int i = 0; i < elemNum; ++i) |
| Result.AggregateVal[i].IntVal = |
| APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
| break; |
| } |
| return Result; |
| } |
| |
| // Otherwise, if the value is a ConstantExpr... |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| Constant *Op0 = CE->getOperand(0); |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: { |
| // Compute the index |
| GenericValue Result = getConstantValue(Op0); |
| APInt Offset(DL.getPointerSizeInBits(), 0); |
| cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); |
| |
| char* tmp = (char*) Result.PointerVal; |
| Result = PTOGV(tmp + Offset.getSExtValue()); |
| return Result; |
| } |
| case Instruction::Trunc: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| GV.IntVal = GV.IntVal.trunc(BitWidth); |
| return GV; |
| } |
| case Instruction::ZExt: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| GV.IntVal = GV.IntVal.zext(BitWidth); |
| return GV; |
| } |
| case Instruction::SExt: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| GV.IntVal = GV.IntVal.sext(BitWidth); |
| return GV; |
| } |
| case Instruction::FPTrunc: { |
| // FIXME long double |
| GenericValue GV = getConstantValue(Op0); |
| GV.FloatVal = float(GV.DoubleVal); |
| return GV; |
| } |
| case Instruction::FPExt:{ |
| // FIXME long double |
| GenericValue GV = getConstantValue(Op0); |
| GV.DoubleVal = double(GV.FloatVal); |
| return GV; |
| } |
| case Instruction::UIToFP: { |
| GenericValue GV = getConstantValue(Op0); |
| if (CE->getType()->isFloatTy()) |
| GV.FloatVal = float(GV.IntVal.roundToDouble()); |
| else if (CE->getType()->isDoubleTy()) |
| GV.DoubleVal = GV.IntVal.roundToDouble(); |
| else if (CE->getType()->isX86_FP80Ty()) { |
| APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); |
| (void)apf.convertFromAPInt(GV.IntVal, |
| false, |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apf.bitcastToAPInt(); |
| } |
| return GV; |
| } |
| case Instruction::SIToFP: { |
| GenericValue GV = getConstantValue(Op0); |
| if (CE->getType()->isFloatTy()) |
| GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); |
| else if (CE->getType()->isDoubleTy()) |
| GV.DoubleVal = GV.IntVal.signedRoundToDouble(); |
| else if (CE->getType()->isX86_FP80Ty()) { |
| APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); |
| (void)apf.convertFromAPInt(GV.IntVal, |
| true, |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apf.bitcastToAPInt(); |
| } |
| return GV; |
| } |
| case Instruction::FPToUI: // double->APInt conversion handles sign |
| case Instruction::FPToSI: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| if (Op0->getType()->isFloatTy()) |
| GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); |
| else if (Op0->getType()->isDoubleTy()) |
| GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); |
| else if (Op0->getType()->isX86_FP80Ty()) { |
| APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); |
| uint64_t v; |
| bool ignored; |
| (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, |
| CE->getOpcode()==Instruction::FPToSI, |
| APFloat::rmTowardZero, &ignored); |
| GV.IntVal = v; // endian? |
| } |
| return GV; |
| } |
| case Instruction::PtrToInt: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); |
| assert(PtrWidth <= 64 && "Bad pointer width"); |
| GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); |
| uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); |
| GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); |
| return GV; |
| } |
| case Instruction::IntToPtr: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); |
| GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); |
| assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); |
| GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); |
| return GV; |
| } |
| case Instruction::BitCast: { |
| GenericValue GV = getConstantValue(Op0); |
| Type* DestTy = CE->getType(); |
| switch (Op0->getType()->getTypeID()) { |
| default: llvm_unreachable("Invalid bitcast operand"); |
| case Type::IntegerTyID: |
| assert(DestTy->isFloatingPointTy() && "invalid bitcast"); |
| if (DestTy->isFloatTy()) |
| GV.FloatVal = GV.IntVal.bitsToFloat(); |
| else if (DestTy->isDoubleTy()) |
| GV.DoubleVal = GV.IntVal.bitsToDouble(); |
| break; |
| case Type::FloatTyID: |
| assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); |
| GV.IntVal = APInt::floatToBits(GV.FloatVal); |
| break; |
| case Type::DoubleTyID: |
| assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); |
| GV.IntVal = APInt::doubleToBits(GV.DoubleVal); |
| break; |
| case Type::PointerTyID: |
| assert(DestTy->isPointerTy() && "Invalid bitcast"); |
| break; // getConstantValue(Op0) above already converted it |
| } |
| return GV; |
| } |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| GenericValue LHS = getConstantValue(Op0); |
| GenericValue RHS = getConstantValue(CE->getOperand(1)); |
| GenericValue GV; |
| switch (CE->getOperand(0)->getType()->getTypeID()) { |
| default: llvm_unreachable("Bad add type!"); |
| case Type::IntegerTyID: |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid integer opcode"); |
| case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; |
| case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; |
| case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; |
| case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; |
| case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; |
| case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; |
| case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; |
| case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; |
| case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; |
| case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; |
| } |
| break; |
| case Type::FloatTyID: |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid float opcode"); |
| case Instruction::FAdd: |
| GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; |
| case Instruction::FSub: |
| GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; |
| case Instruction::FMul: |
| GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; |
| case Instruction::FDiv: |
| GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; |
| case Instruction::FRem: |
| GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; |
| } |
| break; |
| case Type::DoubleTyID: |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid double opcode"); |
| case Instruction::FAdd: |
| GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; |
| case Instruction::FSub: |
| GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; |
| case Instruction::FMul: |
| GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; |
| case Instruction::FDiv: |
| GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; |
| case Instruction::FRem: |
| GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; |
| } |
| break; |
| case Type::X86_FP80TyID: |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: { |
| const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); |
| APFloat apfLHS = APFloat(Sem, LHS.IntVal); |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid long double opcode"); |
| case Instruction::FAdd: |
| apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FSub: |
| apfLHS.subtract(APFloat(Sem, RHS.IntVal), |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FMul: |
| apfLHS.multiply(APFloat(Sem, RHS.IntVal), |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FDiv: |
| apfLHS.divide(APFloat(Sem, RHS.IntVal), |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FRem: |
| apfLHS.mod(APFloat(Sem, RHS.IntVal)); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| } |
| } |
| break; |
| } |
| return GV; |
| } |
| default: |
| break; |
| } |
| |
| SmallString<256> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "ConstantExpr not handled: " << *CE; |
| report_fatal_error(OS.str()); |
| } |
| |
| // Otherwise, we have a simple constant. |
| GenericValue Result; |
| switch (C->getType()->getTypeID()) { |
| case Type::FloatTyID: |
| Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); |
| break; |
| case Type::DoubleTyID: |
| Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); |
| break; |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| case Type::PPC_FP128TyID: |
| Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); |
| break; |
| case Type::IntegerTyID: |
| Result.IntVal = cast<ConstantInt>(C)->getValue(); |
| break; |
| case Type::PointerTyID: |
| while (auto *A = dyn_cast<GlobalAlias>(C)) { |
| C = A->getAliasee(); |
| } |
| if (isa<ConstantPointerNull>(C)) |
| Result.PointerVal = nullptr; |
| else if (const Function *F = dyn_cast<Function>(C)) |
| Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); |
| else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) |
| Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); |
| else |
| llvm_unreachable("Unknown constant pointer type!"); |
| break; |
| case Type::ScalableVectorTyID: |
| report_fatal_error( |
| "Scalable vector support not yet implemented in ExecutionEngine"); |
| case Type::FixedVectorTyID: { |
| unsigned elemNum; |
| Type* ElemTy; |
| const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); |
| const ConstantVector *CV = dyn_cast<ConstantVector>(C); |
| const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); |
| |
| if (CDV) { |
| elemNum = CDV->getNumElements(); |
| ElemTy = CDV->getElementType(); |
| } else if (CV || CAZ) { |
| auto *VTy = cast<FixedVectorType>(C->getType()); |
| elemNum = VTy->getNumElements(); |
| ElemTy = VTy->getElementType(); |
| } else { |
| llvm_unreachable("Unknown constant vector type!"); |
| } |
| |
| Result.AggregateVal.resize(elemNum); |
| // Check if vector holds floats. |
| if(ElemTy->isFloatTy()) { |
| if (CAZ) { |
| GenericValue floatZero; |
| floatZero.FloatVal = 0.f; |
| std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), |
| floatZero); |
| break; |
| } |
| if(CV) { |
| for (unsigned i = 0; i < elemNum; ++i) |
| if (!isa<UndefValue>(CV->getOperand(i))) |
| Result.AggregateVal[i].FloatVal = cast<ConstantFP>( |
| CV->getOperand(i))->getValueAPF().convertToFloat(); |
| break; |
| } |
| if(CDV) |
| for (unsigned i = 0; i < elemNum; ++i) |
| Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); |
| |
| break; |
| } |
| // Check if vector holds doubles. |
| if (ElemTy->isDoubleTy()) { |
| if (CAZ) { |
| GenericValue doubleZero; |
| doubleZero.DoubleVal = 0.0; |
| std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), |
| doubleZero); |
| break; |
| } |
| if(CV) { |
| for (unsigned i = 0; i < elemNum; ++i) |
| if (!isa<UndefValue>(CV->getOperand(i))) |
| Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( |
| CV->getOperand(i))->getValueAPF().convertToDouble(); |
| break; |
| } |
| if(CDV) |
| for (unsigned i = 0; i < elemNum; ++i) |
| Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); |
| |
| break; |
| } |
| // Check if vector holds integers. |
| if (ElemTy->isIntegerTy()) { |
| if (CAZ) { |
| GenericValue intZero; |
| intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); |
| std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), |
| intZero); |
| break; |
| } |
| if(CV) { |
| for (unsigned i = 0; i < elemNum; ++i) |
| if (!isa<UndefValue>(CV->getOperand(i))) |
| Result.AggregateVal[i].IntVal = cast<ConstantInt>( |
| CV->getOperand(i))->getValue(); |
| else { |
| Result.AggregateVal[i].IntVal = |
| APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); |
| } |
| break; |
| } |
| if(CDV) |
| for (unsigned i = 0; i < elemNum; ++i) |
| Result.AggregateVal[i].IntVal = APInt( |
| CDV->getElementType()->getPrimitiveSizeInBits(), |
| CDV->getElementAsInteger(i)); |
| |
| break; |
| } |
| llvm_unreachable("Unknown constant pointer type!"); |
| } break; |
| |
| default: |
| SmallString<256> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "ERROR: Constant unimplemented for type: " << *C->getType(); |
| report_fatal_error(OS.str()); |
| } |
| |
| return Result; |
| } |
| |
| void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, |
| GenericValue *Ptr, Type *Ty) { |
| const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); |
| |
| switch (Ty->getTypeID()) { |
| default: |
| dbgs() << "Cannot store value of type " << *Ty << "!\n"; |
| break; |
| case Type::IntegerTyID: |
| StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); |
| break; |
| case Type::FloatTyID: |
| *((float*)Ptr) = Val.FloatVal; |
| break; |
| case Type::DoubleTyID: |
| *((double*)Ptr) = Val.DoubleVal; |
| break; |
| case Type::X86_FP80TyID: |
| memcpy(Ptr, Val.IntVal.getRawData(), 10); |
| break; |
| case Type::PointerTyID: |
| // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. |
| if (StoreBytes != sizeof(PointerTy)) |
| memset(&(Ptr->PointerVal), 0, StoreBytes); |
| |
| *((PointerTy*)Ptr) = Val.PointerVal; |
| break; |
| case Type::FixedVectorTyID: |
| case Type::ScalableVectorTyID: |
| for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { |
| if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) |
| *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; |
| if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) |
| *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; |
| if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { |
| unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; |
| StoreIntToMemory(Val.AggregateVal[i].IntVal, |
| (uint8_t*)Ptr + numOfBytes*i, numOfBytes); |
| } |
| } |
| break; |
| } |
| |
| if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) |
| // Host and target are different endian - reverse the stored bytes. |
| std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); |
| } |
| |
| /// FIXME: document |
| /// |
| void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, |
| GenericValue *Ptr, |
| Type *Ty) { |
| const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); |
| |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: |
| // An APInt with all words initially zero. |
| Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); |
| LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); |
| break; |
| case Type::FloatTyID: |
| Result.FloatVal = *((float*)Ptr); |
| break; |
| case Type::DoubleTyID: |
| Result.DoubleVal = *((double*)Ptr); |
| break; |
| case Type::PointerTyID: |
| Result.PointerVal = *((PointerTy*)Ptr); |
| break; |
| case Type::X86_FP80TyID: { |
| // This is endian dependent, but it will only work on x86 anyway. |
| // FIXME: Will not trap if loading a signaling NaN. |
| uint64_t y[2]; |
| memcpy(y, Ptr, 10); |
| Result.IntVal = APInt(80, y); |
| break; |
| } |
| case Type::ScalableVectorTyID: |
| report_fatal_error( |
| "Scalable vector support not yet implemented in ExecutionEngine"); |
| case Type::FixedVectorTyID: { |
| auto *VT = cast<FixedVectorType>(Ty); |
| Type *ElemT = VT->getElementType(); |
| const unsigned numElems = VT->getNumElements(); |
| if (ElemT->isFloatTy()) { |
| Result.AggregateVal.resize(numElems); |
| for (unsigned i = 0; i < numElems; ++i) |
| Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); |
| } |
| if (ElemT->isDoubleTy()) { |
| Result.AggregateVal.resize(numElems); |
| for (unsigned i = 0; i < numElems; ++i) |
| Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); |
| } |
| if (ElemT->isIntegerTy()) { |
| GenericValue intZero; |
| const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); |
| intZero.IntVal = APInt(elemBitWidth, 0); |
| Result.AggregateVal.resize(numElems, intZero); |
| for (unsigned i = 0; i < numElems; ++i) |
| LoadIntFromMemory(Result.AggregateVal[i].IntVal, |
| (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); |
| } |
| break; |
| } |
| default: |
| SmallString<256> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "Cannot load value of type " << *Ty << "!"; |
| report_fatal_error(OS.str()); |
| } |
| } |
| |
| void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
| LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); |
| LLVM_DEBUG(Init->dump()); |
| if (isa<UndefValue>(Init)) |
| return; |
| |
| if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { |
| unsigned ElementSize = |
| getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); |
| for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); |
| return; |
| } |
| |
| if (isa<ConstantAggregateZero>(Init)) { |
| memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); |
| return; |
| } |
| |
| if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { |
| unsigned ElementSize = |
| getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); |
| for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); |
| return; |
| } |
| |
| if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { |
| const StructLayout *SL = |
| getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); |
| for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); |
| return; |
| } |
| |
| if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(Init)) { |
| // CDS is already laid out in host memory order. |
| StringRef Data = CDS->getRawDataValues(); |
| memcpy(Addr, Data.data(), Data.size()); |
| return; |
| } |
| |
| if (Init->getType()->isFirstClassType()) { |
| GenericValue Val = getConstantValue(Init); |
| StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); |
| llvm_unreachable("Unknown constant type to initialize memory with!"); |
| } |
| |
| /// EmitGlobals - Emit all of the global variables to memory, storing their |
| /// addresses into GlobalAddress. This must make sure to copy the contents of |
| /// their initializers into the memory. |
| void ExecutionEngine::emitGlobals() { |
| // Loop over all of the global variables in the program, allocating the memory |
| // to hold them. If there is more than one module, do a prepass over globals |
| // to figure out how the different modules should link together. |
| std::map<std::pair<std::string, Type*>, |
| const GlobalValue*> LinkedGlobalsMap; |
| |
| if (Modules.size() != 1) { |
| for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| Module &M = *Modules[m]; |
| for (const auto &GV : M.globals()) { |
| if (GV.hasLocalLinkage() || GV.isDeclaration() || |
| GV.hasAppendingLinkage() || !GV.hasName()) |
| continue;// Ignore external globals and globals with internal linkage. |
| |
| const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( |
| std::string(GV.getName()), GV.getType())]; |
| |
| // If this is the first time we've seen this global, it is the canonical |
| // version. |
| if (!GVEntry) { |
| GVEntry = &GV; |
| continue; |
| } |
| |
| // If the existing global is strong, never replace it. |
| if (GVEntry->hasExternalLinkage()) |
| continue; |
| |
| // Otherwise, we know it's linkonce/weak, replace it if this is a strong |
| // symbol. FIXME is this right for common? |
| if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) |
| GVEntry = &GV; |
| } |
| } |
| } |
| |
| std::vector<const GlobalValue*> NonCanonicalGlobals; |
| for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| Module &M = *Modules[m]; |
| for (const auto &GV : M.globals()) { |
| // In the multi-module case, see what this global maps to. |
| if (!LinkedGlobalsMap.empty()) { |
| if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
| std::string(GV.getName()), GV.getType())]) { |
| // If something else is the canonical global, ignore this one. |
| if (GVEntry != &GV) { |
| NonCanonicalGlobals.push_back(&GV); |
| continue; |
| } |
| } |
| } |
| |
| if (!GV.isDeclaration()) { |
| addGlobalMapping(&GV, getMemoryForGV(&GV)); |
| } else { |
| // External variable reference. Try to use the dynamic loader to |
| // get a pointer to it. |
| if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( |
| std::string(GV.getName()))) |
| addGlobalMapping(&GV, SymAddr); |
| else { |
| report_fatal_error("Could not resolve external global address: " |
| +GV.getName()); |
| } |
| } |
| } |
| |
| // If there are multiple modules, map the non-canonical globals to their |
| // canonical location. |
| if (!NonCanonicalGlobals.empty()) { |
| for (const GlobalValue *GV : NonCanonicalGlobals) { |
| const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( |
| std::string(GV->getName()), GV->getType())]; |
| void *Ptr = getPointerToGlobalIfAvailable(CGV); |
| assert(Ptr && "Canonical global wasn't codegen'd!"); |
| addGlobalMapping(GV, Ptr); |
| } |
| } |
| |
| // Now that all of the globals are set up in memory, loop through them all |
| // and initialize their contents. |
| for (const auto &GV : M.globals()) { |
| if (!GV.isDeclaration()) { |
| if (!LinkedGlobalsMap.empty()) { |
| if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
| std::string(GV.getName()), GV.getType())]) |
| if (GVEntry != &GV) // Not the canonical variable. |
| continue; |
| } |
| emitGlobalVariable(&GV); |
| } |
| } |
| } |
| } |
| |
| // EmitGlobalVariable - This method emits the specified global variable to the |
| // address specified in GlobalAddresses, or allocates new memory if it's not |
| // already in the map. |
| void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { |
| void *GA = getPointerToGlobalIfAvailable(GV); |
| |
| if (!GA) { |
| // If it's not already specified, allocate memory for the global. |
| GA = getMemoryForGV(GV); |
| |
| // If we failed to allocate memory for this global, return. |
| if (!GA) return; |
| |
| addGlobalMapping(GV, GA); |
| } |
| |
| // Don't initialize if it's thread local, let the client do it. |
| if (!GV->isThreadLocal()) |
| InitializeMemory(GV->getInitializer(), GA); |
| |
| Type *ElTy = GV->getValueType(); |
| size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); |
| NumInitBytes += (unsigned)GVSize; |
| ++NumGlobals; |
| } |