| //===- DWARFUnit.cpp ------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/DebugInfo/DWARF/DWARFUnit.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" |
| #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDie.h" |
| #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" |
| #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" |
| #include "llvm/Support/DataExtractor.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/Path.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdio> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace dwarf; |
| |
| void DWARFUnitVector::addUnitsForSection(DWARFContext &C, |
| const DWARFSection &Section, |
| DWARFSectionKind SectionKind) { |
| const DWARFObject &D = C.getDWARFObj(); |
| addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(), |
| &D.getLocSection(), D.getStrSection(), |
| D.getStrOffsetsSection(), &D.getAddrSection(), |
| D.getLineSection(), D.isLittleEndian(), false, false, |
| SectionKind); |
| } |
| |
| void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C, |
| const DWARFSection &DWOSection, |
| DWARFSectionKind SectionKind, |
| bool Lazy) { |
| const DWARFObject &D = C.getDWARFObj(); |
| addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(), |
| &D.getLocDWOSection(), D.getStrDWOSection(), |
| D.getStrOffsetsDWOSection(), &D.getAddrSection(), |
| D.getLineDWOSection(), C.isLittleEndian(), true, Lazy, |
| SectionKind); |
| } |
| |
| void DWARFUnitVector::addUnitsImpl( |
| DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section, |
| const DWARFDebugAbbrev *DA, const DWARFSection *RS, |
| const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, |
| const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, |
| bool Lazy, DWARFSectionKind SectionKind) { |
| DWARFDataExtractor Data(Obj, Section, LE, 0); |
| // Lazy initialization of Parser, now that we have all section info. |
| if (!Parser) { |
| Parser = [=, &Context, &Obj, &Section, &SOS, |
| &LS](uint64_t Offset, DWARFSectionKind SectionKind, |
| const DWARFSection *CurSection, |
| const DWARFUnitIndex::Entry *IndexEntry) |
| -> std::unique_ptr<DWARFUnit> { |
| const DWARFSection &InfoSection = CurSection ? *CurSection : Section; |
| DWARFDataExtractor Data(Obj, InfoSection, LE, 0); |
| if (!Data.isValidOffset(Offset)) |
| return nullptr; |
| DWARFUnitHeader Header; |
| if (!Header.extract(Context, Data, &Offset, SectionKind)) |
| return nullptr; |
| if (!IndexEntry && IsDWO) { |
| const DWARFUnitIndex &Index = getDWARFUnitIndex( |
| Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO); |
| IndexEntry = Index.getFromOffset(Header.getOffset()); |
| } |
| if (IndexEntry && !Header.applyIndexEntry(IndexEntry)) |
| return nullptr; |
| std::unique_ptr<DWARFUnit> U; |
| if (Header.isTypeUnit()) |
| U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA, |
| RS, LocSection, SS, SOS, AOS, LS, |
| LE, IsDWO, *this); |
| else |
| U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header, |
| DA, RS, LocSection, SS, SOS, |
| AOS, LS, LE, IsDWO, *this); |
| return U; |
| }; |
| } |
| if (Lazy) |
| return; |
| // Find a reasonable insertion point within the vector. We skip over |
| // (a) units from a different section, (b) units from the same section |
| // but with lower offset-within-section. This keeps units in order |
| // within a section, although not necessarily within the object file, |
| // even if we do lazy parsing. |
| auto I = this->begin(); |
| uint64_t Offset = 0; |
| while (Data.isValidOffset(Offset)) { |
| if (I != this->end() && |
| (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) { |
| ++I; |
| continue; |
| } |
| auto U = Parser(Offset, SectionKind, &Section, nullptr); |
| // If parsing failed, we're done with this section. |
| if (!U) |
| break; |
| Offset = U->getNextUnitOffset(); |
| I = std::next(this->insert(I, std::move(U))); |
| } |
| } |
| |
| DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) { |
| auto I = std::upper_bound(begin(), end(), Unit, |
| [](const std::unique_ptr<DWARFUnit> &LHS, |
| const std::unique_ptr<DWARFUnit> &RHS) { |
| return LHS->getOffset() < RHS->getOffset(); |
| }); |
| return this->insert(I, std::move(Unit))->get(); |
| } |
| |
| DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const { |
| auto end = begin() + getNumInfoUnits(); |
| auto *CU = |
| std::upper_bound(begin(), end, Offset, |
| [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { |
| return LHS < RHS->getNextUnitOffset(); |
| }); |
| if (CU != end && (*CU)->getOffset() <= Offset) |
| return CU->get(); |
| return nullptr; |
| } |
| |
| DWARFUnit * |
| DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) { |
| const auto *CUOff = E.getContribution(DW_SECT_INFO); |
| if (!CUOff) |
| return nullptr; |
| |
| auto Offset = CUOff->Offset; |
| auto end = begin() + getNumInfoUnits(); |
| |
| auto *CU = |
| std::upper_bound(begin(), end, CUOff->Offset, |
| [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { |
| return LHS < RHS->getNextUnitOffset(); |
| }); |
| if (CU != end && (*CU)->getOffset() <= Offset) |
| return CU->get(); |
| |
| if (!Parser) |
| return nullptr; |
| |
| auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E); |
| if (!U) |
| U = nullptr; |
| |
| auto *NewCU = U.get(); |
| this->insert(CU, std::move(U)); |
| ++NumInfoUnits; |
| return NewCU; |
| } |
| |
| DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, |
| const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, |
| const DWARFSection *RS, const DWARFSection *LocSection, |
| StringRef SS, const DWARFSection &SOS, |
| const DWARFSection *AOS, const DWARFSection &LS, bool LE, |
| bool IsDWO, const DWARFUnitVector &UnitVector) |
| : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA), |
| RangeSection(RS), LineSection(LS), StringSection(SS), |
| StringOffsetSection(SOS), AddrOffsetSection(AOS), isLittleEndian(LE), |
| IsDWO(IsDWO), UnitVector(UnitVector) { |
| clear(); |
| } |
| |
| DWARFUnit::~DWARFUnit() = default; |
| |
| DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { |
| return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian, |
| getAddressByteSize()); |
| } |
| |
| Optional<object::SectionedAddress> |
| DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const { |
| if (!AddrOffsetSectionBase) { |
| auto R = Context.info_section_units(); |
| // Surprising if a DWO file has more than one skeleton unit in it - this |
| // probably shouldn't be valid, but if a use case is found, here's where to |
| // support it (probably have to linearly search for the matching skeleton CU |
| // here) |
| if (IsDWO && hasSingleElement(R)) |
| return (*R.begin())->getAddrOffsetSectionItem(Index); |
| |
| return None; |
| } |
| |
| uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize(); |
| if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) |
| return None; |
| DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, |
| isLittleEndian, getAddressByteSize()); |
| uint64_t Section; |
| uint64_t Address = DA.getRelocatedAddress(&Offset, &Section); |
| return {{Address, Section}}; |
| } |
| |
| Optional<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const { |
| if (!StringOffsetsTableContribution) |
| return None; |
| unsigned ItemSize = getDwarfStringOffsetsByteSize(); |
| uint64_t Offset = getStringOffsetsBase() + Index * ItemSize; |
| if (StringOffsetSection.Data.size() < Offset + ItemSize) |
| return None; |
| DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, |
| isLittleEndian, 0); |
| return DA.getRelocatedValue(ItemSize, &Offset); |
| } |
| |
| bool DWARFUnitHeader::extract(DWARFContext &Context, |
| const DWARFDataExtractor &debug_info, |
| uint64_t *offset_ptr, |
| DWARFSectionKind SectionKind) { |
| Offset = *offset_ptr; |
| Error Err = Error::success(); |
| IndexEntry = nullptr; |
| std::tie(Length, FormParams.Format) = |
| debug_info.getInitialLength(offset_ptr, &Err); |
| FormParams.Version = debug_info.getU16(offset_ptr, &Err); |
| if (FormParams.Version >= 5) { |
| UnitType = debug_info.getU8(offset_ptr, &Err); |
| FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); |
| AbbrOffset = debug_info.getRelocatedValue( |
| FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); |
| } else { |
| AbbrOffset = debug_info.getRelocatedValue( |
| FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); |
| FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); |
| // Fake a unit type based on the section type. This isn't perfect, |
| // but distinguishing compile and type units is generally enough. |
| if (SectionKind == DW_SECT_EXT_TYPES) |
| UnitType = DW_UT_type; |
| else |
| UnitType = DW_UT_compile; |
| } |
| if (isTypeUnit()) { |
| TypeHash = debug_info.getU64(offset_ptr, &Err); |
| TypeOffset = debug_info.getUnsigned( |
| offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err); |
| } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton) |
| DWOId = debug_info.getU64(offset_ptr, &Err); |
| |
| if (Err) { |
| Context.getWarningHandler()(joinErrors( |
| createStringError( |
| errc::invalid_argument, |
| "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset), |
| std::move(Err))); |
| return false; |
| } |
| |
| // Header fields all parsed, capture the size of this unit header. |
| assert(*offset_ptr - Offset <= 255 && "unexpected header size"); |
| Size = uint8_t(*offset_ptr - Offset); |
| uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength(); |
| |
| if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) { |
| Context.getWarningHandler()( |
| createStringError(errc::invalid_argument, |
| "DWARF unit from offset 0x%8.8" PRIx64 " incl. " |
| "to offset 0x%8.8" PRIx64 " excl. " |
| "extends past section size 0x%8.8zx", |
| Offset, NextCUOffset, debug_info.size())); |
| return false; |
| } |
| |
| if (!DWARFContext::isSupportedVersion(getVersion())) { |
| Context.getWarningHandler()(createStringError( |
| errc::invalid_argument, |
| "DWARF unit at offset 0x%8.8" PRIx64 " " |
| "has unsupported version %" PRIu16 ", supported are 2-%u", |
| Offset, getVersion(), DWARFContext::getMaxSupportedVersion())); |
| return false; |
| } |
| |
| // Type offset is unit-relative; should be after the header and before |
| // the end of the current unit. |
| if (isTypeUnit() && TypeOffset < Size) { |
| Context.getWarningHandler()( |
| createStringError(errc::invalid_argument, |
| "DWARF type unit at offset " |
| "0x%8.8" PRIx64 " " |
| "has its relocated type_offset 0x%8.8" PRIx64 " " |
| "pointing inside the header", |
| Offset, Offset + TypeOffset)); |
| return false; |
| } |
| if (isTypeUnit() && |
| TypeOffset >= getUnitLengthFieldByteSize() + getLength()) { |
| Context.getWarningHandler()(createStringError( |
| errc::invalid_argument, |
| "DWARF type unit from offset 0x%8.8" PRIx64 " incl. " |
| "to offset 0x%8.8" PRIx64 " excl. has its " |
| "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end", |
| Offset, NextCUOffset, Offset + TypeOffset)); |
| return false; |
| } |
| |
| if (Error SizeErr = DWARFContext::checkAddressSizeSupported( |
| getAddressByteSize(), errc::invalid_argument, |
| "DWARF unit at offset 0x%8.8" PRIx64, Offset)) { |
| Context.getWarningHandler()(std::move(SizeErr)); |
| return false; |
| } |
| |
| // Keep track of the highest DWARF version we encounter across all units. |
| Context.setMaxVersionIfGreater(getVersion()); |
| return true; |
| } |
| |
| bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) { |
| assert(Entry); |
| assert(!IndexEntry); |
| IndexEntry = Entry; |
| if (AbbrOffset) |
| return false; |
| auto *UnitContrib = IndexEntry->getContribution(); |
| if (!UnitContrib || |
| UnitContrib->Length != (getLength() + getUnitLengthFieldByteSize())) |
| return false; |
| auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV); |
| if (!AbbrEntry) |
| return false; |
| AbbrOffset = AbbrEntry->Offset; |
| return true; |
| } |
| |
| Error DWARFUnit::extractRangeList(uint64_t RangeListOffset, |
| DWARFDebugRangeList &RangeList) const { |
| // Require that compile unit is extracted. |
| assert(!DieArray.empty()); |
| DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, |
| isLittleEndian, getAddressByteSize()); |
| uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; |
| return RangeList.extract(RangesData, &ActualRangeListOffset); |
| } |
| |
| void DWARFUnit::clear() { |
| Abbrevs = nullptr; |
| BaseAddr.reset(); |
| RangeSectionBase = 0; |
| LocSectionBase = 0; |
| AddrOffsetSectionBase = None; |
| SU = nullptr; |
| clearDIEs(false); |
| DWO.reset(); |
| } |
| |
| const char *DWARFUnit::getCompilationDir() { |
| return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); |
| } |
| |
| void DWARFUnit::extractDIEsToVector( |
| bool AppendCUDie, bool AppendNonCUDies, |
| std::vector<DWARFDebugInfoEntry> &Dies) const { |
| if (!AppendCUDie && !AppendNonCUDies) |
| return; |
| |
| // Set the offset to that of the first DIE and calculate the start of the |
| // next compilation unit header. |
| uint64_t DIEOffset = getOffset() + getHeaderSize(); |
| uint64_t NextCUOffset = getNextUnitOffset(); |
| DWARFDebugInfoEntry DIE; |
| DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); |
| // The end offset has been already checked by DWARFUnitHeader::extract. |
| assert(DebugInfoData.isValidOffset(NextCUOffset - 1)); |
| std::vector<uint32_t> Parents; |
| std::vector<uint32_t> PrevSiblings; |
| bool IsCUDie = true; |
| |
| assert( |
| ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) && |
| "Dies array is not empty"); |
| |
| // Fill Parents and Siblings stacks with initial value. |
| Parents.push_back(UINT32_MAX); |
| if (!AppendCUDie) |
| Parents.push_back(0); |
| PrevSiblings.push_back(0); |
| |
| // Start to extract dies. |
| do { |
| assert(Parents.size() > 0 && "Empty parents stack"); |
| assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) && |
| "Wrong parent index"); |
| |
| // Extract die. Stop if any error occured. |
| if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, |
| Parents.back())) |
| break; |
| |
| // If previous sibling is remembered then update it`s SiblingIdx field. |
| if (PrevSiblings.back() > 0) { |
| assert(PrevSiblings.back() < Dies.size() && |
| "Previous sibling index is out of Dies boundaries"); |
| Dies[PrevSiblings.back()].setSiblingIdx(Dies.size()); |
| } |
| |
| // Store die into the Dies vector. |
| if (IsCUDie) { |
| if (AppendCUDie) |
| Dies.push_back(DIE); |
| if (!AppendNonCUDies) |
| break; |
| // The average bytes per DIE entry has been seen to be |
| // around 14-20 so let's pre-reserve the needed memory for |
| // our DIE entries accordingly. |
| Dies.reserve(Dies.size() + getDebugInfoSize() / 14); |
| } else { |
| // Remember last previous sibling. |
| PrevSiblings.back() = Dies.size(); |
| |
| Dies.push_back(DIE); |
| } |
| |
| // Check for new children scope. |
| if (const DWARFAbbreviationDeclaration *AbbrDecl = |
| DIE.getAbbreviationDeclarationPtr()) { |
| if (AbbrDecl->hasChildren()) { |
| if (AppendCUDie || !IsCUDie) { |
| assert(Dies.size() > 0 && "Dies does not contain any die"); |
| Parents.push_back(Dies.size() - 1); |
| PrevSiblings.push_back(0); |
| } |
| } else if (IsCUDie) |
| // Stop if we have single compile unit die w/o children. |
| break; |
| } else { |
| // NULL DIE: finishes current children scope. |
| Parents.pop_back(); |
| PrevSiblings.pop_back(); |
| } |
| |
| if (IsCUDie) |
| IsCUDie = false; |
| |
| // Stop when compile unit die is removed from the parents stack. |
| } while (Parents.size() > 1); |
| } |
| |
| void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { |
| if (Error e = tryExtractDIEsIfNeeded(CUDieOnly)) |
| Context.getRecoverableErrorHandler()(std::move(e)); |
| } |
| |
| Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) { |
| if ((CUDieOnly && !DieArray.empty()) || |
| DieArray.size() > 1) |
| return Error::success(); // Already parsed. |
| |
| bool HasCUDie = !DieArray.empty(); |
| extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); |
| |
| if (DieArray.empty()) |
| return Error::success(); |
| |
| // If CU DIE was just parsed, copy several attribute values from it. |
| if (HasCUDie) |
| return Error::success(); |
| |
| DWARFDie UnitDie(this, &DieArray[0]); |
| if (Optional<uint64_t> DWOId = toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id))) |
| Header.setDWOId(*DWOId); |
| if (!IsDWO) { |
| assert(AddrOffsetSectionBase == None); |
| assert(RangeSectionBase == 0); |
| assert(LocSectionBase == 0); |
| AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base)); |
| if (!AddrOffsetSectionBase) |
| AddrOffsetSectionBase = |
| toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base)); |
| RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); |
| LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0); |
| } |
| |
| // In general, in DWARF v5 and beyond we derive the start of the unit's |
| // contribution to the string offsets table from the unit DIE's |
| // DW_AT_str_offsets_base attribute. Split DWARF units do not use this |
| // attribute, so we assume that there is a contribution to the string |
| // offsets table starting at offset 0 of the debug_str_offsets.dwo section. |
| // In both cases we need to determine the format of the contribution, |
| // which may differ from the unit's format. |
| DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, |
| isLittleEndian, 0); |
| if (IsDWO || getVersion() >= 5) { |
| auto StringOffsetOrError = |
| IsDWO ? determineStringOffsetsTableContributionDWO(DA) |
| : determineStringOffsetsTableContribution(DA); |
| if (!StringOffsetOrError) |
| return createStringError(errc::invalid_argument, |
| "invalid reference to or invalid content in " |
| ".debug_str_offsets[.dwo]: " + |
| toString(StringOffsetOrError.takeError())); |
| |
| StringOffsetsTableContribution = *StringOffsetOrError; |
| } |
| |
| // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to |
| // describe address ranges. |
| if (getVersion() >= 5) { |
| // In case of DWP, the base offset from the index has to be added. |
| if (IsDWO) { |
| uint64_t ContributionBaseOffset = 0; |
| if (auto *IndexEntry = Header.getIndexEntry()) |
| if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS)) |
| ContributionBaseOffset = Contrib->Offset; |
| setRangesSection( |
| &Context.getDWARFObj().getRnglistsDWOSection(), |
| ContributionBaseOffset + |
| DWARFListTableHeader::getHeaderSize(Header.getFormat())); |
| } else |
| setRangesSection(&Context.getDWARFObj().getRnglistsSection(), |
| toSectionOffset(UnitDie.find(DW_AT_rnglists_base), |
| DWARFListTableHeader::getHeaderSize( |
| Header.getFormat()))); |
| } |
| |
| if (IsDWO) { |
| // If we are reading a package file, we need to adjust the location list |
| // data based on the index entries. |
| StringRef Data = Header.getVersion() >= 5 |
| ? Context.getDWARFObj().getLoclistsDWOSection().Data |
| : Context.getDWARFObj().getLocDWOSection().Data; |
| if (auto *IndexEntry = Header.getIndexEntry()) |
| if (const auto *C = IndexEntry->getContribution( |
| Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC)) |
| Data = Data.substr(C->Offset, C->Length); |
| |
| DWARFDataExtractor DWARFData(Data, isLittleEndian, getAddressByteSize()); |
| LocTable = |
| std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion()); |
| LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat()); |
| } else if (getVersion() >= 5) { |
| LocTable = std::make_unique<DWARFDebugLoclists>( |
| DWARFDataExtractor(Context.getDWARFObj(), |
| Context.getDWARFObj().getLoclistsSection(), |
| isLittleEndian, getAddressByteSize()), |
| getVersion()); |
| } else { |
| LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor( |
| Context.getDWARFObj(), Context.getDWARFObj().getLocSection(), |
| isLittleEndian, getAddressByteSize())); |
| } |
| |
| // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for |
| // skeleton CU DIE, so that DWARF users not aware of it are not broken. |
| return Error::success(); |
| } |
| |
| bool DWARFUnit::parseDWO() { |
| if (IsDWO) |
| return false; |
| if (DWO.get()) |
| return false; |
| DWARFDie UnitDie = getUnitDIE(); |
| if (!UnitDie) |
| return false; |
| auto DWOFileName = getVersion() >= 5 |
| ? dwarf::toString(UnitDie.find(DW_AT_dwo_name)) |
| : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); |
| if (!DWOFileName) |
| return false; |
| auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); |
| SmallString<16> AbsolutePath; |
| if (sys::path::is_relative(*DWOFileName) && CompilationDir && |
| *CompilationDir) { |
| sys::path::append(AbsolutePath, *CompilationDir); |
| } |
| sys::path::append(AbsolutePath, *DWOFileName); |
| auto DWOId = getDWOId(); |
| if (!DWOId) |
| return false; |
| auto DWOContext = Context.getDWOContext(AbsolutePath); |
| if (!DWOContext) |
| return false; |
| |
| DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); |
| if (!DWOCU) |
| return false; |
| DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU); |
| DWO->setSkeletonUnit(this); |
| // Share .debug_addr and .debug_ranges section with compile unit in .dwo |
| if (AddrOffsetSectionBase) |
| DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase); |
| if (getVersion() == 4) { |
| auto DWORangesBase = UnitDie.getRangesBaseAttribute(); |
| DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0); |
| } |
| |
| return true; |
| } |
| |
| void DWARFUnit::clearDIEs(bool KeepCUDie) { |
| // Do not use resize() + shrink_to_fit() to free memory occupied by dies. |
| // shrink_to_fit() is a *non-binding* request to reduce capacity() to size(). |
| // It depends on the implementation whether the request is fulfilled. |
| // Create a new vector with a small capacity and assign it to the DieArray to |
| // have previous contents freed. |
| DieArray = (KeepCUDie && !DieArray.empty()) |
| ? std::vector<DWARFDebugInfoEntry>({DieArray[0]}) |
| : std::vector<DWARFDebugInfoEntry>(); |
| } |
| |
| Expected<DWARFAddressRangesVector> |
| DWARFUnit::findRnglistFromOffset(uint64_t Offset) { |
| if (getVersion() <= 4) { |
| DWARFDebugRangeList RangeList; |
| if (Error E = extractRangeList(Offset, RangeList)) |
| return std::move(E); |
| return RangeList.getAbsoluteRanges(getBaseAddress()); |
| } |
| DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, |
| isLittleEndian, Header.getAddressByteSize()); |
| DWARFDebugRnglistTable RnglistTable; |
| auto RangeListOrError = RnglistTable.findList(RangesData, Offset); |
| if (RangeListOrError) |
| return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this); |
| return RangeListOrError.takeError(); |
| } |
| |
| Expected<DWARFAddressRangesVector> |
| DWARFUnit::findRnglistFromIndex(uint32_t Index) { |
| if (auto Offset = getRnglistOffset(Index)) |
| return findRnglistFromOffset(*Offset); |
| |
| return createStringError(errc::invalid_argument, |
| "invalid range list table index %d (possibly " |
| "missing the entire range list table)", |
| Index); |
| } |
| |
| Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() { |
| DWARFDie UnitDie = getUnitDIE(); |
| if (!UnitDie) |
| return createStringError(errc::invalid_argument, "No unit DIE"); |
| |
| // First, check if unit DIE describes address ranges for the whole unit. |
| auto CUDIERangesOrError = UnitDie.getAddressRanges(); |
| if (!CUDIERangesOrError) |
| return createStringError(errc::invalid_argument, |
| "decoding address ranges: %s", |
| toString(CUDIERangesOrError.takeError()).c_str()); |
| return *CUDIERangesOrError; |
| } |
| |
| Expected<DWARFLocationExpressionsVector> |
| DWARFUnit::findLoclistFromOffset(uint64_t Offset) { |
| DWARFLocationExpressionsVector Result; |
| |
| Error InterpretationError = Error::success(); |
| |
| Error ParseError = getLocationTable().visitAbsoluteLocationList( |
| Offset, getBaseAddress(), |
| [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); }, |
| [&](Expected<DWARFLocationExpression> L) { |
| if (L) |
| Result.push_back(std::move(*L)); |
| else |
| InterpretationError = |
| joinErrors(L.takeError(), std::move(InterpretationError)); |
| return !InterpretationError; |
| }); |
| |
| if (ParseError || InterpretationError) |
| return joinErrors(std::move(ParseError), std::move(InterpretationError)); |
| |
| return Result; |
| } |
| |
| void DWARFUnit::updateAddressDieMap(DWARFDie Die) { |
| if (Die.isSubroutineDIE()) { |
| auto DIERangesOrError = Die.getAddressRanges(); |
| if (DIERangesOrError) { |
| for (const auto &R : DIERangesOrError.get()) { |
| // Ignore 0-sized ranges. |
| if (R.LowPC == R.HighPC) |
| continue; |
| auto B = AddrDieMap.upper_bound(R.LowPC); |
| if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { |
| // The range is a sub-range of existing ranges, we need to split the |
| // existing range. |
| if (R.HighPC < B->second.first) |
| AddrDieMap[R.HighPC] = B->second; |
| if (R.LowPC > B->first) |
| AddrDieMap[B->first].first = R.LowPC; |
| } |
| AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); |
| } |
| } else |
| llvm::consumeError(DIERangesOrError.takeError()); |
| } |
| // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to |
| // simplify the logic to update AddrDieMap. The child's range will always |
| // be equal or smaller than the parent's range. With this assumption, when |
| // adding one range into the map, it will at most split a range into 3 |
| // sub-ranges. |
| for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) |
| updateAddressDieMap(Child); |
| } |
| |
| DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { |
| extractDIEsIfNeeded(false); |
| if (AddrDieMap.empty()) |
| updateAddressDieMap(getUnitDIE()); |
| auto R = AddrDieMap.upper_bound(Address); |
| if (R == AddrDieMap.begin()) |
| return DWARFDie(); |
| // upper_bound's previous item contains Address. |
| --R; |
| if (Address >= R->second.first) |
| return DWARFDie(); |
| return R->second.second; |
| } |
| |
| void |
| DWARFUnit::getInlinedChainForAddress(uint64_t Address, |
| SmallVectorImpl<DWARFDie> &InlinedChain) { |
| assert(InlinedChain.empty()); |
| // Try to look for subprogram DIEs in the DWO file. |
| parseDWO(); |
| // First, find the subroutine that contains the given address (the leaf |
| // of inlined chain). |
| DWARFDie SubroutineDIE = |
| (DWO ? *DWO : *this).getSubroutineForAddress(Address); |
| |
| while (SubroutineDIE) { |
| if (SubroutineDIE.isSubprogramDIE()) { |
| InlinedChain.push_back(SubroutineDIE); |
| return; |
| } |
| if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine) |
| InlinedChain.push_back(SubroutineDIE); |
| SubroutineDIE = SubroutineDIE.getParent(); |
| } |
| } |
| |
| const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, |
| DWARFSectionKind Kind) { |
| if (Kind == DW_SECT_INFO) |
| return Context.getCUIndex(); |
| assert(Kind == DW_SECT_EXT_TYPES); |
| return Context.getTUIndex(); |
| } |
| |
| DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { |
| if (!Die) |
| return DWARFDie(); |
| |
| if (Optional<uint32_t> ParentIdx = Die->getParentIdx()) { |
| assert(*ParentIdx < DieArray.size() && |
| "ParentIdx is out of DieArray boundaries"); |
| return DWARFDie(this, &DieArray[*ParentIdx]); |
| } |
| |
| return DWARFDie(); |
| } |
| |
| DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { |
| if (!Die) |
| return DWARFDie(); |
| |
| if (Optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) { |
| assert(*SiblingIdx < DieArray.size() && |
| "SiblingIdx is out of DieArray boundaries"); |
| return DWARFDie(this, &DieArray[*SiblingIdx]); |
| } |
| |
| return DWARFDie(); |
| } |
| |
| DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) { |
| if (!Die) |
| return DWARFDie(); |
| |
| Optional<uint32_t> ParentIdx = Die->getParentIdx(); |
| if (!ParentIdx) |
| // Die is a root die, there is no previous sibling. |
| return DWARFDie(); |
| |
| assert(*ParentIdx < DieArray.size() && |
| "ParentIdx is out of DieArray boundaries"); |
| assert(getDIEIndex(Die) > 0 && "Die is a root die"); |
| |
| uint32_t PrevDieIdx = getDIEIndex(Die) - 1; |
| if (PrevDieIdx == *ParentIdx) |
| // Immediately previous node is parent, there is no previous sibling. |
| return DWARFDie(); |
| |
| while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) { |
| PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx(); |
| |
| assert(PrevDieIdx < DieArray.size() && |
| "PrevDieIdx is out of DieArray boundaries"); |
| assert(PrevDieIdx >= *ParentIdx && |
| "PrevDieIdx is not a child of parent of Die"); |
| } |
| |
| return DWARFDie(this, &DieArray[PrevDieIdx]); |
| } |
| |
| DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { |
| if (!Die->hasChildren()) |
| return DWARFDie(); |
| |
| // TODO: Instead of checking here for invalid die we might reject |
| // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). |
| // We do not want access out of bounds when parsing corrupted debug data. |
| size_t I = getDIEIndex(Die) + 1; |
| if (I >= DieArray.size()) |
| return DWARFDie(); |
| return DWARFDie(this, &DieArray[I]); |
| } |
| |
| DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) { |
| if (!Die->hasChildren()) |
| return DWARFDie(); |
| |
| if (Optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) { |
| assert(*SiblingIdx < DieArray.size() && |
| "SiblingIdx is out of DieArray boundaries"); |
| assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null && |
| "Bad end of children marker"); |
| return DWARFDie(this, &DieArray[*SiblingIdx - 1]); |
| } |
| |
| // If SiblingIdx is set for non-root dies we could be sure that DWARF is |
| // correct and "end of children marker" must be found. For root die we do not |
| // have such a guarantee(parsing root die might be stopped if "end of children |
| // marker" is missing, SiblingIdx is always zero for root die). That is why we |
| // do not use assertion for checking for "end of children marker" for root |
| // die. |
| |
| // TODO: Instead of checking here for invalid die we might reject |
| // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). |
| if (getDIEIndex(Die) == 0 && DieArray.size() > 1 && |
| DieArray.back().getTag() == dwarf::DW_TAG_null) { |
| // For the unit die we might take last item from DieArray. |
| assert(getDIEIndex(Die) == getDIEIndex(getUnitDIE()) && "Bad unit die"); |
| return DWARFDie(this, &DieArray.back()); |
| } |
| |
| return DWARFDie(); |
| } |
| |
| const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { |
| if (!Abbrevs) |
| Abbrevs = Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset()); |
| return Abbrevs; |
| } |
| |
| llvm::Optional<object::SectionedAddress> DWARFUnit::getBaseAddress() { |
| if (BaseAddr) |
| return BaseAddr; |
| |
| DWARFDie UnitDie = getUnitDIE(); |
| Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); |
| BaseAddr = toSectionedAddress(PC); |
| return BaseAddr; |
| } |
| |
| Expected<StrOffsetsContributionDescriptor> |
| StrOffsetsContributionDescriptor::validateContributionSize( |
| DWARFDataExtractor &DA) { |
| uint8_t EntrySize = getDwarfOffsetByteSize(); |
| // In order to ensure that we don't read a partial record at the end of |
| // the section we validate for a multiple of the entry size. |
| uint64_t ValidationSize = alignTo(Size, EntrySize); |
| // Guard against overflow. |
| if (ValidationSize >= Size) |
| if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) |
| return *this; |
| return createStringError(errc::invalid_argument, "length exceeds section size"); |
| } |
| |
| // Look for a DWARF64-formatted contribution to the string offsets table |
| // starting at a given offset and record it in a descriptor. |
| static Expected<StrOffsetsContributionDescriptor> |
| parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { |
| if (!DA.isValidOffsetForDataOfSize(Offset, 16)) |
| return createStringError(errc::invalid_argument, "section offset exceeds section size"); |
| |
| if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64) |
| return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit"); |
| |
| uint64_t Size = DA.getU64(&Offset); |
| uint8_t Version = DA.getU16(&Offset); |
| (void)DA.getU16(&Offset); // padding |
| // The encoded length includes the 2-byte version field and the 2-byte |
| // padding, so we need to subtract them out when we populate the descriptor. |
| return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64); |
| } |
| |
| // Look for a DWARF32-formatted contribution to the string offsets table |
| // starting at a given offset and record it in a descriptor. |
| static Expected<StrOffsetsContributionDescriptor> |
| parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { |
| if (!DA.isValidOffsetForDataOfSize(Offset, 8)) |
| return createStringError(errc::invalid_argument, "section offset exceeds section size"); |
| |
| uint32_t ContributionSize = DA.getU32(&Offset); |
| if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved) |
| return createStringError(errc::invalid_argument, "invalid length"); |
| |
| uint8_t Version = DA.getU16(&Offset); |
| (void)DA.getU16(&Offset); // padding |
| // The encoded length includes the 2-byte version field and the 2-byte |
| // padding, so we need to subtract them out when we populate the descriptor. |
| return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version, |
| DWARF32); |
| } |
| |
| static Expected<StrOffsetsContributionDescriptor> |
| parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA, |
| llvm::dwarf::DwarfFormat Format, |
| uint64_t Offset) { |
| StrOffsetsContributionDescriptor Desc; |
| switch (Format) { |
| case dwarf::DwarfFormat::DWARF64: { |
| if (Offset < 16) |
| return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix"); |
| auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16); |
| if (!DescOrError) |
| return DescOrError.takeError(); |
| Desc = *DescOrError; |
| break; |
| } |
| case dwarf::DwarfFormat::DWARF32: { |
| if (Offset < 8) |
| return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix"); |
| auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8); |
| if (!DescOrError) |
| return DescOrError.takeError(); |
| Desc = *DescOrError; |
| break; |
| } |
| } |
| return Desc.validateContributionSize(DA); |
| } |
| |
| Expected<Optional<StrOffsetsContributionDescriptor>> |
| DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) { |
| assert(!IsDWO); |
| auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base)); |
| if (!OptOffset) |
| return None; |
| auto DescOrError = |
| parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset); |
| if (!DescOrError) |
| return DescOrError.takeError(); |
| return *DescOrError; |
| } |
| |
| Expected<Optional<StrOffsetsContributionDescriptor>> |
| DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor & DA) { |
| assert(IsDWO); |
| uint64_t Offset = 0; |
| auto IndexEntry = Header.getIndexEntry(); |
| const auto *C = |
| IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr; |
| if (C) |
| Offset = C->Offset; |
| if (getVersion() >= 5) { |
| if (DA.getData().data() == nullptr) |
| return None; |
| Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16; |
| // Look for a valid contribution at the given offset. |
| auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset); |
| if (!DescOrError) |
| return DescOrError.takeError(); |
| return *DescOrError; |
| } |
| // Prior to DWARF v5, we derive the contribution size from the |
| // index table (in a package file). In a .dwo file it is simply |
| // the length of the string offsets section. |
| StrOffsetsContributionDescriptor Desc; |
| if (C) |
| Desc = StrOffsetsContributionDescriptor(C->Offset, C->Length, 4, |
| Header.getFormat()); |
| else if (!IndexEntry && !StringOffsetSection.Data.empty()) |
| Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(), |
| 4, Header.getFormat()); |
| else |
| return None; |
| auto DescOrError = Desc.validateContributionSize(DA); |
| if (!DescOrError) |
| return DescOrError.takeError(); |
| return *DescOrError; |
| } |
| |
| Optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) { |
| DataExtractor RangesData(RangeSection->Data, isLittleEndian, |
| getAddressByteSize()); |
| DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, |
| isLittleEndian, 0); |
| if (Optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry( |
| RangesData, RangeSectionBase, getFormat(), Index)) |
| return *Off + RangeSectionBase; |
| return None; |
| } |
| |
| Optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) { |
| if (Optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry( |
| LocTable->getData(), LocSectionBase, getFormat(), Index)) |
| return *Off + LocSectionBase; |
| return None; |
| } |