| //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Pass to verify generated machine code. The following is checked: |
| // |
| // Operand counts: All explicit operands must be present. |
| // |
| // Register classes: All physical and virtual register operands must be |
| // compatible with the register class required by the instruction descriptor. |
| // |
| // Register live intervals: Registers must be defined only once, and must be |
| // defined before use. |
| // |
| // The machine code verifier is enabled with the command-line option |
| // -verify-machineinstrs. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervalCalc.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LiveStacks.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| struct MachineVerifier { |
| MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} |
| |
| unsigned verify(const MachineFunction &MF); |
| |
| Pass *const PASS; |
| const char *Banner; |
| const MachineFunction *MF; |
| const TargetMachine *TM; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const MachineRegisterInfo *MRI; |
| |
| unsigned foundErrors; |
| |
| // Avoid querying the MachineFunctionProperties for each operand. |
| bool isFunctionRegBankSelected; |
| bool isFunctionSelected; |
| |
| using RegVector = SmallVector<Register, 16>; |
| using RegMaskVector = SmallVector<const uint32_t *, 4>; |
| using RegSet = DenseSet<Register>; |
| using RegMap = DenseMap<Register, const MachineInstr *>; |
| using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; |
| |
| const MachineInstr *FirstNonPHI; |
| const MachineInstr *FirstTerminator; |
| BlockSet FunctionBlocks; |
| |
| BitVector regsReserved; |
| RegSet regsLive; |
| RegVector regsDefined, regsDead, regsKilled; |
| RegMaskVector regMasks; |
| |
| SlotIndex lastIndex; |
| |
| // Add Reg and any sub-registers to RV |
| void addRegWithSubRegs(RegVector &RV, Register Reg) { |
| RV.push_back(Reg); |
| if (Reg.isPhysical()) |
| append_range(RV, TRI->subregs(Reg.asMCReg())); |
| } |
| |
| struct BBInfo { |
| // Is this MBB reachable from the MF entry point? |
| bool reachable = false; |
| |
| // Vregs that must be live in because they are used without being |
| // defined. Map value is the user. vregsLiveIn doesn't include regs |
| // that only are used by PHI nodes. |
| RegMap vregsLiveIn; |
| |
| // Regs killed in MBB. They may be defined again, and will then be in both |
| // regsKilled and regsLiveOut. |
| RegSet regsKilled; |
| |
| // Regs defined in MBB and live out. Note that vregs passing through may |
| // be live out without being mentioned here. |
| RegSet regsLiveOut; |
| |
| // Vregs that pass through MBB untouched. This set is disjoint from |
| // regsKilled and regsLiveOut. |
| RegSet vregsPassed; |
| |
| // Vregs that must pass through MBB because they are needed by a successor |
| // block. This set is disjoint from regsLiveOut. |
| RegSet vregsRequired; |
| |
| // Set versions of block's predecessor and successor lists. |
| BlockSet Preds, Succs; |
| |
| BBInfo() = default; |
| |
| // Add register to vregsRequired if it belongs there. Return true if |
| // anything changed. |
| bool addRequired(Register Reg) { |
| if (!Reg.isVirtual()) |
| return false; |
| if (regsLiveOut.count(Reg)) |
| return false; |
| return vregsRequired.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addRequired(const RegSet &RS) { |
| bool Changed = false; |
| for (Register Reg : RS) |
| Changed |= addRequired(Reg); |
| return Changed; |
| } |
| |
| // Same for a full map. |
| bool addRequired(const RegMap &RM) { |
| bool Changed = false; |
| for (const auto &I : RM) |
| Changed |= addRequired(I.first); |
| return Changed; |
| } |
| |
| // Live-out registers are either in regsLiveOut or vregsPassed. |
| bool isLiveOut(Register Reg) const { |
| return regsLiveOut.count(Reg) || vregsPassed.count(Reg); |
| } |
| }; |
| |
| // Extra register info per MBB. |
| DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; |
| |
| bool isReserved(Register Reg) { |
| return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); |
| } |
| |
| bool isAllocatable(Register Reg) const { |
| return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && |
| !regsReserved.test(Reg.id()); |
| } |
| |
| // Analysis information if available |
| LiveVariables *LiveVars; |
| LiveIntervals *LiveInts; |
| LiveStacks *LiveStks; |
| SlotIndexes *Indexes; |
| |
| void visitMachineFunctionBefore(); |
| void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
| void visitMachineBundleBefore(const MachineInstr *MI); |
| |
| /// Verify that all of \p MI's virtual register operands are scalars. |
| /// \returns True if all virtual register operands are scalar. False |
| /// otherwise. |
| bool verifyAllRegOpsScalar(const MachineInstr &MI, |
| const MachineRegisterInfo &MRI); |
| bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); |
| void verifyPreISelGenericInstruction(const MachineInstr *MI); |
| void visitMachineInstrBefore(const MachineInstr *MI); |
| void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
| void visitMachineBundleAfter(const MachineInstr *MI); |
| void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
| void visitMachineFunctionAfter(); |
| |
| void report(const char *msg, const MachineFunction *MF); |
| void report(const char *msg, const MachineBasicBlock *MBB); |
| void report(const char *msg, const MachineInstr *MI); |
| void report(const char *msg, const MachineOperand *MO, unsigned MONum, |
| LLT MOVRegType = LLT{}); |
| void report(const Twine &Msg, const MachineInstr *MI); |
| |
| void report_context(const LiveInterval &LI) const; |
| void report_context(const LiveRange &LR, Register VRegUnit, |
| LaneBitmask LaneMask) const; |
| void report_context(const LiveRange::Segment &S) const; |
| void report_context(const VNInfo &VNI) const; |
| void report_context(SlotIndex Pos) const; |
| void report_context(MCPhysReg PhysReg) const; |
| void report_context_liverange(const LiveRange &LR) const; |
| void report_context_lanemask(LaneBitmask LaneMask) const; |
| void report_context_vreg(Register VReg) const; |
| void report_context_vreg_regunit(Register VRegOrUnit) const; |
| |
| void verifyInlineAsm(const MachineInstr *MI); |
| |
| void checkLiveness(const MachineOperand *MO, unsigned MONum); |
| void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, |
| SlotIndex UseIdx, const LiveRange &LR, |
| Register VRegOrUnit, |
| LaneBitmask LaneMask = LaneBitmask::getNone()); |
| void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, |
| SlotIndex DefIdx, const LiveRange &LR, |
| Register VRegOrUnit, bool SubRangeCheck = false, |
| LaneBitmask LaneMask = LaneBitmask::getNone()); |
| |
| void markReachable(const MachineBasicBlock *MBB); |
| void calcRegsPassed(); |
| void checkPHIOps(const MachineBasicBlock &MBB); |
| |
| void calcRegsRequired(); |
| void verifyLiveVariables(); |
| void verifyLiveIntervals(); |
| void verifyLiveInterval(const LiveInterval&); |
| void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, |
| LaneBitmask); |
| void verifyLiveRangeSegment(const LiveRange &, |
| const LiveRange::const_iterator I, Register, |
| LaneBitmask); |
| void verifyLiveRange(const LiveRange &, Register, |
| LaneBitmask LaneMask = LaneBitmask::getNone()); |
| |
| void verifyStackFrame(); |
| |
| void verifySlotIndexes() const; |
| void verifyProperties(const MachineFunction &MF); |
| }; |
| |
| struct MachineVerifierPass : public MachineFunctionPass { |
| static char ID; // Pass ID, replacement for typeid |
| |
| const std::string Banner; |
| |
| MachineVerifierPass(std::string banner = std::string()) |
| : MachineFunctionPass(ID), Banner(std::move(banner)) { |
| initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| // Skip functions that have known verification problems. |
| // FIXME: Remove this mechanism when all problematic passes have been |
| // fixed. |
| if (MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::FailsVerification)) |
| return false; |
| |
| unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); |
| if (FoundErrors) |
| report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); |
| return false; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char MachineVerifierPass::ID = 0; |
| |
| INITIALIZE_PASS(MachineVerifierPass, "machineverifier", |
| "Verify generated machine code", false, false) |
| |
| FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { |
| return new MachineVerifierPass(Banner); |
| } |
| |
| void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, |
| const std::string &Banner, |
| const MachineFunction &MF) { |
| // TODO: Use MFAM after porting below analyses. |
| // LiveVariables *LiveVars; |
| // LiveIntervals *LiveInts; |
| // LiveStacks *LiveStks; |
| // SlotIndexes *Indexes; |
| unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); |
| if (FoundErrors) |
| report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); |
| } |
| |
| bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) |
| const { |
| MachineFunction &MF = const_cast<MachineFunction&>(*this); |
| unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); |
| if (AbortOnErrors && FoundErrors) |
| report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); |
| return FoundErrors == 0; |
| } |
| |
| void MachineVerifier::verifySlotIndexes() const { |
| if (Indexes == nullptr) |
| return; |
| |
| // Ensure the IdxMBB list is sorted by slot indexes. |
| SlotIndex Last; |
| for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), |
| E = Indexes->MBBIndexEnd(); I != E; ++I) { |
| assert(!Last.isValid() || I->first > Last); |
| Last = I->first; |
| } |
| } |
| |
| void MachineVerifier::verifyProperties(const MachineFunction &MF) { |
| // If a pass has introduced virtual registers without clearing the |
| // NoVRegs property (or set it without allocating the vregs) |
| // then report an error. |
| if (MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoVRegs) && |
| MRI->getNumVirtRegs()) |
| report("Function has NoVRegs property but there are VReg operands", &MF); |
| } |
| |
| unsigned MachineVerifier::verify(const MachineFunction &MF) { |
| foundErrors = 0; |
| |
| this->MF = &MF; |
| TM = &MF.getTarget(); |
| TII = MF.getSubtarget().getInstrInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| |
| const bool isFunctionFailedISel = MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::FailedISel); |
| |
| // If we're mid-GlobalISel and we already triggered the fallback path then |
| // it's expected that the MIR is somewhat broken but that's ok since we'll |
| // reset it and clear the FailedISel attribute in ResetMachineFunctions. |
| if (isFunctionFailedISel) |
| return foundErrors; |
| |
| isFunctionRegBankSelected = MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::RegBankSelected); |
| isFunctionSelected = MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::Selected); |
| |
| LiveVars = nullptr; |
| LiveInts = nullptr; |
| LiveStks = nullptr; |
| Indexes = nullptr; |
| if (PASS) { |
| LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); |
| // We don't want to verify LiveVariables if LiveIntervals is available. |
| if (!LiveInts) |
| LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); |
| LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); |
| Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); |
| } |
| |
| verifySlotIndexes(); |
| |
| verifyProperties(MF); |
| |
| visitMachineFunctionBefore(); |
| for (const MachineBasicBlock &MBB : MF) { |
| visitMachineBasicBlockBefore(&MBB); |
| // Keep track of the current bundle header. |
| const MachineInstr *CurBundle = nullptr; |
| // Do we expect the next instruction to be part of the same bundle? |
| bool InBundle = false; |
| |
| for (const MachineInstr &MI : MBB.instrs()) { |
| if (MI.getParent() != &MBB) { |
| report("Bad instruction parent pointer", &MBB); |
| errs() << "Instruction: " << MI; |
| continue; |
| } |
| |
| // Check for consistent bundle flags. |
| if (InBundle && !MI.isBundledWithPred()) |
| report("Missing BundledPred flag, " |
| "BundledSucc was set on predecessor", |
| &MI); |
| if (!InBundle && MI.isBundledWithPred()) |
| report("BundledPred flag is set, " |
| "but BundledSucc not set on predecessor", |
| &MI); |
| |
| // Is this a bundle header? |
| if (!MI.isInsideBundle()) { |
| if (CurBundle) |
| visitMachineBundleAfter(CurBundle); |
| CurBundle = &MI; |
| visitMachineBundleBefore(CurBundle); |
| } else if (!CurBundle) |
| report("No bundle header", &MI); |
| visitMachineInstrBefore(&MI); |
| for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
| const MachineOperand &Op = MI.getOperand(I); |
| if (Op.getParent() != &MI) { |
| // Make sure to use correct addOperand / RemoveOperand / ChangeTo |
| // functions when replacing operands of a MachineInstr. |
| report("Instruction has operand with wrong parent set", &MI); |
| } |
| |
| visitMachineOperand(&Op, I); |
| } |
| |
| // Was this the last bundled instruction? |
| InBundle = MI.isBundledWithSucc(); |
| } |
| if (CurBundle) |
| visitMachineBundleAfter(CurBundle); |
| if (InBundle) |
| report("BundledSucc flag set on last instruction in block", &MBB.back()); |
| visitMachineBasicBlockAfter(&MBB); |
| } |
| visitMachineFunctionAfter(); |
| |
| // Clean up. |
| regsLive.clear(); |
| regsDefined.clear(); |
| regsDead.clear(); |
| regsKilled.clear(); |
| regMasks.clear(); |
| MBBInfoMap.clear(); |
| |
| return foundErrors; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
| assert(MF); |
| errs() << '\n'; |
| if (!foundErrors++) { |
| if (Banner) |
| errs() << "# " << Banner << '\n'; |
| if (LiveInts != nullptr) |
| LiveInts->print(errs()); |
| else |
| MF->print(errs(), Indexes); |
| } |
| errs() << "*** Bad machine code: " << msg << " ***\n" |
| << "- function: " << MF->getName() << "\n"; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
| assert(MBB); |
| report(msg, MBB->getParent()); |
| errs() << "- basic block: " << printMBBReference(*MBB) << ' ' |
| << MBB->getName() << " (" << (const void *)MBB << ')'; |
| if (Indexes) |
| errs() << " [" << Indexes->getMBBStartIdx(MBB) |
| << ';' << Indexes->getMBBEndIdx(MBB) << ')'; |
| errs() << '\n'; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
| assert(MI); |
| report(msg, MI->getParent()); |
| errs() << "- instruction: "; |
| if (Indexes && Indexes->hasIndex(*MI)) |
| errs() << Indexes->getInstructionIndex(*MI) << '\t'; |
| MI->print(errs(), /*IsStandalone=*/true); |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineOperand *MO, |
| unsigned MONum, LLT MOVRegType) { |
| assert(MO); |
| report(msg, MO->getParent()); |
| errs() << "- operand " << MONum << ": "; |
| MO->print(errs(), MOVRegType, TRI); |
| errs() << "\n"; |
| } |
| |
| void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { |
| report(Msg.str().c_str(), MI); |
| } |
| |
| void MachineVerifier::report_context(SlotIndex Pos) const { |
| errs() << "- at: " << Pos << '\n'; |
| } |
| |
| void MachineVerifier::report_context(const LiveInterval &LI) const { |
| errs() << "- interval: " << LI << '\n'; |
| } |
| |
| void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, |
| LaneBitmask LaneMask) const { |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| } |
| |
| void MachineVerifier::report_context(const LiveRange::Segment &S) const { |
| errs() << "- segment: " << S << '\n'; |
| } |
| |
| void MachineVerifier::report_context(const VNInfo &VNI) const { |
| errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; |
| } |
| |
| void MachineVerifier::report_context_liverange(const LiveRange &LR) const { |
| errs() << "- liverange: " << LR << '\n'; |
| } |
| |
| void MachineVerifier::report_context(MCPhysReg PReg) const { |
| errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; |
| } |
| |
| void MachineVerifier::report_context_vreg(Register VReg) const { |
| errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; |
| } |
| |
| void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { |
| if (Register::isVirtualRegister(VRegOrUnit)) { |
| report_context_vreg(VRegOrUnit); |
| } else { |
| errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; |
| } |
| } |
| |
| void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { |
| errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; |
| } |
| |
| void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| if (!MInfo.reachable) { |
| MInfo.reachable = true; |
| for (const MachineBasicBlock *Succ : MBB->successors()) |
| markReachable(Succ); |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionBefore() { |
| lastIndex = SlotIndex(); |
| regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() |
| : TRI->getReservedRegs(*MF); |
| |
| if (!MF->empty()) |
| markReachable(&MF->front()); |
| |
| // Build a set of the basic blocks in the function. |
| FunctionBlocks.clear(); |
| for (const auto &MBB : *MF) { |
| FunctionBlocks.insert(&MBB); |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| |
| MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); |
| if (MInfo.Preds.size() != MBB.pred_size()) |
| report("MBB has duplicate entries in its predecessor list.", &MBB); |
| |
| MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); |
| if (MInfo.Succs.size() != MBB.succ_size()) |
| report("MBB has duplicate entries in its successor list.", &MBB); |
| } |
| |
| // Check that the register use lists are sane. |
| MRI->verifyUseLists(); |
| |
| if (!MF->empty()) |
| verifyStackFrame(); |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
| FirstTerminator = nullptr; |
| FirstNonPHI = nullptr; |
| |
| if (!MF->getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { |
| // If this block has allocatable physical registers live-in, check that |
| // it is an entry block or landing pad. |
| for (const auto &LI : MBB->liveins()) { |
| if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && |
| MBB->getIterator() != MBB->getParent()->begin()) { |
| report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); |
| report_context(LI.PhysReg); |
| } |
| } |
| } |
| |
| // Count the number of landing pad successors. |
| SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; |
| for (const auto *succ : MBB->successors()) { |
| if (succ->isEHPad()) |
| LandingPadSuccs.insert(succ); |
| if (!FunctionBlocks.count(succ)) |
| report("MBB has successor that isn't part of the function.", MBB); |
| if (!MBBInfoMap[succ].Preds.count(MBB)) { |
| report("Inconsistent CFG", MBB); |
| errs() << "MBB is not in the predecessor list of the successor " |
| << printMBBReference(*succ) << ".\n"; |
| } |
| } |
| |
| // Check the predecessor list. |
| for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| if (!FunctionBlocks.count(Pred)) |
| report("MBB has predecessor that isn't part of the function.", MBB); |
| if (!MBBInfoMap[Pred].Succs.count(MBB)) { |
| report("Inconsistent CFG", MBB); |
| errs() << "MBB is not in the successor list of the predecessor " |
| << printMBBReference(*Pred) << ".\n"; |
| } |
| } |
| |
| const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| const Function &F = MF->getFunction(); |
| if (LandingPadSuccs.size() > 1 && |
| !(AsmInfo && |
| AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && |
| BB && isa<SwitchInst>(BB->getTerminator())) && |
| !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) |
| report("MBB has more than one landing pad successor", MBB); |
| |
| // Call analyzeBranch. If it succeeds, there several more conditions to check. |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, |
| Cond)) { |
| // Ok, analyzeBranch thinks it knows what's going on with this block. Let's |
| // check whether its answers match up with reality. |
| if (!TBB && !FBB) { |
| // Block falls through to its successor. |
| if (!MBB->empty() && MBB->back().isBarrier() && |
| !TII->isPredicated(MBB->back())) { |
| report("MBB exits via unconditional fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } |
| if (!Cond.empty()) { |
| report("MBB exits via unconditional fall-through but has a condition!", |
| MBB); |
| } |
| } else if (TBB && !FBB && Cond.empty()) { |
| // Block unconditionally branches somewhere. |
| if (MBB->empty()) { |
| report("MBB exits via unconditional branch but doesn't contain " |
| "any instructions!", MBB); |
| } else if (!MBB->back().isBarrier()) { |
| report("MBB exits via unconditional branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via unconditional branch but the branch isn't a " |
| "terminator instruction!", MBB); |
| } |
| } else if (TBB && !FBB && !Cond.empty()) { |
| // Block conditionally branches somewhere, otherwise falls through. |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/fall-through but doesn't " |
| "contain any instructions!", MBB); |
| } else if (MBB->back().isBarrier()) { |
| report("MBB exits via conditional branch/fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via conditional branch/fall-through but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| } else if (TBB && FBB) { |
| // Block conditionally branches somewhere, otherwise branches |
| // somewhere else. |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/branch but doesn't " |
| "contain any instructions!", MBB); |
| } else if (!MBB->back().isBarrier()) { |
| report("MBB exits via conditional branch/branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via conditional branch/branch but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| if (Cond.empty()) { |
| report("MBB exits via conditional branch/branch but there's no " |
| "condition!", MBB); |
| } |
| } else { |
| report("analyzeBranch returned invalid data!", MBB); |
| } |
| |
| // Now check that the successors match up with the answers reported by |
| // analyzeBranch. |
| if (TBB && !MBB->isSuccessor(TBB)) |
| report("MBB exits via jump or conditional branch, but its target isn't a " |
| "CFG successor!", |
| MBB); |
| if (FBB && !MBB->isSuccessor(FBB)) |
| report("MBB exits via conditional branch, but its target isn't a CFG " |
| "successor!", |
| MBB); |
| |
| // There might be a fallthrough to the next block if there's either no |
| // unconditional true branch, or if there's a condition, and one of the |
| // branches is missing. |
| bool Fallthrough = !TBB || (!Cond.empty() && !FBB); |
| |
| // A conditional fallthrough must be an actual CFG successor, not |
| // unreachable. (Conversely, an unconditional fallthrough might not really |
| // be a successor, because the block might end in unreachable.) |
| if (!Cond.empty() && !FBB) { |
| MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); |
| if (MBBI == MF->end()) { |
| report("MBB conditionally falls through out of function!", MBB); |
| } else if (!MBB->isSuccessor(&*MBBI)) |
| report("MBB exits via conditional branch/fall-through but the CFG " |
| "successors don't match the actual successors!", |
| MBB); |
| } |
| |
| // Verify that there aren't any extra un-accounted-for successors. |
| for (const MachineBasicBlock *SuccMBB : MBB->successors()) { |
| // If this successor is one of the branch targets, it's okay. |
| if (SuccMBB == TBB || SuccMBB == FBB) |
| continue; |
| // If we might have a fallthrough, and the successor is the fallthrough |
| // block, that's also ok. |
| if (Fallthrough && SuccMBB == MBB->getNextNode()) |
| continue; |
| // Also accept successors which are for exception-handling or might be |
| // inlineasm_br targets. |
| if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) |
| continue; |
| report("MBB has unexpected successors which are not branch targets, " |
| "fallthrough, EHPads, or inlineasm_br targets.", |
| MBB); |
| } |
| } |
| |
| regsLive.clear(); |
| if (MRI->tracksLiveness()) { |
| for (const auto &LI : MBB->liveins()) { |
| if (!Register::isPhysicalRegister(LI.PhysReg)) { |
| report("MBB live-in list contains non-physical register", MBB); |
| continue; |
| } |
| for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) |
| regsLive.insert(SubReg); |
| } |
| } |
| |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| BitVector PR = MFI.getPristineRegs(*MF); |
| for (unsigned I : PR.set_bits()) { |
| for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) |
| regsLive.insert(SubReg); |
| } |
| |
| regsKilled.clear(); |
| regsDefined.clear(); |
| |
| if (Indexes) |
| lastIndex = Indexes->getMBBStartIdx(MBB); |
| } |
| |
| // This function gets called for all bundle headers, including normal |
| // stand-alone unbundled instructions. |
| void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { |
| if (Indexes && Indexes->hasIndex(*MI)) { |
| SlotIndex idx = Indexes->getInstructionIndex(*MI); |
| if (!(idx > lastIndex)) { |
| report("Instruction index out of order", MI); |
| errs() << "Last instruction was at " << lastIndex << '\n'; |
| } |
| lastIndex = idx; |
| } |
| |
| // Ensure non-terminators don't follow terminators. |
| if (MI->isTerminator()) { |
| if (!FirstTerminator) |
| FirstTerminator = MI; |
| } else if (FirstTerminator) { |
| report("Non-terminator instruction after the first terminator", MI); |
| errs() << "First terminator was:\t" << *FirstTerminator; |
| } |
| } |
| |
| // The operands on an INLINEASM instruction must follow a template. |
| // Verify that the flag operands make sense. |
| void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { |
| // The first two operands on INLINEASM are the asm string and global flags. |
| if (MI->getNumOperands() < 2) { |
| report("Too few operands on inline asm", MI); |
| return; |
| } |
| if (!MI->getOperand(0).isSymbol()) |
| report("Asm string must be an external symbol", MI); |
| if (!MI->getOperand(1).isImm()) |
| report("Asm flags must be an immediate", MI); |
| // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, |
| // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, |
| // and Extra_IsConvergent = 32. |
| if (!isUInt<6>(MI->getOperand(1).getImm())) |
| report("Unknown asm flags", &MI->getOperand(1), 1); |
| |
| static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); |
| |
| unsigned OpNo = InlineAsm::MIOp_FirstOperand; |
| unsigned NumOps; |
| for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { |
| const MachineOperand &MO = MI->getOperand(OpNo); |
| // There may be implicit ops after the fixed operands. |
| if (!MO.isImm()) |
| break; |
| NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); |
| } |
| |
| if (OpNo > MI->getNumOperands()) |
| report("Missing operands in last group", MI); |
| |
| // An optional MDNode follows the groups. |
| if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) |
| ++OpNo; |
| |
| // All trailing operands must be implicit registers. |
| for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { |
| const MachineOperand &MO = MI->getOperand(OpNo); |
| if (!MO.isReg() || !MO.isImplicit()) |
| report("Expected implicit register after groups", &MO, OpNo); |
| } |
| } |
| |
| bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, |
| const MachineRegisterInfo &MRI) { |
| if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { |
| if (!Op.isReg()) |
| return false; |
| const auto Reg = Op.getReg(); |
| if (Reg.isPhysical()) |
| return false; |
| return !MRI.getType(Reg).isScalar(); |
| })) |
| return true; |
| report("All register operands must have scalar types", &MI); |
| return false; |
| } |
| |
| /// Check that types are consistent when two operands need to have the same |
| /// number of vector elements. |
| /// \return true if the types are valid. |
| bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, |
| const MachineInstr *MI) { |
| if (Ty0.isVector() != Ty1.isVector()) { |
| report("operand types must be all-vector or all-scalar", MI); |
| // Generally we try to report as many issues as possible at once, but in |
| // this case it's not clear what should we be comparing the size of the |
| // scalar with: the size of the whole vector or its lane. Instead of |
| // making an arbitrary choice and emitting not so helpful message, let's |
| // avoid the extra noise and stop here. |
| return false; |
| } |
| |
| if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { |
| report("operand types must preserve number of vector elements", MI); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { |
| if (isFunctionSelected) |
| report("Unexpected generic instruction in a Selected function", MI); |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MI->getNumOperands(); |
| |
| // Branches must reference a basic block if they are not indirect |
| if (MI->isBranch() && !MI->isIndirectBranch()) { |
| bool HasMBB = false; |
| for (const MachineOperand &Op : MI->operands()) { |
| if (Op.isMBB()) { |
| HasMBB = true; |
| break; |
| } |
| } |
| |
| if (!HasMBB) { |
| report("Branch instruction is missing a basic block operand or " |
| "isIndirectBranch property", |
| MI); |
| } |
| } |
| |
| // Check types. |
| SmallVector<LLT, 4> Types; |
| for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); |
| I != E; ++I) { |
| if (!MCID.OpInfo[I].isGenericType()) |
| continue; |
| // Generic instructions specify type equality constraints between some of |
| // their operands. Make sure these are consistent. |
| size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); |
| Types.resize(std::max(TypeIdx + 1, Types.size())); |
| |
| const MachineOperand *MO = &MI->getOperand(I); |
| if (!MO->isReg()) { |
| report("generic instruction must use register operands", MI); |
| continue; |
| } |
| |
| LLT OpTy = MRI->getType(MO->getReg()); |
| // Don't report a type mismatch if there is no actual mismatch, only a |
| // type missing, to reduce noise: |
| if (OpTy.isValid()) { |
| // Only the first valid type for a type index will be printed: don't |
| // overwrite it later so it's always clear which type was expected: |
| if (!Types[TypeIdx].isValid()) |
| Types[TypeIdx] = OpTy; |
| else if (Types[TypeIdx] != OpTy) |
| report("Type mismatch in generic instruction", MO, I, OpTy); |
| } else { |
| // Generic instructions must have types attached to their operands. |
| report("Generic instruction is missing a virtual register type", MO, I); |
| } |
| } |
| |
| // Generic opcodes must not have physical register operands. |
| for (unsigned I = 0; I < MI->getNumOperands(); ++I) { |
| const MachineOperand *MO = &MI->getOperand(I); |
| if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) |
| report("Generic instruction cannot have physical register", MO, I); |
| } |
| |
| // Avoid out of bounds in checks below. This was already reported earlier. |
| if (MI->getNumOperands() < MCID.getNumOperands()) |
| return; |
| |
| StringRef ErrorInfo; |
| if (!TII->verifyInstruction(*MI, ErrorInfo)) |
| report(ErrorInfo.data(), MI); |
| |
| // Verify properties of various specific instruction types |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::G_ASSERT_SEXT: |
| case TargetOpcode::G_ASSERT_ZEXT: { |
| std::string OpcName = |
| Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; |
| if (!MI->getOperand(2).isImm()) { |
| report(Twine(OpcName, " expects an immediate operand #2"), MI); |
| break; |
| } |
| |
| Register Dst = MI->getOperand(0).getReg(); |
| Register Src = MI->getOperand(1).getReg(); |
| LLT SrcTy = MRI->getType(Src); |
| int64_t Imm = MI->getOperand(2).getImm(); |
| if (Imm <= 0) { |
| report(Twine(OpcName, " size must be >= 1"), MI); |
| break; |
| } |
| |
| if (Imm >= SrcTy.getScalarSizeInBits()) { |
| report(Twine(OpcName, " size must be less than source bit width"), MI); |
| break; |
| } |
| |
| if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) { |
| report( |
| Twine(OpcName, " source and destination register banks must match"), |
| MI); |
| break; |
| } |
| |
| if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst)) |
| report( |
| Twine(OpcName, " source and destination register classes must match"), |
| MI); |
| |
| break; |
| } |
| |
| case TargetOpcode::G_CONSTANT: |
| case TargetOpcode::G_FCONSTANT: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (DstTy.isVector()) |
| report("Instruction cannot use a vector result type", MI); |
| |
| if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { |
| if (!MI->getOperand(1).isCImm()) { |
| report("G_CONSTANT operand must be cimm", MI); |
| break; |
| } |
| |
| const ConstantInt *CI = MI->getOperand(1).getCImm(); |
| if (CI->getBitWidth() != DstTy.getSizeInBits()) |
| report("inconsistent constant size", MI); |
| } else { |
| if (!MI->getOperand(1).isFPImm()) { |
| report("G_FCONSTANT operand must be fpimm", MI); |
| break; |
| } |
| const ConstantFP *CF = MI->getOperand(1).getFPImm(); |
| |
| if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != |
| DstTy.getSizeInBits()) { |
| report("inconsistent constant size", MI); |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_STORE: |
| case TargetOpcode::G_ZEXTLOAD: |
| case TargetOpcode::G_SEXTLOAD: { |
| LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!PtrTy.isPointer()) |
| report("Generic memory instruction must access a pointer", MI); |
| |
| // Generic loads and stores must have a single MachineMemOperand |
| // describing that access. |
| if (!MI->hasOneMemOperand()) { |
| report("Generic instruction accessing memory must have one mem operand", |
| MI); |
| } else { |
| const MachineMemOperand &MMO = **MI->memoperands_begin(); |
| if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || |
| MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { |
| if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) |
| report("Generic extload must have a narrower memory type", MI); |
| } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { |
| if (MMO.getSize() > ValTy.getSizeInBytes()) |
| report("load memory size cannot exceed result size", MI); |
| } else if (MI->getOpcode() == TargetOpcode::G_STORE) { |
| if (ValTy.getSizeInBytes() < MMO.getSize()) |
| report("store memory size cannot exceed value size", MI); |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_PHI: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), |
| [this, &DstTy](const MachineOperand &MO) { |
| if (!MO.isReg()) |
| return true; |
| LLT Ty = MRI->getType(MO.getReg()); |
| if (!Ty.isValid() || (Ty != DstTy)) |
| return false; |
| return true; |
| })) |
| report("Generic Instruction G_PHI has operands with incompatible/missing " |
| "types", |
| MI); |
| break; |
| } |
| case TargetOpcode::G_BITCAST: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid()) |
| break; |
| |
| if (SrcTy.isPointer() != DstTy.isPointer()) |
| report("bitcast cannot convert between pointers and other types", MI); |
| |
| if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| report("bitcast sizes must match", MI); |
| |
| if (SrcTy == DstTy) |
| report("bitcast must change the type", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_INTTOPTR: |
| case TargetOpcode::G_PTRTOINT: |
| case TargetOpcode::G_ADDRSPACE_CAST: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid()) |
| break; |
| |
| verifyVectorElementMatch(DstTy, SrcTy, MI); |
| |
| DstTy = DstTy.getScalarType(); |
| SrcTy = SrcTy.getScalarType(); |
| |
| if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { |
| if (!DstTy.isPointer()) |
| report("inttoptr result type must be a pointer", MI); |
| if (SrcTy.isPointer()) |
| report("inttoptr source type must not be a pointer", MI); |
| } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { |
| if (!SrcTy.isPointer()) |
| report("ptrtoint source type must be a pointer", MI); |
| if (DstTy.isPointer()) |
| report("ptrtoint result type must not be a pointer", MI); |
| } else { |
| assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); |
| if (!SrcTy.isPointer() || !DstTy.isPointer()) |
| report("addrspacecast types must be pointers", MI); |
| else { |
| if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) |
| report("addrspacecast must convert different address spaces", MI); |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_PTR_ADD: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); |
| LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); |
| if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) |
| break; |
| |
| if (!PtrTy.getScalarType().isPointer()) |
| report("gep first operand must be a pointer", MI); |
| |
| if (OffsetTy.getScalarType().isPointer()) |
| report("gep offset operand must not be a pointer", MI); |
| |
| // TODO: Is the offset allowed to be a scalar with a vector? |
| break; |
| } |
| case TargetOpcode::G_PTRMASK: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) |
| break; |
| |
| if (!DstTy.getScalarType().isPointer()) |
| report("ptrmask result type must be a pointer", MI); |
| |
| if (!MaskTy.getScalarType().isScalar()) |
| report("ptrmask mask type must be an integer", MI); |
| |
| verifyVectorElementMatch(DstTy, MaskTy, MI); |
| break; |
| } |
| case TargetOpcode::G_SEXT: |
| case TargetOpcode::G_ZEXT: |
| case TargetOpcode::G_ANYEXT: |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_FPEXT: |
| case TargetOpcode::G_FPTRUNC: { |
| // Number of operands and presense of types is already checked (and |
| // reported in case of any issues), so no need to report them again. As |
| // we're trying to report as many issues as possible at once, however, the |
| // instructions aren't guaranteed to have the right number of operands or |
| // types attached to them at this point |
| assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid()) |
| break; |
| |
| LLT DstElTy = DstTy.getScalarType(); |
| LLT SrcElTy = SrcTy.getScalarType(); |
| if (DstElTy.isPointer() || SrcElTy.isPointer()) |
| report("Generic extend/truncate can not operate on pointers", MI); |
| |
| verifyVectorElementMatch(DstTy, SrcTy, MI); |
| |
| unsigned DstSize = DstElTy.getSizeInBits(); |
| unsigned SrcSize = SrcElTy.getSizeInBits(); |
| switch (MI->getOpcode()) { |
| default: |
| if (DstSize <= SrcSize) |
| report("Generic extend has destination type no larger than source", MI); |
| break; |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_FPTRUNC: |
| if (DstSize >= SrcSize) |
| report("Generic truncate has destination type no smaller than source", |
| MI); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_SELECT: { |
| LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!SelTy.isValid() || !CondTy.isValid()) |
| break; |
| |
| // Scalar condition select on a vector is valid. |
| if (CondTy.isVector()) |
| verifyVectorElementMatch(SelTy, CondTy, MI); |
| break; |
| } |
| case TargetOpcode::G_MERGE_VALUES: { |
| // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, |
| // e.g. s2N = MERGE sN, sN |
| // Merging multiple scalars into a vector is not allowed, should use |
| // G_BUILD_VECTOR for that. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (DstTy.isVector() || SrcTy.isVector()) |
| report("G_MERGE_VALUES cannot operate on vectors", MI); |
| |
| const unsigned NumOps = MI->getNumOperands(); |
| if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) |
| report("G_MERGE_VALUES result size is inconsistent", MI); |
| |
| for (unsigned I = 2; I != NumOps; ++I) { |
| if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) |
| report("G_MERGE_VALUES source types do not match", MI); |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_UNMERGE_VALUES: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); |
| // For now G_UNMERGE can split vectors. |
| for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { |
| if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) |
| report("G_UNMERGE_VALUES destination types do not match", MI); |
| } |
| if (SrcTy.getSizeInBits() != |
| (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { |
| report("G_UNMERGE_VALUES source operand does not cover dest operands", |
| MI); |
| } |
| break; |
| } |
| case TargetOpcode::G_BUILD_VECTOR: { |
| // Source types must be scalars, dest type a vector. Total size of scalars |
| // must match the dest vector size. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isVector() || SrcEltTy.isVector()) { |
| report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); |
| break; |
| } |
| |
| if (DstTy.getElementType() != SrcEltTy) |
| report("G_BUILD_VECTOR result element type must match source type", MI); |
| |
| if (DstTy.getNumElements() != MI->getNumOperands() - 1) |
| report("G_BUILD_VECTOR must have an operand for each elemement", MI); |
| |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) |
| if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) |
| report("G_BUILD_VECTOR source operand types are not homogeneous", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_BUILD_VECTOR_TRUNC: { |
| // Source types must be scalars, dest type a vector. Scalar types must be |
| // larger than the dest vector elt type, as this is a truncating operation. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isVector() || SrcEltTy.isVector()) |
| report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", |
| MI); |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) |
| if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) |
| report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", |
| MI); |
| if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) |
| report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " |
| "dest elt type", |
| MI); |
| break; |
| } |
| case TargetOpcode::G_CONCAT_VECTORS: { |
| // Source types should be vectors, and total size should match the dest |
| // vector size. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isVector() || !SrcTy.isVector()) |
| report("G_CONCAT_VECTOR requires vector source and destination operands", |
| MI); |
| |
| if (MI->getNumOperands() < 3) |
| report("G_CONCAT_VECTOR requires at least 2 source operands", MI); |
| |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) |
| if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) |
| report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); |
| if (DstTy.getNumElements() != |
| SrcTy.getNumElements() * (MI->getNumOperands() - 1)) |
| report("G_CONCAT_VECTOR num dest and source elements should match", MI); |
| break; |
| } |
| case TargetOpcode::G_ICMP: |
| case TargetOpcode::G_FCMP: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); |
| |
| if ((DstTy.isVector() != SrcTy.isVector()) || |
| (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) |
| report("Generic vector icmp/fcmp must preserve number of lanes", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_EXTRACT: { |
| const MachineOperand &SrcOp = MI->getOperand(1); |
| if (!SrcOp.isReg()) { |
| report("extract source must be a register", MI); |
| break; |
| } |
| |
| const MachineOperand &OffsetOp = MI->getOperand(2); |
| if (!OffsetOp.isImm()) { |
| report("extract offset must be a constant", MI); |
| break; |
| } |
| |
| unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); |
| if (SrcSize == DstSize) |
| report("extract source must be larger than result", MI); |
| |
| if (DstSize + OffsetOp.getImm() > SrcSize) |
| report("extract reads past end of register", MI); |
| break; |
| } |
| case TargetOpcode::G_INSERT: { |
| const MachineOperand &SrcOp = MI->getOperand(2); |
| if (!SrcOp.isReg()) { |
| report("insert source must be a register", MI); |
| break; |
| } |
| |
| const MachineOperand &OffsetOp = MI->getOperand(3); |
| if (!OffsetOp.isImm()) { |
| report("insert offset must be a constant", MI); |
| break; |
| } |
| |
| unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); |
| |
| if (DstSize <= SrcSize) |
| report("inserted size must be smaller than total register", MI); |
| |
| if (SrcSize + OffsetOp.getImm() > DstSize) |
| report("insert writes past end of register", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_JUMP_TABLE: { |
| if (!MI->getOperand(1).isJTI()) |
| report("G_JUMP_TABLE source operand must be a jump table index", MI); |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (!DstTy.isPointer()) |
| report("G_JUMP_TABLE dest operand must have a pointer type", MI); |
| break; |
| } |
| case TargetOpcode::G_BRJT: { |
| if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) |
| report("G_BRJT src operand 0 must be a pointer type", MI); |
| |
| if (!MI->getOperand(1).isJTI()) |
| report("G_BRJT src operand 1 must be a jump table index", MI); |
| |
| const auto &IdxOp = MI->getOperand(2); |
| if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) |
| report("G_BRJT src operand 2 must be a scalar reg type", MI); |
| break; |
| } |
| case TargetOpcode::G_INTRINSIC: |
| case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { |
| // TODO: Should verify number of def and use operands, but the current |
| // interface requires passing in IR types for mangling. |
| const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); |
| if (!IntrIDOp.isIntrinsicID()) { |
| report("G_INTRINSIC first src operand must be an intrinsic ID", MI); |
| break; |
| } |
| |
| bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; |
| unsigned IntrID = IntrIDOp.getIntrinsicID(); |
| if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
| AttributeList Attrs |
| = Intrinsic::getAttributes(MF->getFunction().getContext(), |
| static_cast<Intrinsic::ID>(IntrID)); |
| bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone); |
| if (NoSideEffects && DeclHasSideEffects) { |
| report("G_INTRINSIC used with intrinsic that accesses memory", MI); |
| break; |
| } |
| if (!NoSideEffects && !DeclHasSideEffects) { |
| report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); |
| break; |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_SEXT_INREG: { |
| if (!MI->getOperand(2).isImm()) { |
| report("G_SEXT_INREG expects an immediate operand #2", MI); |
| break; |
| } |
| |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| int64_t Imm = MI->getOperand(2).getImm(); |
| if (Imm <= 0) |
| report("G_SEXT_INREG size must be >= 1", MI); |
| if (Imm >= SrcTy.getScalarSizeInBits()) |
| report("G_SEXT_INREG size must be less than source bit width", MI); |
| break; |
| } |
| case TargetOpcode::G_SHUFFLE_VECTOR: { |
| const MachineOperand &MaskOp = MI->getOperand(3); |
| if (!MaskOp.isShuffleMask()) { |
| report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); |
| break; |
| } |
| |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); |
| LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); |
| |
| if (Src0Ty != Src1Ty) |
| report("Source operands must be the same type", MI); |
| |
| if (Src0Ty.getScalarType() != DstTy.getScalarType()) |
| report("G_SHUFFLE_VECTOR cannot change element type", MI); |
| |
| // Don't check that all operands are vector because scalars are used in |
| // place of 1 element vectors. |
| int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; |
| int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; |
| |
| ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); |
| |
| if (static_cast<int>(MaskIdxes.size()) != DstNumElts) |
| report("Wrong result type for shufflemask", MI); |
| |
| for (int Idx : MaskIdxes) { |
| if (Idx < 0) |
| continue; |
| |
| if (Idx >= 2 * SrcNumElts) |
| report("Out of bounds shuffle index", MI); |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_DYN_STACKALLOC: { |
| const MachineOperand &DstOp = MI->getOperand(0); |
| const MachineOperand &AllocOp = MI->getOperand(1); |
| const MachineOperand &AlignOp = MI->getOperand(2); |
| |
| if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { |
| report("dst operand 0 must be a pointer type", MI); |
| break; |
| } |
| |
| if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { |
| report("src operand 1 must be a scalar reg type", MI); |
| break; |
| } |
| |
| if (!AlignOp.isImm()) { |
| report("src operand 2 must be an immediate type", MI); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_MEMCPY_INLINE: |
| case TargetOpcode::G_MEMCPY: |
| case TargetOpcode::G_MEMMOVE: { |
| ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
| if (MMOs.size() != 2) { |
| report("memcpy/memmove must have 2 memory operands", MI); |
| break; |
| } |
| |
| if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || |
| (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { |
| report("wrong memory operand types", MI); |
| break; |
| } |
| |
| if (MMOs[0]->getSize() != MMOs[1]->getSize()) |
| report("inconsistent memory operand sizes", MI); |
| |
| LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); |
| |
| if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { |
| report("memory instruction operand must be a pointer", MI); |
| break; |
| } |
| |
| if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
| report("inconsistent store address space", MI); |
| if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) |
| report("inconsistent load address space", MI); |
| |
| if (Opc != TargetOpcode::G_MEMCPY_INLINE) |
| if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) |
| report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_BZERO: |
| case TargetOpcode::G_MEMSET: { |
| ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
| std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; |
| if (MMOs.size() != 1) { |
| report(Twine(Name, " must have 1 memory operand"), MI); |
| break; |
| } |
| |
| if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { |
| report(Twine(Name, " memory operand must be a store"), MI); |
| break; |
| } |
| |
| LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (!DstPtrTy.isPointer()) { |
| report(Twine(Name, " operand must be a pointer"), MI); |
| break; |
| } |
| |
| if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
| report("inconsistent " + Twine(Name, " address space"), MI); |
| |
| if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || |
| (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) |
| report("'tail' flag (last operand) must be an immediate 0 or 1", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_VECREDUCE_SEQ_FADD: |
| case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); |
| LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); |
| if (!DstTy.isScalar()) |
| report("Vector reduction requires a scalar destination type", MI); |
| if (!Src1Ty.isScalar()) |
| report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); |
| if (!Src2Ty.isVector()) |
| report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); |
| break; |
| } |
| case TargetOpcode::G_VECREDUCE_FADD: |
| case TargetOpcode::G_VECREDUCE_FMUL: |
| case TargetOpcode::G_VECREDUCE_FMAX: |
| case TargetOpcode::G_VECREDUCE_FMIN: |
| case TargetOpcode::G_VECREDUCE_ADD: |
| case TargetOpcode::G_VECREDUCE_MUL: |
| case TargetOpcode::G_VECREDUCE_AND: |
| case TargetOpcode::G_VECREDUCE_OR: |
| case TargetOpcode::G_VECREDUCE_XOR: |
| case TargetOpcode::G_VECREDUCE_SMAX: |
| case TargetOpcode::G_VECREDUCE_SMIN: |
| case TargetOpcode::G_VECREDUCE_UMAX: |
| case TargetOpcode::G_VECREDUCE_UMIN: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (!DstTy.isScalar()) |
| report("Vector reduction requires a scalar destination type", MI); |
| break; |
| } |
| |
| case TargetOpcode::G_SBFX: |
| case TargetOpcode::G_UBFX: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (DstTy.isVector()) { |
| report("Bitfield extraction is not supported on vectors", MI); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_ROTR: |
| case TargetOpcode::G_ROTL: { |
| LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); |
| LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); |
| if (Src1Ty.isVector() != Src2Ty.isVector()) { |
| report("Rotate requires operands to be either all scalars or all vectors", |
| MI); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_LLROUND: |
| case TargetOpcode::G_LROUND: { |
| verifyAllRegOpsScalar(*MI, *MRI); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (MI->getNumOperands() < MCID.getNumOperands()) { |
| report("Too few operands", MI); |
| errs() << MCID.getNumOperands() << " operands expected, but " |
| << MI->getNumOperands() << " given.\n"; |
| } |
| |
| if (MI->isPHI()) { |
| if (MF->getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoPHIs)) |
| report("Found PHI instruction with NoPHIs property set", MI); |
| |
| if (FirstNonPHI) |
| report("Found PHI instruction after non-PHI", MI); |
| } else if (FirstNonPHI == nullptr) |
| FirstNonPHI = MI; |
| |
| // Check the tied operands. |
| if (MI->isInlineAsm()) |
| verifyInlineAsm(MI); |
| |
| // Check that unspillable terminators define a reg and have at most one use. |
| if (TII->isUnspillableTerminator(MI)) { |
| if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) |
| report("Unspillable Terminator does not define a reg", MI); |
| Register Def = MI->getOperand(0).getReg(); |
| if (Def.isVirtual() && |
| !MF->getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoPHIs) && |
| std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) |
| report("Unspillable Terminator expected to have at most one use!", MI); |
| } |
| |
| // A fully-formed DBG_VALUE must have a location. Ignore partially formed |
| // DBG_VALUEs: these are convenient to use in tests, but should never get |
| // generated. |
| if (MI->isDebugValue() && MI->getNumOperands() == 4) |
| if (!MI->getDebugLoc()) |
| report("Missing DebugLoc for debug instruction", MI); |
| |
| // Meta instructions should never be the subject of debug value tracking, |
| // they don't create a value in the output program at all. |
| if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) |
| report("Metadata instruction should not have a value tracking number", MI); |
| |
| // Check the MachineMemOperands for basic consistency. |
| for (MachineMemOperand *Op : MI->memoperands()) { |
| if (Op->isLoad() && !MI->mayLoad()) |
| report("Missing mayLoad flag", MI); |
| if (Op->isStore() && !MI->mayStore()) |
| report("Missing mayStore flag", MI); |
| } |
| |
| // Debug values must not have a slot index. |
| // Other instructions must have one, unless they are inside a bundle. |
| if (LiveInts) { |
| bool mapped = !LiveInts->isNotInMIMap(*MI); |
| if (MI->isDebugOrPseudoInstr()) { |
| if (mapped) |
| report("Debug instruction has a slot index", MI); |
| } else if (MI->isInsideBundle()) { |
| if (mapped) |
| report("Instruction inside bundle has a slot index", MI); |
| } else { |
| if (!mapped) |
| report("Missing slot index", MI); |
| } |
| } |
| |
| unsigned Opc = MCID.getOpcode(); |
| if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { |
| verifyPreISelGenericInstruction(MI); |
| return; |
| } |
| |
| StringRef ErrorInfo; |
| if (!TII->verifyInstruction(*MI, ErrorInfo)) |
| report(ErrorInfo.data(), MI); |
| |
| // Verify properties of various specific instruction types |
| switch (MI->getOpcode()) { |
| case TargetOpcode::COPY: { |
| const MachineOperand &DstOp = MI->getOperand(0); |
| const MachineOperand &SrcOp = MI->getOperand(1); |
| const Register SrcReg = SrcOp.getReg(); |
| const Register DstReg = DstOp.getReg(); |
| |
| LLT DstTy = MRI->getType(DstReg); |
| LLT SrcTy = MRI->getType(SrcReg); |
| if (SrcTy.isValid() && DstTy.isValid()) { |
| // If both types are valid, check that the types are the same. |
| if (SrcTy != DstTy) { |
| report("Copy Instruction is illegal with mismatching types", MI); |
| errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; |
| } |
| |
| break; |
| } |
| |
| if (!SrcTy.isValid() && !DstTy.isValid()) |
| break; |
| |
| // If we have only one valid type, this is likely a copy between a virtual |
| // and physical register. |
| unsigned SrcSize = 0; |
| unsigned DstSize = 0; |
| if (SrcReg.isPhysical() && DstTy.isValid()) { |
| const TargetRegisterClass *SrcRC = |
| TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); |
| if (SrcRC) |
| SrcSize = TRI->getRegSizeInBits(*SrcRC); |
| } |
| |
| if (SrcSize == 0) |
| SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); |
| |
| if (DstReg.isPhysical() && SrcTy.isValid()) { |
| const TargetRegisterClass *DstRC = |
| TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); |
| if (DstRC) |
| DstSize = TRI->getRegSizeInBits(*DstRC); |
| } |
| |
| if (DstSize == 0) |
| DstSize = TRI->getRegSizeInBits(DstReg, *MRI); |
| |
| if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { |
| if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { |
| report("Copy Instruction is illegal with mismatching sizes", MI); |
| errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize |
| << "\n"; |
| } |
| } |
| break; |
| } |
| case TargetOpcode::STATEPOINT: { |
| StatepointOpers SO(MI); |
| if (!MI->getOperand(SO.getIDPos()).isImm() || |
| !MI->getOperand(SO.getNBytesPos()).isImm() || |
| !MI->getOperand(SO.getNCallArgsPos()).isImm()) { |
| report("meta operands to STATEPOINT not constant!", MI); |
| break; |
| } |
| |
| auto VerifyStackMapConstant = [&](unsigned Offset) { |
| if (Offset >= MI->getNumOperands()) { |
| report("stack map constant to STATEPOINT is out of range!", MI); |
| return; |
| } |
| if (!MI->getOperand(Offset - 1).isImm() || |
| MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || |
| !MI->getOperand(Offset).isImm()) |
| report("stack map constant to STATEPOINT not well formed!", MI); |
| }; |
| VerifyStackMapConstant(SO.getCCIdx()); |
| VerifyStackMapConstant(SO.getFlagsIdx()); |
| VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); |
| VerifyStackMapConstant(SO.getNumGCPtrIdx()); |
| VerifyStackMapConstant(SO.getNumAllocaIdx()); |
| VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); |
| |
| // Verify that all explicit statepoint defs are tied to gc operands as |
| // they are expected to be a relocation of gc operands. |
| unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); |
| unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; |
| for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { |
| unsigned UseOpIdx; |
| if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { |
| report("STATEPOINT defs expected to be tied", MI); |
| break; |
| } |
| if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { |
| report("STATEPOINT def tied to non-gc operand", MI); |
| break; |
| } |
| } |
| |
| // TODO: verify we have properly encoded deopt arguments |
| } break; |
| case TargetOpcode::INSERT_SUBREG: { |
| unsigned InsertedSize; |
| if (unsigned SubIdx = MI->getOperand(2).getSubReg()) |
| InsertedSize = TRI->getSubRegIdxSize(SubIdx); |
| else |
| InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); |
| unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); |
| if (SubRegSize < InsertedSize) { |
| report("INSERT_SUBREG expected inserted value to have equal or lesser " |
| "size than the subreg it was inserted into", MI); |
| break; |
| } |
| } break; |
| } |
| } |
| |
| void |
| MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
| const MachineInstr *MI = MO->getParent(); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumDefs = MCID.getNumDefs(); |
| if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) |
| NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; |
| |
| // The first MCID.NumDefs operands must be explicit register defines |
| if (MONum < NumDefs) { |
| const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; |
| if (!MO->isReg()) |
| report("Explicit definition must be a register", MO, MONum); |
| else if (!MO->isDef() && !MCOI.isOptionalDef()) |
| report("Explicit definition marked as use", MO, MONum); |
| else if (MO->isImplicit()) |
| report("Explicit definition marked as implicit", MO, MONum); |
| } else if (MONum < MCID.getNumOperands()) { |
| const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; |
| // Don't check if it's the last operand in a variadic instruction. See, |
| // e.g., LDM_RET in the arm back end. Check non-variadic operands only. |
| bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; |
| if (!IsOptional) { |
| if (MO->isReg()) { |
| if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) |
| report("Explicit operand marked as def", MO, MONum); |
| if (MO->isImplicit()) |
| report("Explicit operand marked as implicit", MO, MONum); |
| } |
| |
| // Check that an instruction has register operands only as expected. |
| if (MCOI.OperandType == MCOI::OPERAND_REGISTER && |
| !MO->isReg() && !MO->isFI()) |
| report("Expected a register operand.", MO, MONum); |
| if (MO->isReg()) { |
| if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || |
| (MCOI.OperandType == MCOI::OPERAND_PCREL && |
| !TII->isPCRelRegisterOperandLegal(*MO))) |
| report("Expected a non-register operand.", MO, MONum); |
| } |
| } |
| |
| int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); |
| if (TiedTo != -1) { |
| if (!MO->isReg()) |
| report("Tied use must be a register", MO, MONum); |
| else if (!MO->isTied()) |
| report("Operand should be tied", MO, MONum); |
| else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) |
| report("Tied def doesn't match MCInstrDesc", MO, MONum); |
| else if (Register::isPhysicalRegister(MO->getReg())) { |
| const MachineOperand &MOTied = MI->getOperand(TiedTo); |
| if (!MOTied.isReg()) |
| report("Tied counterpart must be a register", &MOTied, TiedTo); |
| else if (Register::isPhysicalRegister(MOTied.getReg()) && |
| MO->getReg() != MOTied.getReg()) |
| report("Tied physical registers must match.", &MOTied, TiedTo); |
| } |
| } else if (MO->isReg() && MO->isTied()) |
| report("Explicit operand should not be tied", MO, MONum); |
| } else { |
| // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
| if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) |
| report("Extra explicit operand on non-variadic instruction", MO, MONum); |
| } |
| |
| switch (MO->getType()) { |
| case MachineOperand::MO_Register: { |
| // Verify debug flag on debug instructions. Check this first because reg0 |
| // indicates an undefined debug value. |
| if (MI->isDebugInstr() && MO->isUse()) { |
| if (!MO->isDebug()) |
| report("Register operand must be marked debug", MO, MONum); |
| } else if (MO->isDebug()) { |
| report("Register operand must not be marked debug", MO, MONum); |
| } |
| |
| const Register Reg = MO->getReg(); |
| if (!Reg) |
| return; |
| if (MRI->tracksLiveness() && !MI->isDebugValue()) |
| checkLiveness(MO, MONum); |
| |
| // Verify the consistency of tied operands. |
| if (MO->isTied()) { |
| unsigned OtherIdx = MI->findTiedOperandIdx(MONum); |
| const MachineOperand &OtherMO = MI->getOperand(OtherIdx); |
| if (!OtherMO.isReg()) |
| report("Must be tied to a register", MO, MONum); |
| if (!OtherMO.isTied()) |
| report("Missing tie flags on tied operand", MO, MONum); |
| if (MI->findTiedOperandIdx(OtherIdx) != MONum) |
| report("Inconsistent tie links", MO, MONum); |
| if (MONum < MCID.getNumDefs()) { |
| if (OtherIdx < MCID.getNumOperands()) { |
| if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) |
| report("Explicit def tied to explicit use without tie constraint", |
| MO, MONum); |
| } else { |
| if (!OtherMO.isImplicit()) |
| report("Explicit def should be tied to implicit use", MO, MONum); |
| } |
| } |
| } |
| |
| // Verify two-address constraints after the twoaddressinstruction pass. |
| // Both twoaddressinstruction pass and phi-node-elimination pass call |
| // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after |
| // twoaddressinstruction pass not after phi-node-elimination pass. So we |
| // shouldn't use the NoSSA as the condition, we should based on |
| // TiedOpsRewritten property to verify two-address constraints, this |
| // property will be set in twoaddressinstruction pass. |
| unsigned DefIdx; |
| if (MF->getProperties().hasProperty( |
| MachineFunctionProperties::Property::TiedOpsRewritten) && |
| MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && |
| Reg != MI->getOperand(DefIdx).getReg()) |
| report("Two-address instruction operands must be identical", MO, MONum); |
| |
| // Check register classes. |
| unsigned SubIdx = MO->getSubReg(); |
| |
| if (Register::isPhysicalRegister(Reg)) { |
| if (SubIdx) { |
| report("Illegal subregister index for physical register", MO, MONum); |
| return; |
| } |
| if (MONum < MCID.getNumOperands()) { |
| if (const TargetRegisterClass *DRC = |
| TII->getRegClass(MCID, MONum, TRI, *MF)) { |
| if (!DRC->contains(Reg)) { |
| report("Illegal physical register for instruction", MO, MONum); |
| errs() << printReg(Reg, TRI) << " is not a " |
| << TRI->getRegClassName(DRC) << " register.\n"; |
| } |
| } |
| } |
| if (MO->isRenamable()) { |
| if (MRI->isReserved(Reg)) { |
| report("isRenamable set on reserved register", MO, MONum); |
| return; |
| } |
| } |
| } else { |
| // Virtual register. |
| const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); |
| if (!RC) { |
| // This is a generic virtual register. |
| |
| // Do not allow undef uses for generic virtual registers. This ensures |
| // getVRegDef can never fail and return null on a generic register. |
| // |
| // FIXME: This restriction should probably be broadened to all SSA |
| // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still |
| // run on the SSA function just before phi elimination. |
| if (MO->isUndef()) |
| report("Generic virtual register use cannot be undef", MO, MONum); |
| |
| // If we're post-Select, we can't have gvregs anymore. |
| if (isFunctionSelected) { |
| report("Generic virtual register invalid in a Selected function", |
| MO, MONum); |
| return; |
| } |
| |
| // The gvreg must have a type and it must not have a SubIdx. |
| LLT Ty = MRI->getType(Reg); |
| if (!Ty.isValid()) { |
| report("Generic virtual register must have a valid type", MO, |
| MONum); |
| return; |
| } |
| |
| const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); |
| |
| // If we're post-RegBankSelect, the gvreg must have a bank. |
| if (!RegBank && isFunctionRegBankSelected) { |
| report("Generic virtual register must have a bank in a " |
| "RegBankSelected function", |
| MO, MONum); |
| return; |
| } |
| |
| // Make sure the register fits into its register bank if any. |
| if (RegBank && Ty.isValid() && |
| RegBank->getSize() < Ty.getSizeInBits()) { |
| report("Register bank is too small for virtual register", MO, |
| MONum); |
| errs() << "Register bank " << RegBank->getName() << " too small(" |
| << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() |
| << "-bits\n"; |
| return; |
| } |
| if (SubIdx) { |
| report("Generic virtual register does not allow subregister index", MO, |
| MONum); |
| return; |
| } |
| |
| // If this is a target specific instruction and this operand |
| // has register class constraint, the virtual register must |
| // comply to it. |
| if (!isPreISelGenericOpcode(MCID.getOpcode()) && |
| MONum < MCID.getNumOperands() && |
| TII->getRegClass(MCID, MONum, TRI, *MF)) { |
| report("Virtual register does not match instruction constraint", MO, |
| MONum); |
| errs() << "Expect register class " |
| << TRI->getRegClassName( |
| TII->getRegClass(MCID, MONum, TRI, *MF)) |
| << " but got nothing\n"; |
| return; |
| } |
| |
| break; |
| } |
| if (SubIdx) { |
| const TargetRegisterClass *SRC = |
| TRI->getSubClassWithSubReg(RC, SubIdx); |
| if (!SRC) { |
| report("Invalid subregister index for virtual register", MO, MONum); |
| errs() << "Register class " << TRI->getRegClassName(RC) |
| << " does not support subreg index " << SubIdx << "\n"; |
| return; |
| } |
| if (RC != SRC) { |
| report("Invalid register class for subregister index", MO, MONum); |
| errs() << "Register class " << TRI->getRegClassName(RC) |
| << " does not fully support subreg index " << SubIdx << "\n"; |
| return; |
| } |
| } |
| if (MONum < MCID.getNumOperands()) { |
| if (const TargetRegisterClass *DRC = |
| TII->getRegClass(MCID, MONum, TRI, *MF)) { |
| if (SubIdx) { |
| const TargetRegisterClass *SuperRC = |
| TRI->getLargestLegalSuperClass(RC, *MF); |
| if (!SuperRC) { |
| report("No largest legal super class exists.", MO, MONum); |
| return; |
| } |
| DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); |
| if (!DRC) { |
| report("No matching super-reg register class.", MO, MONum); |
| return; |
| } |
| } |
| if (!RC->hasSuperClassEq(DRC)) { |
| report("Illegal virtual register for instruction", MO, MONum); |
| errs() << "Expected a " << TRI->getRegClassName(DRC) |
| << " register, but got a " << TRI->getRegClassName(RC) |
| << " register\n"; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| case MachineOperand::MO_RegisterMask: |
| regMasks.push_back(MO->getRegMask()); |
| break; |
| |
| case MachineOperand::MO_MachineBasicBlock: |
| if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) |
| report("PHI operand is not in the CFG", MO, MONum); |
| break; |
| |
| case MachineOperand::MO_FrameIndex: |
| if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && |
| LiveInts && !LiveInts->isNotInMIMap(*MI)) { |
| int FI = MO->getIndex(); |
| LiveInterval &LI = LiveStks->getInterval(FI); |
| SlotIndex Idx = LiveInts->getInstructionIndex(*MI); |
| |
| bool stores = MI->mayStore(); |
| bool loads = MI->mayLoad(); |
| // For a memory-to-memory move, we need to check if the frame |
| // index is used for storing or loading, by inspecting the |
| // memory operands. |
| if (stores && loads) { |
| for (auto *MMO : MI->memoperands()) { |
| const PseudoSourceValue *PSV = MMO->getPseudoValue(); |
| if (PSV == nullptr) continue; |
| const FixedStackPseudoSourceValue *Value = |
| dyn_cast<FixedStackPseudoSourceValue>(PSV); |
| if (Value == nullptr) continue; |
| if (Value->getFrameIndex() != FI) continue; |
| |
| if (MMO->isStore()) |
| loads = false; |
| else |
| stores = false; |
| break; |
| } |
| if (loads == stores) |
| report("Missing fixed stack memoperand.", MI); |
| } |
| if (loads && !LI.liveAt(Idx.getRegSlot(true))) { |
| report("Instruction loads from dead spill slot", MO, MONum); |
| errs() << "Live stack: " << LI << '\n'; |
| } |
| if (stores && !LI.liveAt(Idx.getRegSlot())) { |
| report("Instruction stores to dead spill slot", MO, MONum); |
| errs() << "Live stack: " << LI << '\n'; |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, |
| unsigned MONum, SlotIndex UseIdx, |
| const LiveRange &LR, |
| Register VRegOrUnit, |
| LaneBitmask LaneMask) { |
| LiveQueryResult LRQ = LR.Query(UseIdx); |
| // Check if we have a segment at the use, note however that we only need one |
| // live subregister range, the others may be dead. |
| if (!LRQ.valueIn() && LaneMask.none()) { |
| report("No live segment at use", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| report_context(UseIdx); |
| } |
| if (MO->isKill() && !LRQ.isKill()) { |
| report("Live range continues after kill flag", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| report_context(UseIdx); |
| } |
| } |
| |
| void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, |
| unsigned MONum, SlotIndex DefIdx, |
| const LiveRange &LR, |
| Register VRegOrUnit, |
| bool SubRangeCheck, |
| LaneBitmask LaneMask) { |
| if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { |
| assert(VNI && "NULL valno is not allowed"); |
| if (VNI->def != DefIdx) { |
| report("Inconsistent valno->def", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| report_context(*VNI); |
| report_context(DefIdx); |
| } |
| } else { |
| report("No live segment at def", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| report_context(DefIdx); |
| } |
| // Check that, if the dead def flag is present, LiveInts agree. |
| if (MO->isDead()) { |
| LiveQueryResult LRQ = LR.Query(DefIdx); |
| if (!LRQ.isDeadDef()) { |
| assert(Register::isVirtualRegister(VRegOrUnit) && |
| "Expecting a virtual register."); |
| // A dead subreg def only tells us that the specific subreg is dead. There |
| // could be other non-dead defs of other subregs, or we could have other |
| // parts of the register being live through the instruction. So unless we |
| // are checking liveness for a subrange it is ok for the live range to |
| // continue, given that we have a dead def of a subregister. |
| if (SubRangeCheck || MO->getSubReg() == 0) { |
| report("Live range continues after dead def flag", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { |
| const MachineInstr *MI = MO->getParent(); |
| const Register Reg = MO->getReg(); |
| const unsigned SubRegIdx = MO->getSubReg(); |
| |
| const LiveInterval *LI = nullptr; |
| if (LiveInts && Reg.isVirtual()) { |
| if (LiveInts->hasInterval(Reg)) { |
| LI = &LiveInts->getInterval(Reg); |
| if (SubRegIdx != 0 && !LI->empty() && !LI->hasSubRanges() && |
| MRI->shouldTrackSubRegLiveness(Reg)) |
| report("Live interval for subreg operand has no subranges", MO, MONum); |
| } else { |
| report("Virtual register has no live interval", MO, MONum); |
| } |
| } |
| |
| // Both use and def operands can read a register. |
| if (MO->readsReg()) { |
| if (MO->isKill()) |
| addRegWithSubRegs(regsKilled, Reg); |
| |
| // Check that LiveVars knows this kill (unless we are inside a bundle, in |
| // which case we have already checked that LiveVars knows any kills on the |
| // bundle header instead). |
| if (LiveVars && Reg.isVirtual() && MO->isKill() && |
| !MI->isBundledWithPred()) { |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| if (!is_contained(VI.Kills, MI)) |
| report("Kill missing from LiveVariables", MO, MONum); |
| } |
| |
| // Check LiveInts liveness and kill. |
| if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { |
| SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); |
| // Check the cached regunit intervals. |
| if (Reg.isPhysical() && !isReserved(Reg)) { |
| for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); |
| ++Units) { |
| if (MRI->isReservedRegUnit(*Units)) |
| continue; |
| if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) |
| checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); |
| } |
| } |
| |
| if (Reg.isVirtual()) { |
| // This is a virtual register interval. |
| checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); |
| |
| if (LI->hasSubRanges() && !MO->isDef()) { |
| LaneBitmask MOMask = SubRegIdx != 0 |
| ? TRI->getSubRegIndexLaneMask(SubRegIdx) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| LaneBitmask LiveInMask; |
| for (const LiveInterval::SubRange &SR : LI->subranges()) { |
| if ((MOMask & SR.LaneMask).none()) |
| continue; |
| checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); |
| LiveQueryResult LRQ = SR.Query(UseIdx); |
| if (LRQ.valueIn()) |
| LiveInMask |= SR.LaneMask; |
| } |
| // At least parts of the register has to be live at the use. |
| if ((LiveInMask & MOMask).none()) { |
| report("No live subrange at use", MO, MONum); |
| report_context(*LI); |
| report_context(UseIdx); |
| } |
| } |
| } |
| } |
| |
| // Use of a dead register. |
| if (!regsLive.count(Reg)) { |
| if (Reg.isPhysical()) { |
| // Reserved registers may be used even when 'dead'. |
| bool Bad = !isReserved(Reg); |
| // We are fine if just any subregister has a defined value. |
| if (Bad) { |
| |
| for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { |
| if (regsLive.count(SubReg)) { |
| Bad = false; |
| break; |
| } |
| } |
| } |
| // If there is an additional implicit-use of a super register we stop |
| // here. By definition we are fine if the super register is not |
| // (completely) dead, if the complete super register is dead we will |
| // get a report for its operand. |
| if (Bad) { |
| for (const MachineOperand &MOP : MI->uses()) { |
| if (!MOP.isReg() || !MOP.isImplicit()) |
| continue; |
| |
| if (!MOP.getReg().isPhysical()) |
| continue; |
| |
| if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) |
| Bad = false; |
| } |
| } |
| if (Bad) |
| report("Using an undefined physical register", MO, MONum); |
| } else if (MRI->def_empty(Reg)) { |
| report("Reading virtual register without a def", MO, MONum); |
| } else { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| // We don't know which virtual registers are live in, so only complain |
| // if vreg was killed in this MBB. Otherwise keep track of vregs that |
| // must be live in. PHI instructions are handled separately. |
| if (MInfo.regsKilled.count(Reg)) |
| report("Using a killed virtual register", MO, MONum); |
| else if (!MI->isPHI()) |
| MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); |
| } |
| } |
| } |
| |
| if (MO->isDef()) { |
| // Register defined. |
| // TODO: verify that earlyclobber ops are not used. |
| if (MO->isDead()) |
| addRegWithSubRegs(regsDead, Reg); |
| else |
| addRegWithSubRegs(regsDefined, Reg); |
| |
| // Verify SSA form. |
| if (MRI->isSSA() && Reg.isVirtual() && |
| std::next(MRI->def_begin(Reg)) != MRI->def_end()) |
| report("Multiple virtual register defs in SSA form", MO, MONum); |
| |
| // Check LiveInts for a live segment, but only for virtual registers. |
| if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { |
| SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); |
| DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); |
| |
| if (Reg.isVirtual()) { |
| checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); |
| |
| if (LI->hasSubRanges()) { |
| LaneBitmask MOMask = SubRegIdx != 0 |
| ? TRI->getSubRegIndexLaneMask(SubRegIdx) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| for (const LiveInterval::SubRange &SR : LI->subranges()) { |
| if ((SR.LaneMask & MOMask).none()) |
| continue; |
| checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // This function gets called after visiting all instructions in a bundle. The |
| // argument points to the bundle header. |
| // Normal stand-alone instructions are also considered 'bundles', and this |
| // function is called for all of them. |
| void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| set_union(MInfo.regsKilled, regsKilled); |
| set_subtract(regsLive, regsKilled); regsKilled.clear(); |
| // Kill any masked registers. |
| while (!regMasks.empty()) { |
| const uint32_t *Mask = regMasks.pop_back_val(); |
| for (Register Reg : regsLive) |
| if (Reg.isPhysical() && |
| MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) |
| regsDead.push_back(Reg); |
| } |
| set_subtract(regsLive, regsDead); regsDead.clear(); |
| set_union(regsLive, regsDefined); regsDefined.clear(); |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
| MBBInfoMap[MBB].regsLiveOut = regsLive; |
| regsLive.clear(); |
| |
| if (Indexes) { |
| SlotIndex stop = Indexes->getMBBEndIdx(MBB); |
| if (!(stop > lastIndex)) { |
| report("Block ends before last instruction index", MBB); |
| errs() << "Block ends at " << stop |
| << " last instruction was at " << lastIndex << '\n'; |
| } |
| lastIndex = stop; |
| } |
| } |
| |
| namespace { |
| // This implements a set of registers that serves as a filter: can filter other |
| // sets by passing through elements not in the filter and blocking those that |
| // are. Any filter implicitly includes the full set of physical registers upon |
| // creation, thus filtering them all out. The filter itself as a set only grows, |
| // and needs to be as efficient as possible. |
| struct VRegFilter { |
| // Add elements to the filter itself. \pre Input set \p FromRegSet must have |
| // no duplicates. Both virtual and physical registers are fine. |
| template <typename RegSetT> void add(const RegSetT &FromRegSet) { |
| SmallVector<Register, 0> VRegsBuffer; |
| filterAndAdd(FromRegSet, VRegsBuffer); |
| } |
| // Filter \p FromRegSet through the filter and append passed elements into \p |
| // ToVRegs. All elements appended are then added to the filter itself. |
| // \returns true if anything changed. |
| template <typename RegSetT> |
| bool filterAndAdd(const RegSetT &FromRegSet, |
| SmallVectorImpl<Register> &ToVRegs) { |
| unsigned SparseUniverse = Sparse.size(); |
| unsigned NewSparseUniverse = SparseUniverse; |
| unsigned NewDenseSize = Dense.size(); |
| size_t Begin = ToVRegs.size(); |
| for (Register Reg : FromRegSet) { |
| if (!Reg.isVirtual()) |
| continue; |
| unsigned Index = Register::virtReg2Index(Reg); |
| if (Index < SparseUniverseMax) { |
| if (Index < SparseUniverse && Sparse.test(Index)) |
| continue; |
| NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); |
| } else { |
| if (Dense.count(Reg)) |
| continue; |
| ++NewDenseSize; |
| } |
| ToVRegs.push_back(Reg); |
| } |
| size_t End = ToVRegs.size(); |
| if (Begin == End) |
| return false; |
| // Reserving space in sets once performs better than doing so continuously |
| // and pays easily for double look-ups (even in Dense with SparseUniverseMax |
| // tuned all the way down) and double iteration (the second one is over a |
| // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). |
| Sparse.resize(NewSparseUniverse); |
| Dense.reserve(NewDenseSize); |
| for (unsigned I = Begin; I < End; ++I) { |
| Register Reg = ToVRegs[I]; |
| unsigned Index = Register::virtReg2Index(Reg); |
| if (Index < SparseUniverseMax) |
| Sparse.set(Index); |
| else |
| Dense.insert(Reg); |
| } |
| return true; |
| } |
| |
| private: |
| static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; |
| // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound |
| // are tracked by Dense. The only purpose of the threashold and the Dense set |
| // is to have a reasonably growing memory usage in pathological cases (large |
| // number of very sparse VRegFilter instances live at the same time). In |
| // practice even in the worst-by-execution time cases having all elements |
| // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more |
| // space efficient than if tracked by Dense. The threashold is set to keep the |
| // worst-case memory usage within 2x of figures determined empirically for |
| // "all Dense" scenario in such worst-by-execution-time cases. |
| BitVector Sparse; |
| DenseSet<unsigned> Dense; |
| }; |
| |
| // Implements both a transfer function and a (binary, in-place) join operator |
| // for a dataflow over register sets with set union join and filtering transfer |
| // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. |
| // Maintains out_b as its state, allowing for O(n) iteration over it at any |
| // time, where n is the size of the set (as opposed to O(U) where U is the |
| // universe). filter_b implicitly contains all physical registers at all times. |
| class FilteringVRegSet { |
| VRegFilter Filter; |
| SmallVector<Register, 0> VRegs; |
| |
| public: |
| // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. |
| // Both virtual and physical registers are fine. |
| template <typename RegSetT> void addToFilter(const RegSetT &RS) { |
| Filter.add(RS); |
| } |
| // Passes \p RS through the filter_b (transfer function) and adds what's left |
| // to itself (out_b). |
| template <typename RegSetT> bool add(const RegSetT &RS) { |
| // Double-duty the Filter: to maintain VRegs a set (and the join operation |
| // a set union) just add everything being added here to the Filter as well. |
| return Filter.filterAndAdd(RS, VRegs); |
| } |
| using const_iterator = decltype(VRegs)::const_iterator; |
| const_iterator begin() const { return VRegs.begin(); } |
| const_iterator end() const { return VRegs.end(); } |
| size_t size() const { return VRegs.size(); } |
| }; |
| } // namespace |
| |
| // Calculate the largest possible vregsPassed sets. These are the registers that |
| // can pass through an MBB live, but may not be live every time. It is assumed |
| // that all vregsPassed sets are empty before the call. |
| void MachineVerifier::calcRegsPassed() { |
| if (MF->empty()) |
| // ReversePostOrderTraversal doesn't handle empty functions. |
| return; |
| |
| for (const MachineBasicBlock *MB : |
| ReversePostOrderTraversal<const MachineFunction *>(MF)) { |
| FilteringVRegSet VRegs; |
| BBInfo &Info = MBBInfoMap[MB]; |
| assert(Info.reachable); |
| |
| VRegs.addToFilter(Info.regsKilled); |
| VRegs.addToFilter(Info.regsLiveOut); |
| for (const MachineBasicBlock *Pred : MB->predecessors()) { |
| const BBInfo &PredInfo = MBBInfoMap[Pred]; |
| if (!PredInfo.reachable) |
| continue; |
| |
| VRegs.add(PredInfo.regsLiveOut); |
| VRegs.add(PredInfo.vregsPassed); |
| } |
| Info.vregsPassed.reserve(VRegs.size()); |
| Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); |
| } |
| } |
| |
| // Calculate the set of virtual registers that must be passed through each basic |
| // block in order to satisfy the requirements of successor blocks. This is very |
| // similar to calcRegsPassed, only backwards. |
| void MachineVerifier::calcRegsRequired() { |
| // First push live-in regs to predecessors' vregsRequired. |
| SmallPtrSet<const MachineBasicBlock*, 8> todo; |
| for (const auto &MBB : *MF) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
| BBInfo &PInfo = MBBInfoMap[Pred]; |
| if (PInfo.addRequired(MInfo.vregsLiveIn)) |
| todo.insert(Pred); |
| } |
| |
| // Handle the PHI node. |
| for (const MachineInstr &MI : MBB.phis()) { |
| for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { |
| // Skip those Operands which are undef regs or not regs. |
| if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) |
| continue; |
| |
| // Get register and predecessor for one PHI edge. |
| Register Reg = MI.getOperand(i).getReg(); |
| const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); |
| |
| BBInfo &PInfo = MBBInfoMap[Pred]; |
| if (PInfo.addRequired(Reg)) |
| todo.insert(Pred); |
| } |
| } |
| } |
| |
| // Iteratively push vregsRequired to predecessors. This will converge to the |
| // same final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| if (Pred == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[Pred]; |
| if (SInfo.addRequired(MInfo.vregsRequired)) |
| todo.insert(Pred); |
| } |
| } |
| } |
| |
| // Check PHI instructions at the beginning of MBB. It is assumed that |
| // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
| void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| |
| SmallPtrSet<const MachineBasicBlock*, 8> seen; |
| for (const MachineInstr &Phi : MBB) { |
| if (!Phi.isPHI()) |
| break; |
| seen.clear(); |
| |
| const MachineOperand &MODef = Phi.getOperand(0); |
| if (!MODef.isReg() || !MODef.isDef()) { |
| report("Expected first PHI operand to be a register def", &MODef, 0); |
| continue; |
| } |
| if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || |
| MODef.isEarlyClobber() || MODef.isDebug()) |
| report("Unexpected flag on PHI operand", &MODef, 0); |
| Register DefReg = MODef.getReg(); |
| if (!Register::isVirtualRegister(DefReg)) |
| report("Expected first PHI operand to be a virtual register", &MODef, 0); |
| |
| for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { |
| const MachineOperand &MO0 = Phi.getOperand(I); |
| if (!MO0.isReg()) { |
| report("Expected PHI operand to be a register", &MO0, I); |
| continue; |
| } |
| if (MO0.isImplicit() ||<
|