blob: 4c0172a930b595d95eb85425140320c995963dfb [file] [log] [blame]
//===- LiveRegMatrix.cpp - Track register interference --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the LiveRegMatrix analysis pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalUnion.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumAssigned , "Number of registers assigned");
STATISTIC(NumUnassigned , "Number of registers unassigned");
char LiveRegMatrix::ID = 0;
INITIALIZE_PASS_BEGIN(LiveRegMatrix, "liveregmatrix",
"Live Register Matrix", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(LiveRegMatrix, "liveregmatrix",
"Live Register Matrix", false, false)
LiveRegMatrix::LiveRegMatrix() : MachineFunctionPass(ID) {}
void LiveRegMatrix::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<LiveIntervals>();
AU.addRequiredTransitive<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool LiveRegMatrix::runOnMachineFunction(MachineFunction &MF) {
TRI = MF.getSubtarget().getRegisterInfo();
LIS = &getAnalysis<LiveIntervals>();
VRM = &getAnalysis<VirtRegMap>();
unsigned NumRegUnits = TRI->getNumRegUnits();
if (NumRegUnits != Matrix.size())
Queries.reset(new LiveIntervalUnion::Query[NumRegUnits]);
Matrix.init(LIUAlloc, NumRegUnits);
// Make sure no stale queries get reused.
invalidateVirtRegs();
return false;
}
void LiveRegMatrix::releaseMemory() {
for (unsigned i = 0, e = Matrix.size(); i != e; ++i) {
Matrix[i].clear();
// No need to clear Queries here, since LiveIntervalUnion::Query doesn't
// have anything important to clear and LiveRegMatrix's runOnFunction()
// does a std::unique_ptr::reset anyways.
}
}
template <typename Callable>
static bool foreachUnit(const TargetRegisterInfo *TRI,
LiveInterval &VRegInterval, MCRegister PhysReg,
Callable Func) {
if (VRegInterval.hasSubRanges()) {
for (MCRegUnitMaskIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
unsigned Unit = (*Units).first;
LaneBitmask Mask = (*Units).second;
for (LiveInterval::SubRange &S : VRegInterval.subranges()) {
if ((S.LaneMask & Mask).any()) {
if (Func(Unit, S))
return true;
break;
}
}
}
} else {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
if (Func(*Units, VRegInterval))
return true;
}
}
return false;
}
void LiveRegMatrix::assign(LiveInterval &VirtReg, MCRegister PhysReg) {
LLVM_DEBUG(dbgs() << "assigning " << printReg(VirtReg.reg(), TRI) << " to "
<< printReg(PhysReg, TRI) << ':');
assert(!VRM->hasPhys(VirtReg.reg()) && "Duplicate VirtReg assignment");
VRM->assignVirt2Phys(VirtReg.reg(), PhysReg);
foreachUnit(
TRI, VirtReg, PhysReg, [&](unsigned Unit, const LiveRange &Range) {
LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << ' ' << Range);
Matrix[Unit].unify(VirtReg, Range);
return false;
});
++NumAssigned;
LLVM_DEBUG(dbgs() << '\n');
}
void LiveRegMatrix::unassign(LiveInterval &VirtReg) {
Register PhysReg = VRM->getPhys(VirtReg.reg());
LLVM_DEBUG(dbgs() << "unassigning " << printReg(VirtReg.reg(), TRI)
<< " from " << printReg(PhysReg, TRI) << ':');
VRM->clearVirt(VirtReg.reg());
foreachUnit(TRI, VirtReg, PhysReg,
[&](unsigned Unit, const LiveRange &Range) {
LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI));
Matrix[Unit].extract(VirtReg, Range);
return false;
});
++NumUnassigned;
LLVM_DEBUG(dbgs() << '\n');
}
bool LiveRegMatrix::isPhysRegUsed(MCRegister PhysReg) const {
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
if (!Matrix[*Unit].empty())
return true;
}
return false;
}
bool LiveRegMatrix::checkRegMaskInterference(LiveInterval &VirtReg,
MCRegister PhysReg) {
// Check if the cached information is valid.
// The same BitVector can be reused for all PhysRegs.
// We could cache multiple VirtRegs if it becomes necessary.
if (RegMaskVirtReg != VirtReg.reg() || RegMaskTag != UserTag) {
RegMaskVirtReg = VirtReg.reg();
RegMaskTag = UserTag;
RegMaskUsable.clear();
LIS->checkRegMaskInterference(VirtReg, RegMaskUsable);
}
// The BitVector is indexed by PhysReg, not register unit.
// Regmask interference is more fine grained than regunits.
// For example, a Win64 call can clobber %ymm8 yet preserve %xmm8.
return !RegMaskUsable.empty() && (!PhysReg || !RegMaskUsable.test(PhysReg));
}
bool LiveRegMatrix::checkRegUnitInterference(LiveInterval &VirtReg,
MCRegister PhysReg) {
if (VirtReg.empty())
return false;
CoalescerPair CP(VirtReg.reg(), PhysReg, *TRI);
bool Result = foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
const LiveRange &Range) {
const LiveRange &UnitRange = LIS->getRegUnit(Unit);
return Range.overlaps(UnitRange, CP, *LIS->getSlotIndexes());
});
return Result;
}
LiveIntervalUnion::Query &LiveRegMatrix::query(const LiveRange &LR,
MCRegister RegUnit) {
LiveIntervalUnion::Query &Q = Queries[RegUnit];
Q.init(UserTag, LR, Matrix[RegUnit]);
return Q;
}
LiveRegMatrix::InterferenceKind
LiveRegMatrix::checkInterference(LiveInterval &VirtReg, MCRegister PhysReg) {
if (VirtReg.empty())
return IK_Free;
// Regmask interference is the fastest check.
if (checkRegMaskInterference(VirtReg, PhysReg))
return IK_RegMask;
// Check for fixed interference.
if (checkRegUnitInterference(VirtReg, PhysReg))
return IK_RegUnit;
// Check the matrix for virtual register interference.
bool Interference = foreachUnit(TRI, VirtReg, PhysReg,
[&](MCRegister Unit, const LiveRange &LR) {
return query(LR, Unit).checkInterference();
});
if (Interference)
return IK_VirtReg;
return IK_Free;
}
bool LiveRegMatrix::checkInterference(SlotIndex Start, SlotIndex End,
MCRegister PhysReg) {
// Construct artificial live range containing only one segment [Start, End).
VNInfo valno(0, Start);
LiveRange::Segment Seg(Start, End, &valno);
LiveRange LR;
LR.addSegment(Seg);
// Check for interference with that segment
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
// LR is stack-allocated. LiveRegMatrix caches queries by a key that
// includes the address of the live range. If (for the same reg unit) this
// checkInterference overload is called twice, without any other query()
// calls in between (on heap-allocated LiveRanges) - which would invalidate
// the cached query - the LR address seen the second time may well be the
// same as that seen the first time, while the Start/End/valno may not - yet
// the same cached result would be fetched. To avoid that, we don't cache
// this query.
//
// FIXME: the usability of the Query API needs to be improved to avoid
// subtle bugs due to query identity. Avoiding caching, for example, would
// greatly simplify things.
LiveIntervalUnion::Query Q;
Q.reset(UserTag, LR, Matrix[*Units]);
if (Q.checkInterference())
return true;
}
return false;
}
Register LiveRegMatrix::getOneVReg(unsigned PhysReg) const {
LiveInterval *VRegInterval = nullptr;
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
if ((VRegInterval = Matrix[*Unit].getOneVReg()))
return VRegInterval->reg();
}
return MCRegister::NoRegister;
}