| //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The LiveRangeEdit class represents changes done to a virtual register when it |
| // is spilled or split. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveRangeEdit.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); |
| STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); |
| STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); |
| |
| void LiveRangeEdit::Delegate::anchor() { } |
| |
| LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, |
| bool createSubRanges) { |
| Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); |
| if (VRM) |
| VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); |
| |
| LiveInterval &LI = LIS.createEmptyInterval(VReg); |
| if (Parent && !Parent->isSpillable()) |
| LI.markNotSpillable(); |
| if (createSubRanges) { |
| // Create empty subranges if the OldReg's interval has them. Do not create |
| // the main range here---it will be constructed later after the subranges |
| // have been finalized. |
| LiveInterval &OldLI = LIS.getInterval(OldReg); |
| VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); |
| for (LiveInterval::SubRange &S : OldLI.subranges()) |
| LI.createSubRange(Alloc, S.LaneMask); |
| } |
| return LI; |
| } |
| |
| Register LiveRangeEdit::createFrom(Register OldReg) { |
| Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); |
| if (VRM) { |
| VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); |
| } |
| // FIXME: Getting the interval here actually computes it. |
| // In theory, this may not be what we want, but in practice |
| // the createEmptyIntervalFrom API is used when this is not |
| // the case. Generally speaking we just want to annotate the |
| // LiveInterval when it gets created but we cannot do that at |
| // the moment. |
| if (Parent && !Parent->isSpillable()) |
| LIS.getInterval(VReg).markNotSpillable(); |
| return VReg; |
| } |
| |
| bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, |
| const MachineInstr *DefMI, |
| AAResults *aa) { |
| assert(DefMI && "Missing instruction"); |
| ScannedRemattable = true; |
| if (!TII.isTriviallyReMaterializable(*DefMI, aa)) |
| return false; |
| Remattable.insert(VNI); |
| return true; |
| } |
| |
| void LiveRangeEdit::scanRemattable(AAResults *aa) { |
| for (VNInfo *VNI : getParent().valnos) { |
| if (VNI->isUnused()) |
| continue; |
| unsigned Original = VRM->getOriginal(getReg()); |
| LiveInterval &OrigLI = LIS.getInterval(Original); |
| VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); |
| if (!OrigVNI) |
| continue; |
| MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); |
| if (!DefMI) |
| continue; |
| checkRematerializable(OrigVNI, DefMI, aa); |
| } |
| ScannedRemattable = true; |
| } |
| |
| bool LiveRangeEdit::anyRematerializable(AAResults *aa) { |
| if (!ScannedRemattable) |
| scanRemattable(aa); |
| return !Remattable.empty(); |
| } |
| |
| /// allUsesAvailableAt - Return true if all registers used by OrigMI at |
| /// OrigIdx are also available with the same value at UseIdx. |
| bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, |
| SlotIndex OrigIdx, |
| SlotIndex UseIdx) const { |
| OrigIdx = OrigIdx.getRegSlot(true); |
| UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true)); |
| for (const MachineOperand &MO : OrigMI->operands()) { |
| if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) |
| continue; |
| |
| // We can't remat physreg uses, unless it is a constant or target wants |
| // to ignore this use. |
| if (Register::isPhysicalRegister(MO.getReg())) { |
| if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO)) |
| continue; |
| return false; |
| } |
| |
| LiveInterval &li = LIS.getInterval(MO.getReg()); |
| const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); |
| if (!OVNI) |
| continue; |
| |
| // Don't allow rematerialization immediately after the original def. |
| // It would be incorrect if OrigMI redefines the register. |
| // See PR14098. |
| if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) |
| return false; |
| |
| if (OVNI != li.getVNInfoAt(UseIdx)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, |
| SlotIndex UseIdx, bool cheapAsAMove) { |
| assert(ScannedRemattable && "Call anyRematerializable first"); |
| |
| // Use scanRemattable info. |
| if (!Remattable.count(OrigVNI)) |
| return false; |
| |
| // No defining instruction provided. |
| SlotIndex DefIdx; |
| assert(RM.OrigMI && "No defining instruction for remattable value"); |
| DefIdx = LIS.getInstructionIndex(*RM.OrigMI); |
| |
| // If only cheap remats were requested, bail out early. |
| if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) |
| return false; |
| |
| // Verify that all used registers are available with the same values. |
| if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) |
| return false; |
| |
| return true; |
| } |
| |
| SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, |
| const Remat &RM, |
| const TargetRegisterInfo &tri, |
| bool Late) { |
| assert(RM.OrigMI && "Invalid remat"); |
| TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); |
| // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg |
| // to false anyway in case the isDead flag of RM.OrigMI's dest register |
| // is true. |
| (*--MI).getOperand(0).setIsDead(false); |
| Rematted.insert(RM.ParentVNI); |
| return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); |
| } |
| |
| void LiveRangeEdit::eraseVirtReg(Register Reg) { |
| if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) |
| LIS.removeInterval(Reg); |
| } |
| |
| bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, |
| SmallVectorImpl<MachineInstr*> &Dead) { |
| MachineInstr *DefMI = nullptr, *UseMI = nullptr; |
| |
| // Check that there is a single def and a single use. |
| for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) { |
| MachineInstr *MI = MO.getParent(); |
| if (MO.isDef()) { |
| if (DefMI && DefMI != MI) |
| return false; |
| if (!MI->canFoldAsLoad()) |
| return false; |
| DefMI = MI; |
| } else if (!MO.isUndef()) { |
| if (UseMI && UseMI != MI) |
| return false; |
| // FIXME: Targets don't know how to fold subreg uses. |
| if (MO.getSubReg()) |
| return false; |
| UseMI = MI; |
| } |
| } |
| if (!DefMI || !UseMI) |
| return false; |
| |
| // Since we're moving the DefMI load, make sure we're not extending any live |
| // ranges. |
| if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), |
| LIS.getInstructionIndex(*UseMI))) |
| return false; |
| |
| // We also need to make sure it is safe to move the load. |
| // Assume there are stores between DefMI and UseMI. |
| bool SawStore = true; |
| if (!DefMI->isSafeToMove(nullptr, SawStore)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI |
| << " into single use: " << *UseMI); |
| |
| SmallVector<unsigned, 8> Ops; |
| if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second) |
| return false; |
| |
| MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); |
| if (!FoldMI) |
| return false; |
| LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); |
| LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); |
| // Update the call site info. |
| if (UseMI->shouldUpdateCallSiteInfo()) |
| UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); |
| UseMI->eraseFromParent(); |
| DefMI->addRegisterDead(LI->reg(), nullptr); |
| Dead.push_back(DefMI); |
| ++NumDCEFoldedLoads; |
| return true; |
| } |
| |
| bool LiveRangeEdit::useIsKill(const LiveInterval &LI, |
| const MachineOperand &MO) const { |
| const MachineInstr &MI = *MO.getParent(); |
| SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); |
| if (LI.Query(Idx).isKill()) |
| return true; |
| const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| unsigned SubReg = MO.getSubReg(); |
| LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); |
| for (const LiveInterval::SubRange &S : LI.subranges()) { |
| if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Find all live intervals that need to shrink, then remove the instruction. |
| void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, |
| AAResults *AA) { |
| assert(MI->allDefsAreDead() && "Def isn't really dead"); |
| SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); |
| |
| // Never delete a bundled instruction. |
| if (MI->isBundled()) { |
| return; |
| } |
| // Never delete inline asm. |
| if (MI->isInlineAsm()) { |
| LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); |
| return; |
| } |
| |
| // Use the same criteria as DeadMachineInstructionElim. |
| bool SawStore = false; |
| if (!MI->isSafeToMove(nullptr, SawStore)) { |
| LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); |
| |
| // Collect virtual registers to be erased after MI is gone. |
| SmallVector<unsigned, 8> RegsToErase; |
| bool ReadsPhysRegs = false; |
| bool isOrigDef = false; |
| unsigned Dest; |
| // Only optimize rematerialize case when the instruction has one def, since |
| // otherwise we could leave some dead defs in the code. This case is |
| // extremely rare. |
| if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && |
| MI->getDesc().getNumDefs() == 1) { |
| Dest = MI->getOperand(0).getReg(); |
| unsigned Original = VRM->getOriginal(Dest); |
| LiveInterval &OrigLI = LIS.getInterval(Original); |
| VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); |
| // The original live-range may have been shrunk to |
| // an empty live-range. It happens when it is dead, but |
| // we still keep it around to be able to rematerialize |
| // other values that depend on it. |
| if (OrigVNI) |
| isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); |
| } |
| |
| bool HasLiveVRegUses = false; |
| |
| // Check for live intervals that may shrink |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Register::isVirtualRegister(Reg)) { |
| // Check if MI reads any unreserved physregs. |
| if (Reg && MO.readsReg() && !MRI.isReserved(Reg)) |
| ReadsPhysRegs = true; |
| else if (MO.isDef()) |
| LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); |
| continue; |
| } |
| LiveInterval &LI = LIS.getInterval(Reg); |
| |
| // Shrink read registers, unless it is likely to be expensive and |
| // unlikely to change anything. We typically don't want to shrink the |
| // PIC base register that has lots of uses everywhere. |
| // Always shrink COPY uses that probably come from live range splitting. |
| if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) || |
| (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO)))) |
| ToShrink.insert(&LI); |
| else if (MO.readsReg()) |
| HasLiveVRegUses = true; |
| |
| // Remove defined value. |
| if (MO.isDef()) { |
| if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) |
| TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); |
| LIS.removeVRegDefAt(LI, Idx); |
| if (LI.empty()) |
| RegsToErase.push_back(Reg); |
| } |
| } |
| |
| // Currently, we don't support DCE of physreg live ranges. If MI reads |
| // any unreserved physregs, don't erase the instruction, but turn it into |
| // a KILL instead. This way, the physreg live ranges don't end up |
| // dangling. |
| // FIXME: It would be better to have something like shrinkToUses() for |
| // physregs. That could potentially enable more DCE and it would free up |
| // the physreg. It would not happen often, though. |
| if (ReadsPhysRegs) { |
| MI->setDesc(TII.get(TargetOpcode::KILL)); |
| // Remove all operands that aren't physregs. |
| for (unsigned i = MI->getNumOperands(); i; --i) { |
| const MachineOperand &MO = MI->getOperand(i-1); |
| if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) |
| continue; |
| MI->RemoveOperand(i-1); |
| } |
| LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); |
| } else { |
| // If the dest of MI is an original reg and MI is reMaterializable, |
| // don't delete the inst. Replace the dest with a new reg, and keep |
| // the inst for remat of other siblings. The inst is saved in |
| // LiveRangeEdit::DeadRemats and will be deleted after all the |
| // allocations of the func are done. |
| // However, immediately delete instructions which have unshrunk virtual |
| // register uses. That may provoke RA to split an interval at the KILL |
| // and later result in an invalid live segment end. |
| if (isOrigDef && DeadRemats && !HasLiveVRegUses && |
| TII.isTriviallyReMaterializable(*MI, AA)) { |
| LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); |
| VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); |
| NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); |
| pop_back(); |
| DeadRemats->insert(MI); |
| const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| MI->substituteRegister(Dest, NewLI.reg(), 0, TRI); |
| MI->getOperand(0).setIsDead(true); |
| } else { |
| if (TheDelegate) |
| TheDelegate->LRE_WillEraseInstruction(MI); |
| LIS.RemoveMachineInstrFromMaps(*MI); |
| MI->eraseFromParent(); |
| ++NumDCEDeleted; |
| } |
| } |
| |
| // Erase any virtregs that are now empty and unused. There may be <undef> |
| // uses around. Keep the empty live range in that case. |
| for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { |
| Register Reg = RegsToErase[i]; |
| if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { |
| ToShrink.remove(&LIS.getInterval(Reg)); |
| eraseVirtReg(Reg); |
| } |
| } |
| } |
| |
| void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, |
| ArrayRef<Register> RegsBeingSpilled, |
| AAResults *AA) { |
| ToShrinkSet ToShrink; |
| |
| for (;;) { |
| // Erase all dead defs. |
| while (!Dead.empty()) |
| eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); |
| |
| if (ToShrink.empty()) |
| break; |
| |
| // Shrink just one live interval. Then delete new dead defs. |
| LiveInterval *LI = ToShrink.pop_back_val(); |
| if (foldAsLoad(LI, Dead)) |
| continue; |
| unsigned VReg = LI->reg(); |
| if (TheDelegate) |
| TheDelegate->LRE_WillShrinkVirtReg(VReg); |
| if (!LIS.shrinkToUses(LI, &Dead)) |
| continue; |
| |
| // Don't create new intervals for a register being spilled. |
| // The new intervals would have to be spilled anyway so its not worth it. |
| // Also they currently aren't spilled so creating them and not spilling |
| // them results in incorrect code. |
| if (llvm::is_contained(RegsBeingSpilled, VReg)) |
| continue; |
| |
| // LI may have been separated, create new intervals. |
| LI->RenumberValues(); |
| SmallVector<LiveInterval*, 8> SplitLIs; |
| LIS.splitSeparateComponents(*LI, SplitLIs); |
| if (!SplitLIs.empty()) |
| ++NumFracRanges; |
| |
| Register Original = VRM ? VRM->getOriginal(VReg) : Register(); |
| for (const LiveInterval *SplitLI : SplitLIs) { |
| // If LI is an original interval that hasn't been split yet, make the new |
| // intervals their own originals instead of referring to LI. The original |
| // interval must contain all the split products, and LI doesn't. |
| if (Original != VReg && Original != 0) |
| VRM->setIsSplitFromReg(SplitLI->reg(), Original); |
| if (TheDelegate) |
| TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg); |
| } |
| } |
| } |
| |
| // Keep track of new virtual registers created via |
| // MachineRegisterInfo::createVirtualRegister. |
| void |
| LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { |
| if (VRM) |
| VRM->grow(); |
| |
| NewRegs.push_back(VReg); |
| } |
| |
| void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, |
| VirtRegAuxInfo &VRAI) { |
| for (unsigned I = 0, Size = size(); I < Size; ++I) { |
| LiveInterval &LI = LIS.getInterval(get(I)); |
| if (MRI.recomputeRegClass(LI.reg())) |
| LLVM_DEBUG({ |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| dbgs() << "Inflated " << printReg(LI.reg()) << " to " |
| << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; |
| }); |
| VRAI.calculateSpillWeightAndHint(LI); |
| } |
| } |