| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass munges the code in the input function to better prepare it for |
| // SelectionDAG-based code generation. This works around limitations in it's |
| // basic-block-at-a-time approach. It should eventually be removed. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/IR/ValueMap.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "codegenprepare" |
| |
| STATISTIC(NumBlocksElim, "Number of blocks eliminated"); |
| STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); |
| STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); |
| STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " |
| "sunken Cmps"); |
| STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " |
| "of sunken Casts"); |
| STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " |
| "computations were sunk"); |
| STATISTIC(NumMemoryInstsPhiCreated, |
| "Number of phis created when address " |
| "computations were sunk to memory instructions"); |
| STATISTIC(NumMemoryInstsSelectCreated, |
| "Number of select created when address " |
| "computations were sunk to memory instructions"); |
| STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); |
| STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); |
| STATISTIC(NumAndsAdded, |
| "Number of and mask instructions added to form ext loads"); |
| STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); |
| STATISTIC(NumRetsDup, "Number of return instructions duplicated"); |
| STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); |
| STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); |
| STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); |
| |
| static cl::opt<bool> DisableBranchOpts( |
| "disable-cgp-branch-opts", cl::Hidden, cl::init(false), |
| cl::desc("Disable branch optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> |
| DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), |
| cl::desc("Disable GC optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> DisableSelectToBranch( |
| "disable-cgp-select2branch", cl::Hidden, cl::init(false), |
| cl::desc("Disable select to branch conversion.")); |
| |
| static cl::opt<bool> AddrSinkUsingGEPs( |
| "addr-sink-using-gep", cl::Hidden, cl::init(true), |
| cl::desc("Address sinking in CGP using GEPs.")); |
| |
| static cl::opt<bool> EnableAndCmpSinking( |
| "enable-andcmp-sinking", cl::Hidden, cl::init(true), |
| cl::desc("Enable sinkinig and/cmp into branches.")); |
| |
| static cl::opt<bool> DisableStoreExtract( |
| "disable-cgp-store-extract", cl::Hidden, cl::init(false), |
| cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> StressStoreExtract( |
| "stress-cgp-store-extract", cl::Hidden, cl::init(false), |
| cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); |
| |
| static cl::opt<bool> DisableExtLdPromotion( |
| "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), |
| cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " |
| "CodeGenPrepare")); |
| |
| static cl::opt<bool> StressExtLdPromotion( |
| "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), |
| cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " |
| "optimization in CodeGenPrepare")); |
| |
| static cl::opt<bool> DisablePreheaderProtect( |
| "disable-preheader-prot", cl::Hidden, cl::init(false), |
| cl::desc("Disable protection against removing loop preheaders")); |
| |
| static cl::opt<bool> ProfileGuidedSectionPrefix( |
| "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, |
| cl::desc("Use profile info to add section prefix for hot/cold functions")); |
| |
| static cl::opt<bool> ProfileUnknownInSpecialSection( |
| "profile-unknown-in-special-section", cl::Hidden, cl::init(false), |
| cl::ZeroOrMore, |
| cl::desc("In profiling mode like sampleFDO, if a function doesn't have " |
| "profile, we cannot tell the function is cold for sure because " |
| "it may be a function newly added without ever being sampled. " |
| "With the flag enabled, compiler can put such profile unknown " |
| "functions into a special section, so runtime system can choose " |
| "to handle it in a different way than .text section, to save " |
| "RAM for example. ")); |
| |
| static cl::opt<unsigned> FreqRatioToSkipMerge( |
| "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), |
| cl::desc("Skip merging empty blocks if (frequency of empty block) / " |
| "(frequency of destination block) is greater than this ratio")); |
| |
| static cl::opt<bool> ForceSplitStore( |
| "force-split-store", cl::Hidden, cl::init(false), |
| cl::desc("Force store splitting no matter what the target query says.")); |
| |
| static cl::opt<bool> |
| EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, |
| cl::desc("Enable merging of redundant sexts when one is dominating" |
| " the other."), cl::init(true)); |
| |
| static cl::opt<bool> DisableComplexAddrModes( |
| "disable-complex-addr-modes", cl::Hidden, cl::init(false), |
| cl::desc("Disables combining addressing modes with different parts " |
| "in optimizeMemoryInst.")); |
| |
| static cl::opt<bool> |
| AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), |
| cl::desc("Allow creation of Phis in Address sinking.")); |
| |
| static cl::opt<bool> |
| AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), |
| cl::desc("Allow creation of selects in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineBaseReg( |
| "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of BaseReg field in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineBaseGV( |
| "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of BaseGV field in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineBaseOffs( |
| "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of BaseOffs field in Address sinking.")); |
| |
| static cl::opt<bool> AddrSinkCombineScaledReg( |
| "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), |
| cl::desc("Allow combining of ScaledReg field in Address sinking.")); |
| |
| static cl::opt<bool> |
| EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, |
| cl::init(true), |
| cl::desc("Enable splitting large offset of GEP.")); |
| |
| static cl::opt<bool> EnableICMP_EQToICMP_ST( |
| "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), |
| cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); |
| |
| static cl::opt<bool> |
| VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), |
| cl::desc("Enable BFI update verification for " |
| "CodeGenPrepare.")); |
| |
| static cl::opt<bool> OptimizePhiTypes( |
| "cgp-optimize-phi-types", cl::Hidden, cl::init(false), |
| cl::desc("Enable converting phi types in CodeGenPrepare")); |
| |
| namespace { |
| |
| enum ExtType { |
| ZeroExtension, // Zero extension has been seen. |
| SignExtension, // Sign extension has been seen. |
| BothExtension // This extension type is used if we saw sext after |
| // ZeroExtension had been set, or if we saw zext after |
| // SignExtension had been set. It makes the type |
| // information of a promoted instruction invalid. |
| }; |
| |
| using SetOfInstrs = SmallPtrSet<Instruction *, 16>; |
| using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; |
| using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; |
| using SExts = SmallVector<Instruction *, 16>; |
| using ValueToSExts = DenseMap<Value *, SExts>; |
| |
| class TypePromotionTransaction; |
| |
| class CodeGenPrepare : public FunctionPass { |
| const TargetMachine *TM = nullptr; |
| const TargetSubtargetInfo *SubtargetInfo; |
| const TargetLowering *TLI = nullptr; |
| const TargetRegisterInfo *TRI; |
| const TargetTransformInfo *TTI = nullptr; |
| const TargetLibraryInfo *TLInfo; |
| const LoopInfo *LI; |
| std::unique_ptr<BlockFrequencyInfo> BFI; |
| std::unique_ptr<BranchProbabilityInfo> BPI; |
| ProfileSummaryInfo *PSI; |
| |
| /// As we scan instructions optimizing them, this is the next instruction |
| /// to optimize. Transforms that can invalidate this should update it. |
| BasicBlock::iterator CurInstIterator; |
| |
| /// Keeps track of non-local addresses that have been sunk into a block. |
| /// This allows us to avoid inserting duplicate code for blocks with |
| /// multiple load/stores of the same address. The usage of WeakTrackingVH |
| /// enables SunkAddrs to be treated as a cache whose entries can be |
| /// invalidated if a sunken address computation has been erased. |
| ValueMap<Value*, WeakTrackingVH> SunkAddrs; |
| |
| /// Keeps track of all instructions inserted for the current function. |
| SetOfInstrs InsertedInsts; |
| |
| /// Keeps track of the type of the related instruction before their |
| /// promotion for the current function. |
| InstrToOrigTy PromotedInsts; |
| |
| /// Keep track of instructions removed during promotion. |
| SetOfInstrs RemovedInsts; |
| |
| /// Keep track of sext chains based on their initial value. |
| DenseMap<Value *, Instruction *> SeenChainsForSExt; |
| |
| /// Keep track of GEPs accessing the same data structures such as structs or |
| /// arrays that are candidates to be split later because of their large |
| /// size. |
| MapVector< |
| AssertingVH<Value>, |
| SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> |
| LargeOffsetGEPMap; |
| |
| /// Keep track of new GEP base after splitting the GEPs having large offset. |
| SmallSet<AssertingVH<Value>, 2> NewGEPBases; |
| |
| /// Map serial numbers to Large offset GEPs. |
| DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; |
| |
| /// Keep track of SExt promoted. |
| ValueToSExts ValToSExtendedUses; |
| |
| /// True if the function has the OptSize attribute. |
| bool OptSize; |
| |
| /// DataLayout for the Function being processed. |
| const DataLayout *DL = nullptr; |
| |
| /// Building the dominator tree can be expensive, so we only build it |
| /// lazily and update it when required. |
| std::unique_ptr<DominatorTree> DT; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| CodeGenPrepare() : FunctionPass(ID) { |
| initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| StringRef getPassName() const override { return "CodeGen Prepare"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| // FIXME: When we can selectively preserve passes, preserve the domtree. |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| } |
| |
| private: |
| template <typename F> |
| void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { |
| // Substituting can cause recursive simplifications, which can invalidate |
| // our iterator. Use a WeakTrackingVH to hold onto it in case this |
| // happens. |
| Value *CurValue = &*CurInstIterator; |
| WeakTrackingVH IterHandle(CurValue); |
| |
| f(); |
| |
| // If the iterator instruction was recursively deleted, start over at the |
| // start of the block. |
| if (IterHandle != CurValue) { |
| CurInstIterator = BB->begin(); |
| SunkAddrs.clear(); |
| } |
| } |
| |
| // Get the DominatorTree, building if necessary. |
| DominatorTree &getDT(Function &F) { |
| if (!DT) |
| DT = std::make_unique<DominatorTree>(F); |
| return *DT; |
| } |
| |
| void removeAllAssertingVHReferences(Value *V); |
| bool eliminateAssumptions(Function &F); |
| bool eliminateFallThrough(Function &F); |
| bool eliminateMostlyEmptyBlocks(Function &F); |
| BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); |
| bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; |
| void eliminateMostlyEmptyBlock(BasicBlock *BB); |
| bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, |
| bool isPreheader); |
| bool makeBitReverse(Instruction &I); |
| bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); |
| bool optimizeInst(Instruction *I, bool &ModifiedDT); |
| bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, |
| Type *AccessTy, unsigned AddrSpace); |
| bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); |
| bool optimizeInlineAsmInst(CallInst *CS); |
| bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); |
| bool optimizeExt(Instruction *&I); |
| bool optimizeExtUses(Instruction *I); |
| bool optimizeLoadExt(LoadInst *Load); |
| bool optimizeShiftInst(BinaryOperator *BO); |
| bool optimizeFunnelShift(IntrinsicInst *Fsh); |
| bool optimizeSelectInst(SelectInst *SI); |
| bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); |
| bool optimizeSwitchInst(SwitchInst *SI); |
| bool optimizeExtractElementInst(Instruction *Inst); |
| bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); |
| bool fixupDbgValue(Instruction *I); |
| bool placeDbgValues(Function &F); |
| bool placePseudoProbes(Function &F); |
| bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, |
| LoadInst *&LI, Instruction *&Inst, bool HasPromoted); |
| bool tryToPromoteExts(TypePromotionTransaction &TPT, |
| const SmallVectorImpl<Instruction *> &Exts, |
| SmallVectorImpl<Instruction *> &ProfitablyMovedExts, |
| unsigned CreatedInstsCost = 0); |
| bool mergeSExts(Function &F); |
| bool splitLargeGEPOffsets(); |
| bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, |
| SmallPtrSetImpl<Instruction *> &DeletedInstrs); |
| bool optimizePhiTypes(Function &F); |
| bool performAddressTypePromotion( |
| Instruction *&Inst, |
| bool AllowPromotionWithoutCommonHeader, |
| bool HasPromoted, TypePromotionTransaction &TPT, |
| SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); |
| bool splitBranchCondition(Function &F, bool &ModifiedDT); |
| bool simplifyOffsetableRelocate(GCStatepointInst &I); |
| |
| bool tryToSinkFreeOperands(Instruction *I); |
| bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, |
| Value *Arg1, CmpInst *Cmp, |
| Intrinsic::ID IID); |
| bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); |
| bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); |
| bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); |
| void verifyBFIUpdates(Function &F); |
| }; |
| |
| } // end anonymous namespace |
| |
| char CodeGenPrepare::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, |
| "Optimize for code generation", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, |
| "Optimize for code generation", false, false) |
| |
| FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } |
| |
| bool CodeGenPrepare::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| DL = &F.getParent()->getDataLayout(); |
| |
| bool EverMadeChange = false; |
| // Clear per function information. |
| InsertedInsts.clear(); |
| PromotedInsts.clear(); |
| |
| TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
| SubtargetInfo = TM->getSubtargetImpl(F); |
| TLI = SubtargetInfo->getTargetLowering(); |
| TRI = SubtargetInfo->getRegisterInfo(); |
| TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| BPI.reset(new BranchProbabilityInfo(F, *LI)); |
| BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); |
| PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| OptSize = F.hasOptSize(); |
| if (ProfileGuidedSectionPrefix) { |
| // The hot attribute overwrites profile count based hotness while profile |
| // counts based hotness overwrite the cold attribute. |
| // This is a conservative behabvior. |
| if (F.hasFnAttribute(Attribute::Hot) || |
| PSI->isFunctionHotInCallGraph(&F, *BFI)) |
| F.setSectionPrefix("hot"); |
| // If PSI shows this function is not hot, we will placed the function |
| // into unlikely section if (1) PSI shows this is a cold function, or |
| // (2) the function has a attribute of cold. |
| else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || |
| F.hasFnAttribute(Attribute::Cold)) |
| F.setSectionPrefix("unlikely"); |
| else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && |
| PSI->isFunctionHotnessUnknown(F)) |
| F.setSectionPrefix("unknown"); |
| } |
| |
| /// This optimization identifies DIV instructions that can be |
| /// profitably bypassed and carried out with a shorter, faster divide. |
| if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { |
| const DenseMap<unsigned int, unsigned int> &BypassWidths = |
| TLI->getBypassSlowDivWidths(); |
| BasicBlock* BB = &*F.begin(); |
| while (BB != nullptr) { |
| // bypassSlowDivision may create new BBs, but we don't want to reapply the |
| // optimization to those blocks. |
| BasicBlock* Next = BB->getNextNode(); |
| // F.hasOptSize is already checked in the outer if statement. |
| if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) |
| EverMadeChange |= bypassSlowDivision(BB, BypassWidths); |
| BB = Next; |
| } |
| } |
| |
| // Get rid of @llvm.assume builtins before attempting to eliminate empty |
| // blocks, since there might be blocks that only contain @llvm.assume calls |
| // (plus arguments that we can get rid of). |
| EverMadeChange |= eliminateAssumptions(F); |
| |
| // Eliminate blocks that contain only PHI nodes and an |
| // unconditional branch. |
| EverMadeChange |= eliminateMostlyEmptyBlocks(F); |
| |
| bool ModifiedDT = false; |
| if (!DisableBranchOpts) |
| EverMadeChange |= splitBranchCondition(F, ModifiedDT); |
| |
| // Split some critical edges where one of the sources is an indirect branch, |
| // to help generate sane code for PHIs involving such edges. |
| EverMadeChange |= SplitIndirectBrCriticalEdges(F); |
| |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| DT.reset(); |
| for (BasicBlock &BB : llvm::make_early_inc_range(F)) { |
| bool ModifiedDTOnIteration = false; |
| MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); |
| |
| // Restart BB iteration if the dominator tree of the Function was changed |
| if (ModifiedDTOnIteration) |
| break; |
| } |
| if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) |
| MadeChange |= mergeSExts(F); |
| if (!LargeOffsetGEPMap.empty()) |
| MadeChange |= splitLargeGEPOffsets(); |
| MadeChange |= optimizePhiTypes(F); |
| |
| if (MadeChange) |
| eliminateFallThrough(F); |
| |
| // Really free removed instructions during promotion. |
| for (Instruction *I : RemovedInsts) |
| I->deleteValue(); |
| |
| EverMadeChange |= MadeChange; |
| SeenChainsForSExt.clear(); |
| ValToSExtendedUses.clear(); |
| RemovedInsts.clear(); |
| LargeOffsetGEPMap.clear(); |
| LargeOffsetGEPID.clear(); |
| } |
| |
| NewGEPBases.clear(); |
| SunkAddrs.clear(); |
| |
| if (!DisableBranchOpts) { |
| MadeChange = false; |
| // Use a set vector to get deterministic iteration order. The order the |
| // blocks are removed may affect whether or not PHI nodes in successors |
| // are removed. |
| SmallSetVector<BasicBlock*, 8> WorkList; |
| for (BasicBlock &BB : F) { |
| SmallVector<BasicBlock *, 2> Successors(successors(&BB)); |
| MadeChange |= ConstantFoldTerminator(&BB, true); |
| if (!MadeChange) continue; |
| |
| for (BasicBlock *Succ : Successors) |
| if (pred_empty(Succ)) |
| WorkList.insert(Succ); |
| } |
| |
| // Delete the dead blocks and any of their dead successors. |
| MadeChange |= !WorkList.empty(); |
| while (!WorkList.empty()) { |
| BasicBlock *BB = WorkList.pop_back_val(); |
| SmallVector<BasicBlock*, 2> Successors(successors(BB)); |
| |
| DeleteDeadBlock(BB); |
| |
| for (BasicBlock *Succ : Successors) |
| if (pred_empty(Succ)) |
| WorkList.insert(Succ); |
| } |
| |
| // Merge pairs of basic blocks with unconditional branches, connected by |
| // a single edge. |
| if (EverMadeChange || MadeChange) |
| MadeChange |= eliminateFallThrough(F); |
| |
| EverMadeChange |= MadeChange; |
| } |
| |
| if (!DisableGCOpts) { |
| SmallVector<GCStatepointInst *, 2> Statepoints; |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) |
| if (auto *SP = dyn_cast<GCStatepointInst>(&I)) |
| Statepoints.push_back(SP); |
| for (auto &I : Statepoints) |
| EverMadeChange |= simplifyOffsetableRelocate(*I); |
| } |
| |
| // Do this last to clean up use-before-def scenarios introduced by other |
| // preparatory transforms. |
| EverMadeChange |= placeDbgValues(F); |
| EverMadeChange |= placePseudoProbes(F); |
| |
| #ifndef NDEBUG |
| if (VerifyBFIUpdates) |
| verifyBFIUpdates(F); |
| #endif |
| |
| return EverMadeChange; |
| } |
| |
| bool CodeGenPrepare::eliminateAssumptions(Function &F) { |
| bool MadeChange = false; |
| for (BasicBlock &BB : F) { |
| CurInstIterator = BB.begin(); |
| while (CurInstIterator != BB.end()) { |
| Instruction *I = &*(CurInstIterator++); |
| if (auto *Assume = dyn_cast<AssumeInst>(I)) { |
| MadeChange = true; |
| Value *Operand = Assume->getOperand(0); |
| Assume->eraseFromParent(); |
| |
| resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { |
| RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); |
| }); |
| } |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// An instruction is about to be deleted, so remove all references to it in our |
| /// GEP-tracking data strcutures. |
| void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { |
| LargeOffsetGEPMap.erase(V); |
| NewGEPBases.erase(V); |
| |
| auto GEP = dyn_cast<GetElementPtrInst>(V); |
| if (!GEP) |
| return; |
| |
| LargeOffsetGEPID.erase(GEP); |
| |
| auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); |
| if (VecI == LargeOffsetGEPMap.end()) |
| return; |
| |
| auto &GEPVector = VecI->second; |
| llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); |
| |
| if (GEPVector.empty()) |
| LargeOffsetGEPMap.erase(VecI); |
| } |
| |
| // Verify BFI has been updated correctly by recomputing BFI and comparing them. |
| void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { |
| DominatorTree NewDT(F); |
| LoopInfo NewLI(NewDT); |
| BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); |
| BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); |
| NewBFI.verifyMatch(*BFI); |
| } |
| |
| /// Merge basic blocks which are connected by a single edge, where one of the |
| /// basic blocks has a single successor pointing to the other basic block, |
| /// which has a single predecessor. |
| bool CodeGenPrepare::eliminateFallThrough(Function &F) { |
| bool Changed = false; |
| // Scan all of the blocks in the function, except for the entry block. |
| // Use a temporary array to avoid iterator being invalidated when |
| // deleting blocks. |
| SmallVector<WeakTrackingVH, 16> Blocks; |
| for (auto &Block : llvm::drop_begin(F)) |
| Blocks.push_back(&Block); |
| |
| SmallSet<WeakTrackingVH, 16> Preds; |
| for (auto &Block : Blocks) { |
| auto *BB = cast_or_null<BasicBlock>(Block); |
| if (!BB) |
| continue; |
| // If the destination block has a single pred, then this is a trivial |
| // edge, just collapse it. |
| BasicBlock *SinglePred = BB->getSinglePredecessor(); |
| |
| // Don't merge if BB's address is taken. |
| if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; |
| |
| BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); |
| if (Term && !Term->isConditional()) { |
| Changed = true; |
| LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); |
| |
| // Merge BB into SinglePred and delete it. |
| MergeBlockIntoPredecessor(BB); |
| Preds.insert(SinglePred); |
| } |
| } |
| |
| // (Repeatedly) merging blocks into their predecessors can create redundant |
| // debug intrinsics. |
| for (auto &Pred : Preds) |
| if (auto *BB = cast_or_null<BasicBlock>(Pred)) |
| RemoveRedundantDbgInstrs(BB); |
| |
| return Changed; |
| } |
| |
| /// Find a destination block from BB if BB is mergeable empty block. |
| BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { |
| // If this block doesn't end with an uncond branch, ignore it. |
| BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!BI || !BI->isUnconditional()) |
| return nullptr; |
| |
| // If the instruction before the branch (skipping debug info) isn't a phi |
| // node, then other stuff is happening here. |
| BasicBlock::iterator BBI = BI->getIterator(); |
| if (BBI != BB->begin()) { |
| --BBI; |
| while (isa<DbgInfoIntrinsic>(BBI)) { |
| if (BBI == BB->begin()) |
| break; |
| --BBI; |
| } |
| if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) |
| return nullptr; |
| } |
| |
| // Do not break infinite loops. |
| BasicBlock *DestBB = BI->getSuccessor(0); |
| if (DestBB == BB) |
| return nullptr; |
| |
| if (!canMergeBlocks(BB, DestBB)) |
| DestBB = nullptr; |
| |
| return DestBB; |
| } |
| |
| /// Eliminate blocks that contain only PHI nodes, debug info directives, and an |
| /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split |
| /// edges in ways that are non-optimal for isel. Start by eliminating these |
| /// blocks so we can split them the way we want them. |
| bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { |
| SmallPtrSet<BasicBlock *, 16> Preheaders; |
| SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); |
| while (!LoopList.empty()) { |
| Loop *L = LoopList.pop_back_val(); |
| llvm::append_range(LoopList, *L); |
| if (BasicBlock *Preheader = L->getLoopPreheader()) |
| Preheaders.insert(Preheader); |
| } |
| |
| bool MadeChange = false; |
| // Copy blocks into a temporary array to avoid iterator invalidation issues |
| // as we remove them. |
| // Note that this intentionally skips the entry block. |
| SmallVector<WeakTrackingVH, 16> Blocks; |
| for (auto &Block : llvm::drop_begin(F)) |
| Blocks.push_back(&Block); |
| |
| for (auto &Block : Blocks) { |
| BasicBlock *BB = cast_or_null<BasicBlock>(Block); |
| if (!BB) |
| continue; |
| BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); |
| if (!DestBB || |
| !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) |
| continue; |
| |
| eliminateMostlyEmptyBlock(BB); |
| MadeChange = true; |
| } |
| return MadeChange; |
| } |
| |
| bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, |
| BasicBlock *DestBB, |
| bool isPreheader) { |
| // Do not delete loop preheaders if doing so would create a critical edge. |
| // Loop preheaders can be good locations to spill registers. If the |
| // preheader is deleted and we create a critical edge, registers may be |
| // spilled in the loop body instead. |
| if (!DisablePreheaderProtect && isPreheader && |
| !(BB->getSinglePredecessor() && |
| BB->getSinglePredecessor()->getSingleSuccessor())) |
| return false; |
| |
| // Skip merging if the block's successor is also a successor to any callbr |
| // that leads to this block. |
| // FIXME: Is this really needed? Is this a correctness issue? |
| for (BasicBlock *Pred : predecessors(BB)) { |
| if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) |
| for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) |
| if (DestBB == CBI->getSuccessor(i)) |
| return false; |
| } |
| |
| // Try to skip merging if the unique predecessor of BB is terminated by a |
| // switch or indirect branch instruction, and BB is used as an incoming block |
| // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to |
| // add COPY instructions in the predecessor of BB instead of BB (if it is not |
| // merged). Note that the critical edge created by merging such blocks wont be |
| // split in MachineSink because the jump table is not analyzable. By keeping |
| // such empty block (BB), ISel will place COPY instructions in BB, not in the |
| // predecessor of BB. |
| BasicBlock *Pred = BB->getUniquePredecessor(); |
| if (!Pred || |
| !(isa<SwitchInst>(Pred->getTerminator()) || |
| isa<IndirectBrInst>(Pred->getTerminator()))) |
| return true; |
| |
| if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) |
| return true; |
| |
| // We use a simple cost heuristic which determine skipping merging is |
| // profitable if the cost of skipping merging is less than the cost of |
| // merging : Cost(skipping merging) < Cost(merging BB), where the |
| // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and |
| // the Cost(merging BB) is Freq(Pred) * Cost(Copy). |
| // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : |
| // Freq(Pred) / Freq(BB) > 2. |
| // Note that if there are multiple empty blocks sharing the same incoming |
| // value for the PHIs in the DestBB, we consider them together. In such |
| // case, Cost(merging BB) will be the sum of their frequencies. |
| |
| if (!isa<PHINode>(DestBB->begin())) |
| return true; |
| |
| SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; |
| |
| // Find all other incoming blocks from which incoming values of all PHIs in |
| // DestBB are the same as the ones from BB. |
| for (BasicBlock *DestBBPred : predecessors(DestBB)) { |
| if (DestBBPred == BB) |
| continue; |
| |
| if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { |
| return DestPN.getIncomingValueForBlock(BB) == |
| DestPN.getIncomingValueForBlock(DestBBPred); |
| })) |
| SameIncomingValueBBs.insert(DestBBPred); |
| } |
| |
| // See if all BB's incoming values are same as the value from Pred. In this |
| // case, no reason to skip merging because COPYs are expected to be place in |
| // Pred already. |
| if (SameIncomingValueBBs.count(Pred)) |
| return true; |
| |
| BlockFrequency PredFreq = BFI->getBlockFreq(Pred); |
| BlockFrequency BBFreq = BFI->getBlockFreq(BB); |
| |
| for (auto *SameValueBB : SameIncomingValueBBs) |
| if (SameValueBB->getUniquePredecessor() == Pred && |
| DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) |
| BBFreq += BFI->getBlockFreq(SameValueBB); |
| |
| return PredFreq.getFrequency() <= |
| BBFreq.getFrequency() * FreqRatioToSkipMerge; |
| } |
| |
| /// Return true if we can merge BB into DestBB if there is a single |
| /// unconditional branch between them, and BB contains no other non-phi |
| /// instructions. |
| bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, |
| const BasicBlock *DestBB) const { |
| // We only want to eliminate blocks whose phi nodes are used by phi nodes in |
| // the successor. If there are more complex condition (e.g. preheaders), |
| // don't mess around with them. |
| for (const PHINode &PN : BB->phis()) { |
| for (const User *U : PN.users()) { |
| const Instruction *UI = cast<Instruction>(U); |
| if (UI->getParent() != DestBB || !isa<PHINode>(UI)) |
| return false; |
| // If User is inside DestBB block and it is a PHINode then check |
| // incoming value. If incoming value is not from BB then this is |
| // a complex condition (e.g. preheaders) we want to avoid here. |
| if (UI->getParent() == DestBB) { |
| if (const PHINode *UPN = dyn_cast<PHINode>(UI)) |
| for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { |
| Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); |
| if (Insn && Insn->getParent() == BB && |
| Insn->getParent() != UPN->getIncomingBlock(I)) |
| return false; |
| } |
| } |
| } |
| } |
| |
| // If BB and DestBB contain any common predecessors, then the phi nodes in BB |
| // and DestBB may have conflicting incoming values for the block. If so, we |
| // can't merge the block. |
| const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); |
| if (!DestBBPN) return true; // no conflict. |
| |
| // Collect the preds of BB. |
| SmallPtrSet<const BasicBlock*, 16> BBPreds; |
| if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { |
| // It is faster to get preds from a PHI than with pred_iterator. |
| for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) |
| BBPreds.insert(BBPN->getIncomingBlock(i)); |
| } else { |
| BBPreds.insert(pred_begin(BB), pred_end(BB)); |
| } |
| |
| // Walk the preds of DestBB. |
| for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *Pred = DestBBPN->getIncomingBlock(i); |
| if (BBPreds.count(Pred)) { // Common predecessor? |
| for (const PHINode &PN : DestBB->phis()) { |
| const Value *V1 = PN.getIncomingValueForBlock(Pred); |
| const Value *V2 = PN.getIncomingValueForBlock(BB); |
| |
| // If V2 is a phi node in BB, look up what the mapped value will be. |
| if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) |
| if (V2PN->getParent() == BB) |
| V2 = V2PN->getIncomingValueForBlock(Pred); |
| |
| // If there is a conflict, bail out. |
| if (V1 != V2) return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Eliminate a basic block that has only phi's and an unconditional branch in |
| /// it. |
| void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { |
| BranchInst *BI = cast<BranchInst>(BB->getTerminator()); |
| BasicBlock *DestBB = BI->getSuccessor(0); |
| |
| LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" |
| << *BB << *DestBB); |
| |
| // If the destination block has a single pred, then this is a trivial edge, |
| // just collapse it. |
| if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { |
| if (SinglePred != DestBB) { |
| assert(SinglePred == BB && |
| "Single predecessor not the same as predecessor"); |
| // Merge DestBB into SinglePred/BB and delete it. |
| MergeBlockIntoPredecessor(DestBB); |
| // Note: BB(=SinglePred) will not be deleted on this path. |
| // DestBB(=its single successor) is the one that was deleted. |
| LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); |
| return; |
| } |
| } |
| |
| // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB |
| // to handle the new incoming edges it is about to have. |
| for (PHINode &PN : DestBB->phis()) { |
| // Remove the incoming value for BB, and remember it. |
| Value *InVal = PN.removeIncomingValue(BB, false); |
| |
| // Two options: either the InVal is a phi node defined in BB or it is some |
| // value that dominates BB. |
| PHINode *InValPhi = dyn_cast<PHINode>(InVal); |
| if (InValPhi && InValPhi->getParent() == BB) { |
| // Add all of the input values of the input PHI as inputs of this phi. |
| for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) |
| PN.addIncoming(InValPhi->getIncomingValue(i), |
| InValPhi->getIncomingBlock(i)); |
| } else { |
| // Otherwise, add one instance of the dominating value for each edge that |
| // we will be adding. |
| if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) |
| PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); |
| } else { |
| for (BasicBlock *Pred : predecessors(BB)) |
| PN.addIncoming(InVal, Pred); |
| } |
| } |
| } |
| |
| // The PHIs are now updated, change everything that refers to BB to use |
| // DestBB and remove BB. |
| BB->replaceAllUsesWith(DestBB); |
| BB->eraseFromParent(); |
| ++NumBlocksElim; |
| |
| LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); |
| } |
| |
| // Computes a map of base pointer relocation instructions to corresponding |
| // derived pointer relocation instructions given a vector of all relocate calls |
| static void computeBaseDerivedRelocateMap( |
| const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, |
| DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> |
| &RelocateInstMap) { |
| // Collect information in two maps: one primarily for locating the base object |
| // while filling the second map; the second map is the final structure holding |
| // a mapping between Base and corresponding Derived relocate calls |
| DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; |
| for (auto *ThisRelocate : AllRelocateCalls) { |
| auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), |
| ThisRelocate->getDerivedPtrIndex()); |
| RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); |
| } |
| for (auto &Item : RelocateIdxMap) { |
| std::pair<unsigned, unsigned> Key = Item.first; |
| if (Key.first == Key.second) |
| // Base relocation: nothing to insert |
| continue; |
| |
| GCRelocateInst *I = Item.second; |
| auto BaseKey = std::make_pair(Key.first, Key.first); |
| |
| // We're iterating over RelocateIdxMap so we cannot modify it. |
| auto MaybeBase = RelocateIdxMap.find(BaseKey); |
| if (MaybeBase == RelocateIdxMap.end()) |
| // TODO: We might want to insert a new base object relocate and gep off |
| // that, if there are enough derived object relocates. |
| continue; |
| |
| RelocateInstMap[MaybeBase->second].push_back(I); |
| } |
| } |
| |
| // Accepts a GEP and extracts the operands into a vector provided they're all |
| // small integer constants |
| static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, |
| SmallVectorImpl<Value *> &OffsetV) { |
| for (unsigned i = 1; i < GEP->getNumOperands(); i++) { |
| // Only accept small constant integer operands |
| auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
| if (!Op || Op->getZExtValue() > 20) |
| return false; |
| } |
| |
| for (unsigned i = 1; i < GEP->getNumOperands(); i++) |
| OffsetV.push_back(GEP->getOperand(i)); |
| return true; |
| } |
| |
| // Takes a RelocatedBase (base pointer relocation instruction) and Targets to |
| // replace, computes a replacement, and affects it. |
| static bool |
| simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, |
| const SmallVectorImpl<GCRelocateInst *> &Targets) { |
| bool MadeChange = false; |
| // We must ensure the relocation of derived pointer is defined after |
| // relocation of base pointer. If we find a relocation corresponding to base |
| // defined earlier than relocation of base then we move relocation of base |
| // right before found relocation. We consider only relocation in the same |
| // basic block as relocation of base. Relocations from other basic block will |
| // be skipped by optimization and we do not care about them. |
| for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); |
| &*R != RelocatedBase; ++R) |
| if (auto *RI = dyn_cast<GCRelocateInst>(R)) |
| if (RI->getStatepoint() == RelocatedBase->getStatepoint()) |
| if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { |
| RelocatedBase->moveBefore(RI); |
| break; |
| } |
| |
| for (GCRelocateInst *ToReplace : Targets) { |
| assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && |
| "Not relocating a derived object of the original base object"); |
| if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { |
| // A duplicate relocate call. TODO: coalesce duplicates. |
| continue; |
| } |
| |
| if (RelocatedBase->getParent() != ToReplace->getParent()) { |
| // Base and derived relocates are in different basic blocks. |
| // In this case transform is only valid when base dominates derived |
| // relocate. However it would be too expensive to check dominance |
| // for each such relocate, so we skip the whole transformation. |
| continue; |
| } |
| |
| Value *Base = ToReplace->getBasePtr(); |
| auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); |
| if (!Derived || Derived->getPointerOperand() != Base) |
| continue; |
| |
| SmallVector<Value *, 2> OffsetV; |
| if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) |
| continue; |
| |
| // Create a Builder and replace the target callsite with a gep |
| assert(RelocatedBase->getNextNode() && |
| "Should always have one since it's not a terminator"); |
| |
| // Insert after RelocatedBase |
| IRBuilder<> Builder(RelocatedBase->getNextNode()); |
| Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); |
| |
| // If gc_relocate does not match the actual type, cast it to the right type. |
| // In theory, there must be a bitcast after gc_relocate if the type does not |
| // match, and we should reuse it to get the derived pointer. But it could be |
| // cases like this: |
| // bb1: |
| // ... |
| // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) |
| // br label %merge |
| // |
| // bb2: |
| // ... |
| // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) |
| // br label %merge |
| // |
| // merge: |
| // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] |
| // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* |
| // |
| // In this case, we can not find the bitcast any more. So we insert a new bitcast |
| // no matter there is already one or not. In this way, we can handle all cases, and |
| // the extra bitcast should be optimized away in later passes. |
| Value *ActualRelocatedBase = RelocatedBase; |
| if (RelocatedBase->getType() != Base->getType()) { |
| ActualRelocatedBase = |
| Builder.CreateBitCast(RelocatedBase, Base->getType()); |
| } |
| Value *Replacement = Builder.CreateGEP( |
| Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); |
| Replacement->takeName(ToReplace); |
| // If the newly generated derived pointer's type does not match the original derived |
| // pointer's type, cast the new derived pointer to match it. Same reasoning as above. |
| Value *ActualReplacement = Replacement; |
| if (Replacement->getType() != ToReplace->getType()) { |
| ActualReplacement = |
| Builder.CreateBitCast(Replacement, ToReplace->getType()); |
| } |
| ToReplace->replaceAllUsesWith(ActualReplacement); |
| ToReplace->eraseFromParent(); |
| |
| MadeChange = true; |
| } |
| return MadeChange; |
| } |
| |
| // Turns this: |
| // |
| // %base = ... |
| // %ptr = gep %base + 15 |
| // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) |
| // %base' = relocate(%tok, i32 4, i32 4) |
| // %ptr' = relocate(%tok, i32 4, i32 5) |
| // %val = load %ptr' |
| // |
| // into this: |
| // |
| // %base = ... |
| // %ptr = gep %base + 15 |
| // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) |
| // %base' = gc.relocate(%tok, i32 4, i32 4) |
| // %ptr' = gep %base' + 15 |
| // %val = load %ptr' |
| bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { |
| bool MadeChange = false; |
| SmallVector<GCRelocateInst *, 2> AllRelocateCalls; |
| for (auto *U : I.users()) |
| if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) |
| // Collect all the relocate calls associated with a statepoint |
| AllRelocateCalls.push_back(Relocate); |
| |
| // We need at least one base pointer relocation + one derived pointer |
| // relocation to mangle |
| if (AllRelocateCalls.size() < 2) |
| return false; |
| |
| // RelocateInstMap is a mapping from the base relocate instruction to the |
| // corresponding derived relocate instructions |
| DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; |
| computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); |
| if (RelocateInstMap.empty()) |
| return false; |
| |
| for (auto &Item : RelocateInstMap) |
| // Item.first is the RelocatedBase to offset against |
| // Item.second is the vector of Targets to replace |
| MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); |
| return MadeChange; |
| } |
| |
| /// Sink the specified cast instruction into its user blocks. |
| static bool SinkCast(CastInst *CI) { |
| BasicBlock *DefBB = CI->getParent(); |
| |
| /// InsertedCasts - Only insert a cast in each block once. |
| DenseMap<BasicBlock*, CastInst*> InsertedCasts; |
| |
| bool MadeChange = false; |
| for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); |
| UI != E; ) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Figure out which BB this cast is used in. For PHI's this is the |
| // appropriate predecessor block. |
| BasicBlock *UserBB = User->getParent(); |
| if (PHINode *PN = dyn_cast<PHINode>(User)) { |
| UserBB = PN->getIncomingBlock(TheUse); |
| } |
| |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| // The first insertion point of a block containing an EH pad is after the |
| // pad. If the pad is the user, we cannot sink the cast past the pad. |
| if (User->isEHPad()) |
| continue; |
| |
| // If the block selected to receive the cast is an EH pad that does not |
| // allow non-PHI instructions before the terminator, we can't sink the |
| // cast. |
| if (UserBB->getTerminator()->isEHPad()) |
| continue; |
| |
| // If this user is in the same block as the cast, don't change the cast. |
| if (UserBB == DefBB) continue; |
| |
| // If we have already inserted a cast into this block, use it. |
| CastInst *&InsertedCast = InsertedCasts[UserBB]; |
| |
| if (!InsertedCast) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), |
| CI->getType(), "", &*InsertPt); |
| InsertedCast->setDebugLoc(CI->getDebugLoc()); |
| } |
| |
| // Replace a use of the cast with a use of the new cast. |
| TheUse = InsertedCast; |
| MadeChange = true; |
| ++NumCastUses; |
| } |
| |
| // If we removed all uses, nuke the cast. |
| if (CI->use_empty()) { |
| salvageDebugInfo(*CI); |
| CI->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// If the specified cast instruction is a noop copy (e.g. it's casting from |
| /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to |
| /// reduce the number of virtual registers that must be created and coalesced. |
| /// |
| /// Return true if any changes are made. |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, |
| const DataLayout &DL) { |
| // Sink only "cheap" (or nop) address-space casts. This is a weaker condition |
| // than sinking only nop casts, but is helpful on some platforms. |
| if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { |
| if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), |
| ASC->getDestAddressSpace())) |
| return false; |
| } |
| |
| // If this is a noop copy, |
| EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(DL, CI->getType()); |
| |
| // This is an fp<->int conversion? |
| if (SrcVT.isInteger() != DstVT.isInteger()) |
| return false; |
| |
| // If this is an extension, it will be a zero or sign extension, which |
| // isn't a noop. |
| if (SrcVT.bitsLT(DstVT)) return false; |
| |
| // If these values will be promoted, find out what they will be promoted |
| // to. This helps us consider truncates on PPC as noop copies when they |
| // are. |
| if (TLI.getTypeAction(CI->getContext(), SrcVT) == |
| TargetLowering::TypePromoteInteger) |
| SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); |
| if (TLI.getTypeAction(CI->getContext(), DstVT) == |
| TargetLowering::TypePromoteInteger) |
| DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); |
| |
| // If, after promotion, these are the same types, this is a noop copy. |
| if (SrcVT != DstVT) |
| return false; |
| |
| return SinkCast(CI); |
| } |
| |
| // Match a simple increment by constant operation. Note that if a sub is |
| // matched, the step is negated (as if the step had been canonicalized to |
| // an add, even though we leave the instruction alone.) |
| bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, |
| Constant *&Step) { |
| if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || |
| match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( |
| m_Instruction(LHS), m_Constant(Step))))) |
| return true; |
| if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || |
| match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( |
| m_Instruction(LHS), m_Constant(Step))))) { |
| Step = ConstantExpr::getNeg(Step); |
| return true; |
| } |
| return false; |
| } |
| |
| /// If given \p PN is an inductive variable with value IVInc coming from the |
| /// backedge, and on each iteration it gets increased by Step, return pair |
| /// <IVInc, Step>. Otherwise, return None. |
| static Optional<std::pair<Instruction *, Constant *> > |
| getIVIncrement(const PHINode *PN, const LoopInfo *LI) { |
| const Loop *L = LI->getLoopFor(PN->getParent()); |
| if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) |
| return None; |
| auto *IVInc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); |
| if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) |
| return None; |
| Instruction *LHS = nullptr; |
| Constant *Step = nullptr; |
| if (matchIncrement(IVInc, LHS, Step) && LHS == PN) |
| return std::make_pair(IVInc, Step); |
| return None; |
| } |
| |
| static bool isIVIncrement(const Value *V, const LoopInfo *LI) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| Instruction *LHS = nullptr; |
| Constant *Step = nullptr; |
| if (!matchIncrement(I, LHS, Step)) |
| return false; |
| if (auto *PN = dyn_cast<PHINode>(LHS)) |
| if (auto IVInc = getIVIncrement(PN, LI)) |
| return IVInc->first == I; |
| return false; |
| } |
| |
| bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, |
| Value *Arg0, Value *Arg1, |
| CmpInst *Cmp, |
| Intrinsic::ID IID) { |
| auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { |
| if (!isIVIncrement(BO, LI)) |
| return false; |
| const Loop *L = LI->getLoopFor(BO->getParent()); |
| assert(L && "L should not be null after isIVIncrement()"); |
| // Do not risk on moving increment into a child loop. |
| if (LI->getLoopFor(Cmp->getParent()) != L) |
| return false; |
| |
| // Finally, we need to ensure that the insert point will dominate all |
| // existing uses of the increment. |
| |
| auto &DT = getDT(*BO->getParent()->getParent()); |
| if (DT.dominates(Cmp->getParent(), BO->getParent())) |
| // If we're moving up the dom tree, all uses are trivially dominated. |
| // (This is the common case for code produced by LSR.) |
| return true; |
| |
| // Otherwise, special case the single use in the phi recurrence. |
| return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); |
| }; |
| if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { |
| // We used to use a dominator tree here to allow multi-block optimization. |
| // But that was problematic because: |
| // 1. It could cause a perf regression by hoisting the math op into the |
| // critical path. |
| // 2. It could cause a perf regression by creating a value that was live |
| // across multiple blocks and increasing register pressure. |
| // 3. Use of a dominator tree could cause large compile-time regression. |
| // This is because we recompute the DT on every change in the main CGP |
| // run-loop. The recomputing is probably unnecessary in many cases, so if |
| // that was fixed, using a DT here would be ok. |
| // |
| // There is one important particular case we still want to handle: if BO is |
| // the IV increment. Important properties that make it profitable: |
| // - We can speculate IV increment anywhere in the loop (as long as the |
| // indvar Phi is its only user); |
| // - Upon computing Cmp, we effectively compute something equivalent to the |
| // IV increment (despite it loops differently in the IR). So moving it up |
| // to the cmp point does not really increase register pressure. |
| return false; |
| } |
| |
| // We allow matching the canonical IR (add X, C) back to (usubo X, -C). |
| if (BO->getOpcode() == Instruction::Add && |
| IID == Intrinsic::usub_with_overflow) { |
| assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); |
| Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); |
| } |
| |
| // Insert at the first instruction of the pair. |
| Instruction *InsertPt = nullptr; |
| for (Instruction &Iter : *Cmp->getParent()) { |
| // If BO is an XOR, it is not guaranteed that it comes after both inputs to |
| // the overflow intrinsic are defined. |
| if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { |
| InsertPt = &Iter; |
| break; |
| } |
| } |
| assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); |
| |
| IRBuilder<> Builder(InsertPt); |
| Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); |
| if (BO->getOpcode() != Instruction::Xor) { |
| Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); |
| BO->replaceAllUsesWith(Math); |
| } else |
| assert(BO->hasOneUse() && |
| "Patterns with XOr should use the BO only in the compare"); |
| Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); |
| Cmp->replaceAllUsesWith(OV); |
| Cmp->eraseFromParent(); |
| BO->eraseFromParent(); |
| return true; |
| } |
| |
| /// Match special-case patterns that check for unsigned add overflow. |
| static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, |
| BinaryOperator *&Add) { |
| // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) |
| // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) |
| Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); |
| |
| // We are not expecting non-canonical/degenerate code. Just bail out. |
| if (isa<Constant>(A)) |
| return false; |
| |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) |
| B = ConstantInt::get(B->getType(), 1); |
| else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) |
| B = ConstantInt::get(B->getType(), -1); |
| else |
| return false; |
| |
| // Check the users of the variable operand of the compare looking for an add |
| // with the adjusted constant. |
| for (User *U : A->users()) { |
| if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { |
| Add = cast<BinaryOperator>(U); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Try to combine the compare into a call to the llvm.uadd.with.overflow |
| /// intrinsic. Return true if any changes were made. |
| bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, |
| bool &ModifiedDT) { |
| Value *A, *B; |
| BinaryOperator *Add; |
| if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { |
| if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) |
| return false; |
| // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. |
| A = Add->getOperand(0); |
| B = Add->getOperand(1); |
| } |
| |
| if (!TLI->shouldFormOverflowOp(ISD::UADDO, |
| TLI->getValueType(*DL, Add->getType()), |
| Add->hasNUsesOrMore(2))) |
| return false; |
| |
| // We don't want to move around uses of condition values this late, so we |
| // check if it is legal to create the call to the intrinsic in the basic |
| // block containing the icmp. |
| if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) |
| return false; |
| |
| if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, |
| Intrinsic::uadd_with_overflow)) |
| return false; |
| |
| // Reset callers - do not crash by iterating over a dead instruction. |
| ModifiedDT = true; |
| return true; |
| } |
| |
| bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, |
| bool &ModifiedDT) { |
| // We are not expecting non-canonical/degenerate code. Just bail out. |
| Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); |
| if (isa<Constant>(A) && isa<Constant>(B)) |
| return false; |
| |
| // Convert (A u> B) to (A u< B) to simplify pattern matching. |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (Pred == ICmpInst::ICMP_UGT) { |
| std::swap(A, B); |
| Pred = ICmpInst::ICMP_ULT; |
| } |
| // Convert special-case: (A == 0) is the same as (A u< 1). |
| if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { |
| B = ConstantInt::get(B->getType(), 1); |
| Pred = ICmpInst::ICMP_ULT; |
| } |
| // Convert special-case: (A != 0) is the same as (0 u< A). |
| if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { |
| std::swap(A, B); |
| Pred = ICmpInst::ICMP_ULT; |
| } |
| if (Pred != ICmpInst::ICMP_ULT) |
| return false; |
| |
| // Walk the users of a variable operand of a compare looking for a subtract or |
| // add with that same operand. Also match the 2nd operand of the compare to |
| // the add/sub, but that may be a negated constant operand of an add. |
| Value *CmpVariableOperand = isa<Constant>(A) ? B : A; |
| BinaryOperator *Sub = nullptr; |
| for (User *U : CmpVariableOperand->users()) { |
| // A - B, A u< B --> usubo(A, B) |
| if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { |
| Sub = cast<BinaryOperator>(U); |
| break; |
| } |
| |
| // A + (-C), A u< C (canonicalized form of (sub A, C)) |
| const APInt *CmpC, *AddC; |
| if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && |
| match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { |
| Sub = cast<BinaryOperator>(U); |
| break; |
| } |
| } |
| if (!Sub) |
| return false; |
| |
| if (!TLI->shouldFormOverflowOp(ISD::USUBO, |
| TLI->getValueType(*DL, Sub->getType()), |
| Sub->hasNUsesOrMore(2))) |
| return false; |
| |
| if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), |
| Cmp, Intrinsic::usub_with_overflow)) |
| return false; |
| |
| // Reset callers - do not crash by iterating over a dead instruction. |
| ModifiedDT = true; |
| return true; |
| } |
| |
| /// Sink the given CmpInst into user blocks to reduce the number of virtual |
| /// registers that must be created and coalesced. This is a clear win except on |
| /// targets with multiple condition code registers (PowerPC), where it might |
| /// lose; some adjustment may be wanted there. |
| /// |
| /// Return true if any changes are made. |
| static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { |
| if (TLI.hasMultipleConditionRegisters()) |
| return false; |
| |
| // Avoid sinking soft-FP comparisons, since this can move them into a loop. |
| if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) |
| return false; |
| |
| // Only insert a cmp in each block once. |
| DenseMap<BasicBlock*, CmpInst*> InsertedCmps; |
| |
| bool MadeChange = false; |
| for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); |
| UI != E; ) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| // Don't bother for PHI nodes. |
| if (isa<PHINode>(User)) |
| continue; |
| |
| // Figure out which BB this cmp is used in. |
| BasicBlock *UserBB = User->getParent(); |
| BasicBlock *DefBB = Cmp->getParent(); |
| |
| // If this user is in the same block as the cmp, don't change the cmp. |
| if (UserBB == DefBB) continue; |
| |
| // If we have already inserted a cmp into this block, use it. |
| CmpInst *&InsertedCmp = InsertedCmps[UserBB]; |
| |
| if (!InsertedCmp) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| InsertedCmp = |
| CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), |
| Cmp->getOperand(0), Cmp->getOperand(1), "", |
| &*InsertPt); |
| // Propagate the debug info. |
| InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); |
| } |
| |
| // Replace a use of the cmp with a use of the new cmp. |
| TheUse = InsertedCmp; |
| MadeChange = true; |
| ++NumCmpUses; |
| } |
| |
| // If we removed all uses, nuke the cmp. |
| if (Cmp->use_empty()) { |
| Cmp->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// For pattern like: |
| /// |
| /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) |
| /// ... |
| /// DomBB: |
| /// ... |
| /// br DomCond, TrueBB, CmpBB |
| /// CmpBB: (with DomBB being the single predecessor) |
| /// ... |
| /// Cmp = icmp eq CmpOp0, CmpOp1 |
| /// ... |
| /// |
| /// It would use two comparison on targets that lowering of icmp sgt/slt is |
| /// different from lowering of icmp eq (PowerPC). This function try to convert |
| /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. |
| /// After that, DomCond and Cmp can use the same comparison so reduce one |
| /// comparison. |
| /// |
| /// Return true if any changes are made. |
| static bool foldICmpWithDominatingICmp(CmpInst *Cmp, |
| const TargetLowering &TLI) { |
| if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) |
| return false; |
| |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (Pred != ICmpInst::ICMP_EQ) |
| return false; |
| |
| // If icmp eq has users other than BranchInst and SelectInst, converting it to |
| // icmp slt/sgt would introduce more redundant LLVM IR. |
| for (User *U : Cmp->users()) { |
| if (isa<BranchInst>(U)) |
| continue; |
| if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) |
| continue; |
| return false; |
| } |
| |
| // This is a cheap/incomplete check for dominance - just match a single |
| // predecessor with a conditional branch. |
| BasicBlock *CmpBB = Cmp->getParent(); |
| BasicBlock *DomBB = CmpBB->getSinglePredecessor(); |
| if (!DomBB) |
| return false; |
| |
| // We want to ensure that the only way control gets to the comparison of |
| // interest is that a less/greater than comparison on the same operands is |
| // false. |
| Value *DomCond; |
| BasicBlock *TrueBB, *FalseBB; |
| if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) |
| return false; |
| if (CmpBB != FalseBB) |
| return false; |
| |
| Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); |
| ICmpInst::Predicate DomPred; |
| if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) |
| return false; |
| if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) |
| return false; |
| |
| // Convert the equality comparison to the opposite of the dominating |
| // comparison and swap the direction for all branch/select users. |
| // We have conceptually converted: |
| // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; |
| // to |
| // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; |
| // And similarly for branches. |
| for (User *U : Cmp->users()) { |
| if (auto *BI = dyn_cast<BranchInst>(U)) { |
| assert(BI->isConditional() && "Must be conditional"); |
| BI->swapSuccessors(); |
| continue; |
| } |
| if (auto *SI = dyn_cast<SelectInst>(U)) { |
| // Swap operands |
| SI->swapValues(); |
| SI->swapProfMetadata(); |
| continue; |
| } |
| llvm_unreachable("Must be a branch or a select"); |
| } |
| Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); |
| return true; |
| } |
| |
| bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { |
| if (sinkCmpExpression(Cmp, *TLI)) |
| return true; |
| |
| if (combineToUAddWithOverflow(Cmp, ModifiedDT)) |
| return true; |
| |
| if (combineToUSubWithOverflow(Cmp, ModifiedDT)) |
| return true; |
| |
| if (foldICmpWithDominatingICmp(Cmp, *TLI)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Duplicate and sink the given 'and' instruction into user blocks where it is |
| /// used in a compare to allow isel to generate better code for targets where |
| /// this operation can be combined. |
| /// |
| /// Return true if any changes are made. |
| static bool sinkAndCmp0Expression(Instruction *AndI, |
| const TargetLowering &TLI, |
| SetOfInstrs &InsertedInsts) { |
| // Double-check that we're not trying to optimize an instruction that was |
| // already optimized by some other part of this pass. |
| assert(!InsertedInsts.count(AndI) && |
| "Attempting to optimize already optimized and instruction"); |
| (void) InsertedInsts; |
| |
| // Nothing to do for single use in same basic block. |
| if (AndI->hasOneUse() && |
| AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) |
| return false; |
| |
| // Try to avoid cases where sinking/duplicating is likely to increase register |
| // pressure. |
| if (!isa<ConstantInt>(AndI->getOperand(0)) && |
| !isa<ConstantInt>(AndI->getOperand(1)) && |
| AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) |
| return false; |
| |
| for (auto *U : AndI->users()) { |
| Instruction *User = cast<Instruction>(U); |
| |
| // Only sink 'and' feeding icmp with 0. |
| if (!isa<ICmpInst>(User)) |
| return false; |
| |
| auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); |
| if (!CmpC || !CmpC->isZero()) |
| return false; |
| } |
| |
| if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); |
| LLVM_DEBUG(AndI->getParent()->dump()); |
| |
| // Push the 'and' into the same block as the icmp 0. There should only be |
| // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any |
| // others, so we don't need to keep track of which BBs we insert into. |
| for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); |
| UI != E; ) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); |
| |
| // Keep the 'and' in the same place if the use is already in the same block. |
| Instruction *InsertPt = |
| User->getParent() == AndI->getParent() ? AndI : User; |
| Instruction *InsertedAnd = |
| BinaryOperator::Create(Instruction::And, AndI->getOperand(0), |
| AndI->getOperand(1), "", InsertPt); |
| // Propagate the debug info. |
| InsertedAnd->setDebugLoc(AndI->getDebugLoc()); |
| |
| // Replace a use of the 'and' with a use of the new 'and'. |
| TheUse = InsertedAnd; |
| ++NumAndUses; |
| LLVM_DEBUG(User->getParent()->dump()); |
| } |
| |
| // We removed all uses, nuke the and. |
| AndI->eraseFromParent(); |
| return true; |
| } |
| |
| /// Check if the candidates could be combined with a shift instruction, which |
| /// includes: |
| /// 1. Truncate instruction |
| /// 2. And instruction and the imm is a mask of the low bits: |
| /// imm & (imm+1) == 0 |
| static bool isExtractBitsCandidateUse(Instruction *User) { |
| if (!isa<TruncInst>(User)) { |
| if (User->getOpcode() != Instruction::And || |
| !isa<ConstantInt>(User->getOperand(1))) |
| return false; |
| |
| const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); |
| |
| if ((Cimm & (Cimm + 1)).getBoolValue()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Sink both shift and truncate instruction to the use of truncate's BB. |
| static bool |
| SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, |
| DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, |
| const TargetLowering &TLI, const DataLayout &DL) { |
| BasicBlock *UserBB = User->getParent(); |
| DenseMap<BasicBlock *, CastInst *> InsertedTruncs; |
| auto *TruncI = cast<TruncInst>(User); |
| bool MadeChange = false; |
| |
| for (Value::user_iterator TruncUI = TruncI->user_begin(), |
| TruncE = TruncI->user_end(); |
| TruncUI != TruncE;) { |
| |
| Use &TruncTheUse = TruncUI.getUse(); |
| Instruction *TruncUser = cast<Instruction>(*TruncUI); |
| // Preincrement use iterator so we don't invalidate it. |
| |
| ++TruncUI; |
| |
| int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); |
| if (!ISDOpcode) |
| continue; |
| |
| // If the use is actually a legal node, there will not be an |
| // implicit truncate. |
| // FIXME: always querying the result type is just an |
| // approximation; some nodes' legality is determined by the |
| // operand or other means. There's no good way to find out though. |
| if (TLI.isOperationLegalOrCustom( |
| ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) |
| continue; |
| |
| // Don't bother for PHI nodes. |
| if (isa<PHINode>(TruncUser)) |
| continue; |
| |
| BasicBlock *TruncUserBB = TruncUser->getParent(); |
| |
| if (UserBB == TruncUserBB) |
| continue; |
| |
| BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; |
| CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; |
| |
| if (!InsertedShift && !InsertedTrunc) { |
| BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); |
| assert(InsertPt != TruncUserBB->end()); |
| // Sink the shift |
| if (ShiftI->getOpcode() == Instruction::AShr) |
| InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| else |
| InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); |
| |
| // Sink the trunc |
| BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); |
| TruncInsertPt++; |
| assert(TruncInsertPt != TruncUserBB->end()); |
| |
| InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, |
| TruncI->getType(), "", &*TruncInsertPt); |
| InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); |
| |
| MadeChange = true; |
| |
| TruncTheUse = InsertedTrunc; |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// Sink the shift *right* instruction into user blocks if the uses could |
| /// potentially be combined with this shift instruction and generate BitExtract |
| /// instruction. It will only be applied if the architecture supports BitExtract |
| /// instruction. Here is an example: |
| /// BB1: |
| /// %x.extract.shift = lshr i64 %arg1, 32 |
| /// BB2: |
| /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 |
| /// ==> |
| /// |
| /// BB2: |
| /// %x.extract.shift.1 = lshr i64 %arg1, 32 |
| /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 |
| /// |
| /// CodeGen will recognize the pattern in BB2 and generate BitExtract |
| /// instruction. |
| /// Return true if any changes are made. |
| static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, |
| const TargetLowering &TLI, |
| const DataLayout &DL) { |
| BasicBlock *DefBB = ShiftI->getParent(); |
| |
| /// Only insert instructions in each block once. |
| DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; |
| |
| bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); |
| |
| bool MadeChange = false; |
| for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); |
| UI != E;) { |
| Use &TheUse = UI.getUse(); |
| Instruction *User = cast<Instruction>(*UI); |
| // Preincrement use iterator so we don't invalidate it. |
| ++UI; |
| |
| // Don't bother for PHI nodes. |
| if (isa<PHINode>(User)) |
| continue; |
| |
| if (!isExtractBitsCandidateUse(User)) |
| continue; |
| |
| BasicBlock *UserBB = User->getParent(); |
| |
| if (UserBB == DefBB) { |
| // If the shift and truncate instruction are in the same BB. The use of |
| // the truncate(TruncUse) may still introduce another truncate if not |
| // legal. In this case, we would like to sink both shift and truncate |
| // instruction to the BB of TruncUse. |
| // for example: |
| // BB1: |
| // i64 shift.result = lshr i64 opnd, imm |
| // trunc.result = trunc shift.result to i16 |
| // |
| // BB2: |
| // ----> We will have an implicit truncate here if the architecture does |
| // not have i16 compare. |
| // cmp i16 trunc.result, opnd2 |
| // |
| if (isa<TruncInst>(User) && shiftIsLegal |
| // If the type of the truncate is legal, no truncate will be |
| // introduced in other basic blocks. |
| && |
| (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) |
| MadeChange = |
| SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); |
| |
| continue; |
| } |
| // If we have already inserted a shift into this block, use it. |
| BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; |
| |
| if (!InsertedShift) { |
| BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); |
| assert(InsertPt != UserBB->end()); |
| |
| if (ShiftI->getOpcode() == Instruction::AShr) |
| InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| else |
| InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, |
| "", &*InsertPt); |
| InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); |
| |
| MadeChange = true; |
| } |
| |
| // Replace a use of the shift with a use of the new shift. |
| TheUse = InsertedShift; |
| } |
| |
| // If we removed all uses, or there are none, nuke the shift. |
| if (ShiftI->use_empty()) { |
| salvageDebugInfo(*ShiftI); |
| ShiftI->eraseFromParent(); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// If counting leading or trailing zeros is an expensive operation and a zero |
| /// input is defined, add a check for zero to avoid calling the intrinsic. |
| /// |
| /// We want to transform: |
| /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) |
| /// |
| /// into: |
| /// entry: |
| /// %cmpz = icmp eq i64 %A, 0 |
| /// br i1 %cmpz, label %cond.end, label %cond.false |
| /// cond.false: |
| /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) |
| /// br label %cond.end |
| /// cond.end: |
| /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] |
| /// |
| /// If the transform is performed, return true and set ModifiedDT to true. |
| static bool despeculateCountZeros(IntrinsicInst *CountZeros, |
| const TargetLowering *TLI, |
| const DataLayout *DL, |
| bool &ModifiedDT) { |
| // If a zero input is undefined, it doesn't make sense to despeculate that. |
| if (match(CountZeros->getOperand(1), m_One())) |
| return false; |
| |
| // If it's cheap to speculate, there's nothing to do. |
| auto IntrinsicID = CountZeros->getIntrinsicID(); |
| if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || |
| (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) |
| return false; |
| |
| // Only handle legal scalar cases. Anything else requires too much work. |
| Type *Ty = CountZeros->getType(); |
| unsigned SizeInBits = Ty->getScalarSizeInBits(); |
| if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) |
| return false; |
| |
| // Bail if the value is never zero. |
| if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL)) |
| return false; |
| |
| // The intrinsic will be sunk behind a compare against zero and branch. |
| BasicBlock *StartBlock = CountZeros->getParent(); |
| BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); |
| |
| // Create another block after the count zero intrinsic. A PHI will be added |
| // in this block to select the result of the intrinsic or the bit-width |
| // constant if the input to the intrinsic is zero. |
| BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); |
| BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); |
| |
| // Set up a builder to create a compare, conditional branch, and PHI. |
| IRBuilder<> Builder(CountZeros->getContext()); |
| Builder.SetInsertPoint(StartBlock->getTerminator()); |
| Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); |
| |
| // Replace the unconditional branch that was created by the first split with |
| // a compare against zero and a conditional branch. |
| Value *Zero = Constant::getNullValue(Ty); |
| Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); |
| Builder.CreateCondBr(Cmp, EndBlock, CallBlock); |
| StartBlock->getTerminator()->eraseFromParent(); |
| |
| // Create a PHI in the end block to select either the output of the intrinsic |
| // or the bit width of the operand. |
| Builder.SetInsertPoint(&EndBlock->front()); |
| PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); |
| CountZeros->replaceAllUsesWith(PN); |
| Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); |
| PN->addIncoming(BitWidth, StartBlock); |
| PN->addIncoming(CountZeros, CallBlock); |
| |
| // We are explicitly handling the zero case, so we can set the intrinsic's |
| // undefined zero argument to 'true'. This will also prevent reprocessing the |
| // intrinsic; we only despeculate when a zero input is defined. |
| CountZeros->setArgOperand(1, Builder.getTrue()); |
| ModifiedDT = true; |
| return true; |
| } |
| |
| bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { |
| BasicBlock *BB = CI->getParent(); |
| |
| // Lower inline assembly if we can. |
| // If we found an inline asm expession, and if the target knows how to |
| // lower it to normal LLVM code, do so now. |
| if (CI->isInlineAsm()) { |
| if (TLI->ExpandInlineAsm(CI)) { |
| // Avoid invalidating the iterator. |
| CurInstIterator = BB->begin(); |
| // Avoid processing instructions out of order, which could cause |
| // reuse before a value is defined. |
| SunkAddrs.clear(); |
| return true; |
| } |
| // Sink address computing for memory operands into the block. |
| if (optimizeInlineAsmInst(CI)) |
| return true; |
| } |
| |
| // Align the pointer arguments to this call if the target thinks it's a good |
| // idea |
| unsigned MinSize, PrefAlign; |
| if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { |
| for (auto &Arg : CI->args()) { |
| // We want to align both objects whose address is used directly and |
| // objects whose address is used in casts and GEPs, though it only makes |
| // sense for GEPs if the offset is a multiple of the desired alignment and |
| // if size - offset meets the size threshold. |
| if (!Arg->getType()->isPointerTy()) |
| continue; |
| APInt Offset(DL->getIndexSizeInBits( |
| cast<PointerType>(Arg->getType())->getAddressSpace()), |
| 0); |
| Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); |
| uint64_t Offset2 = Offset.getLimitedValue(); |
| if ((Offset2 & (PrefAlign-1)) != 0) |
| continue; |
| AllocaInst *AI; |
| if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && |
| DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) |
| AI->setAlignment(Align(PrefAlign)); |
| // Global variables can only be aligned if they are defined in this |
| // object (i.e. they are uniquely initialized in this object), and |
| // over-aligning global variables that have an explicit section is |
| // forbidden. |
| GlobalVariable *GV; |
| if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && |
| GV->getPointerAlignment(*DL) < PrefAlign && |
| DL->getTypeAllocSize(GV->getValueType()) >= |
| MinSize + Offset2) |
| GV->setAlignment(MaybeAlign(PrefAlign)); |
| } |
| // If this is a memcpy (or similar) then we may be able to improve the |
| // alignment |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { |
| Align DestAlign = getKnownAlignment(MI->getDest(), *DL); |
| MaybeAlign MIDestAlign = MI->getDestAlign(); |
| if (!MIDestAlign || DestAlign > *MIDestAlign) |
| MI->setDestAlignment(DestAlign); |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { |
| MaybeAlign MTISrcAlign = MTI->getSourceAlign(); |
| Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); |
| if (!MTISrcAlign || SrcAlign > *MTISrcAlign) |
| MTI->setSourceAlignment(SrcAlign); |
| } |
| } |
| } |
| |
| // If we have a cold call site, try to sink addressing computation into the |
| // cold block. This interacts with our handling for loads and stores to |
| // ensure that we can fold all uses of a potential addressing computation |
| // into their uses. TODO: generalize this to work over profiling data |
| if (CI->hasFnAttr(Attribute::Cold) && |
| !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) |
| for (auto &Arg : CI->args()) { |
| if (!Arg->getType()->isPointerTy()) |
| continue; |
| unsigned AS = Arg->getType()->getPointerAddressSpace(); |
| return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); |
| } |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); |
| if (II) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::assume: |
| llvm_unreachable("llvm.assume should have been removed already"); |
| case Intrinsic::experimental_widenable_condition: { |
| // Give up on future widening oppurtunties so that we can fold away dead |
| // paths and merge blocks before going into block-local instruction |
| // selection. |
| if (II->use_empty()) { |
| II->eraseFromParent(); |
| return true; |
| } |
| Constant *RetVal = ConstantInt::getTrue(II->getContext()); |
| resetIteratorIfInvalidatedWhileCalling(BB, [&]() { |
| replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); |
| }); |
| return true; |
| } |
| case Intrinsic::objectsize: |
| llvm_unreachable("llvm.objectsize.* should have been lowered already"); |
| case Intrinsic::is_constant: |
| llvm_unreachable("llvm.is.constant.* should have been lowered already"); |
| case Intrinsic::aarch64_stlxr: |
| case Intrinsic::aarch64_stxr: { |
| ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); |
| if (!ExtVal || !ExtVal->hasOneUse() || |
| ExtVal->getParent() == CI->getParent()) |
| return false; |
| // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. |
| ExtVal->moveBefore(CI); |
| // Mark this instruction as "inserted by CGP", so that other |
| // optimizations don't touch it. |
| InsertedInsts.insert(ExtVal); |
| return true; |
| } |
| |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: { |
| Value *ArgVal = II->getArgOperand(0); |
| auto it = LargeOffsetGEPMap.find(II); |
| if (it != LargeOffsetGEPMap.end()) { |
| // Merge entries in LargeOffsetGEPMap to reflect the RAUW. |
| // Make sure not to have to deal with iterator invalidation |
| // after possibly adding ArgVal to LargeOffsetGEPMap. |
| auto GEPs = std::move(it->second); |
| LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); |
| LargeOffsetGEPMap.erase(II); |
| } |
| |
| II->replaceAllUsesWith(ArgVal); |
| II->eraseFromParent(); |
| return true; |
| } |
| case Intrinsic::cttz: |
| case Intrinsic::ctlz: |
| // If counting zeros is expensive, try to avoid it. |
| return despeculateCountZeros(II, TLI, DL, ModifiedDT); |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: |
| return optimizeFunnelShift(II); |
| case Intrinsic::dbg_value: |
| return fixupDbgValue(II); |
| case Intrinsic::vscale: { |
| // If datalayout has no special restrictions on vector data layout, |
| // replace `llvm.vscale` by an equivalent constant expression |
| // to benefit from cheap constant propagation. |
| Type *ScalableVectorTy = |
| VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); |
| if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { |
| auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); |
| auto *One = ConstantInt::getSigned(II->getType(), 1); |
| auto *CGep = |
| ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); |
| II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); |
| II->eraseFromParent(); |
| return true; |
| } |
| break; |
| } |
| case Intrinsic::masked_gather: |
| return optimizeGatherScatterInst(II, II->getArgOperand(0)); |
| case Intrinsic::masked_scatter: |
| return optimizeGatherScatterInst(II, II->getArgOperand(1)); |
| } |
| |
| SmallVector<Value *, 2> PtrOps; |
| Type *AccessTy; |
| if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) |
| while (!PtrOps.empty()) { |
| Value *PtrVal = PtrOps.pop_back_val(); |
| unsigned AS = PtrVal->getType()->getPointerAddressSpace(); |
| if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) |
| return true; |
| } |
| } |
| |
| // From here on out we're working with named functions. |
| if (!CI->getCalledFunction()) return false; |
| |
| // Lower all default uses of _chk calls. This is very similar |
| // to what InstCombineCalls does, but here we are only lowering calls |
| // to fortified library functions (e.g. __memcpy_chk) that have the default |
| // "don't know" as the objectsize. Anything else should be left alone. |
| FortifiedLibCallSimplifier Simplifier(TLInfo, true); |
| IRBuilder<> Builder(CI); |
| if (Value *V = Simplifier.optimizeCall(CI, Builder)) { |
| CI->replaceAllUsesWith(V); |
| CI->eraseFromParent(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Look for opportunities to duplicate return instructions to the predecessor |
| /// to enable tail call optimizations. The case it is currently looking for is: |
| /// @code |
| /// bb0: |
| /// %tmp0 = tail call i32 @f0() |
| /// br label %return |
| /// bb1: |
| /// %tmp1 = tail call i32 @f1() |
| /// br label %return |
| /// bb2: |
| /// %tmp2 = tail call i32 @f2() |
| /// br label %return |
| /// return: |
| /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] |
| /// ret i32 %retval |
| /// @endcode |
| /// |
| /// => |
| /// |
| /// @code |
| /// bb0: |
| /// %tmp0 = tail call i32 @f0() |
| /// ret i32 %tmp0 |
| /// bb1: |
| /// %tmp1 = tail call i32 @f1() |
| /// ret i32 %tmp1 |
| /// bb2: |
| /// %tmp2 = tail call i32 @f2() |
| /// ret i32 %tmp2 |
| /// @endcode |
| bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { |
| ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); |
| if (!RetI) |
| return false; |
| |
| PHINode *PN = nullptr; |
| ExtractValueInst *EVI = nullptr; |
| BitCastInst *BCI = nullptr; |
| Value *V = RetI->getReturnValue(); |
| if (V) { |
| BCI = dyn_cast<BitCastInst>(V); |
| if (BCI) |
| V = BCI->getOperand(0); |
| |
| EVI = dyn_cast<ExtractValueInst>(V); |
| if (EVI) { |
| V = EVI->getOperand(0); |
| if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) |
| return false; |
| } |
| |
| PN = dyn_cast<PHINode>(V); |
| if (!PN) |
| return false; |
| } |
| |
| if (PN && PN->getParent() != BB) |
| return false; |
| |
| auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { |
| const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); |
| if (BC && BC->hasOneUse()) |
| Inst = BC->user_back(); |
| |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) |
| return II->getIntrinsicID() == Intrinsic::lifetime_end; |
| return false; |
| }; |
| |
| // Make sure there are no instructions between the first instruction |
| // and return. |
| const Instruction *BI = BB->getFirstNonPHI(); |
| // Skip over debug and the bitcast. |
| while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || |
| isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) |
| BI = BI->getNextNode(); |
| if (BI != RetI) |
| return false; |
| |
| /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail |
| /// call. |
| const Function *F = BB->getParent(); |
| SmallVector<BasicBlock*, 4> TailCallBBs; |
| if (PN) { |
| for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { |
| // Look through bitcasts. |
| Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); |
| CallInst *CI = dyn_cast<CallInst>(IncomingVal); |
| BasicBlock *PredBB = PN->getIncomingBlock(I); |
| // Make sure the phi value is indeed produced by the tail call. |
| if (CI && CI->hasOneUse() && CI->getParent() == PredBB && |
| TLI->mayBeEmittedAsTailCall(CI) && |
| attributesPermitTailCall(F, CI, RetI, *TLI)) |
| TailCallBBs.push_back(PredBB); |
| } |
| } else { |
| SmallPtrSet<BasicBlock*, 4> VisitedBBs; |
| for (BasicBlock *Pred : predecessors(BB)) { |
| if (!VisitedBBs.insert(Pred).second) |
| continue; |
| if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { |
| CallInst *CI = dyn_cast<CallInst>(I); |
| if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && |
| attributesPermitTailCall(F, CI, RetI, *TLI)) |
| TailCallBBs.push_back(Pred); |
| } |
| } |
| } |
| |
| bool Changed = false; |
| for (auto const &TailCallBB : TailCallBBs) { |
| // Make sure the call instruction is followed by an unconditional branch to |
| // the return block. |
| BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); |
| if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) |
| continue; |
| |
| // Duplicate the return into TailCallBB. |
| (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); |
| assert(!VerifyBFIUpdates || |
| BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); |
| BFI->setBlockFreq( |
| BB, |
| (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); |
| ModifiedDT = Changed = true; |
| ++NumRetsDup; |
| } |
| |
| // If we eliminated all predecessors of the block, delete the block now. |
| if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) |
| BB->eraseFromParent(); |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Optimization |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// This is an extended version of TargetLowering::AddrMode |
| /// which holds actual Value*'s for register values. |
| struct ExtAddrMode : public TargetLowering::AddrMode { |
| Value *BaseReg = nullptr; |
| Value *ScaledReg = nullptr; |
| Value *OriginalValue = nullptr; |
| bool InBounds = true; |
| |
| enum FieldName { |
| NoField = 0x00, |
| BaseRegField = 0x01, |
| BaseGVField = 0x02, |
| BaseOffsField = 0x04, |
| ScaledRegField = 0x08, |
| ScaleField = 0x10, |
| MultipleFields = 0xff |
| }; |
| |
| |
| ExtAddrMode() = default; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| FieldName compare(const ExtAddrMode &other) { |
| // First check that the types are the same on each field, as differing types |
| // is something we can't cope with later on. |
| if (BaseReg && other.BaseReg && |
| BaseReg->getType() != other.BaseReg->getType()) |
| return MultipleFields; |
| if (BaseGV && other.BaseGV && |
| BaseGV->getType() != other.BaseGV->getType()) |
| return MultipleFields; |
| if (ScaledReg && other.ScaledReg && |
| ScaledReg->getType() != other.ScaledReg->getType()) |
| return MultipleFields; |
| |
| // Conservatively reject 'inbounds' mismatches. |
| if (InBounds != other.InBounds) |
| return MultipleFields; |
| |
| // Check each field to see if it differs. |
| unsigned Result = NoField; |
| if (BaseReg != other.BaseReg) |
| Result |= BaseRegField; |
| if (BaseGV != other.BaseGV) |
| Result |= BaseGVField; |
| if (BaseOffs != other.BaseOffs) |
| Result |= BaseOffsField; |
| if (ScaledReg != other.ScaledReg) |
| Result |= ScaledRegField; |
| // Don't count 0 as being a different scale, because that actually means |
| // unscaled (which will already be counted by having no ScaledReg). |
| if (Scale && other.Scale && Scale != other.Scale) |
| Result |= ScaleField; |
| |
| if (countPopulation(Result) > 1) |
| return MultipleFields; |
| else |
| return static_cast<FieldName>(Result); |
| } |
| |
| // An AddrMode is trivial if it involves no calculation i.e. it is just a base |
| // with no offset. |
| bool isTrivial() { |
| // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is |
| // trivial if at most one of these terms is nonzero, except that BaseGV and |
| // BaseReg both being zero actually means a null pointer value, which we |
| // consider to be 'non-zero' here. |
| return !BaseOffs && !Scale && !(BaseGV && BaseReg); |
| } |
| |
| Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { |
| switch (Field) { |
| default: |
| return nullptr; |
| case BaseRegField: |
| return BaseReg; |
| case BaseGVField: |
| return BaseGV; |
| case ScaledRegField: |
| return ScaledReg; |
| case BaseOffsField: |
| return ConstantInt::get(IntPtrTy, BaseOffs); |
| } |
| } |
| |
| void SetCombinedField(FieldName Field, Value *V, |
| const SmallVectorImpl<ExtAddrMode> &AddrModes) { |
| switch (Field) { |
| default: |
| llvm_unreachable("Unhandled fields are expected to be rejected earlier"); |
| break; |
| case ExtAddrMode::BaseRegField: |
| BaseReg = V; |
| break; |
| case ExtAddrMode::BaseGVField: |
| // A combined BaseGV is an Instruction, not a GlobalValue, so it goes |
| // in the BaseReg field. |
| assert(BaseReg == nullptr); |
| BaseReg = V; |
| BaseGV = nullptr; |
| break; |
| case ExtAddrMode::ScaledRegField: |
| ScaledReg = V; |
| // If we have a mix of scaled and unscaled addrmodes then we want scale |
| // to be the scale and not zero. |
| if (!Scale) |
| for (const ExtAddrMode &AM : AddrModes) |
| if (AM.Scale) { |
| Scale = AM.Scale; |
| break; |
| } |
| break; |
| case ExtAddrMode::BaseOffsField: |
| // The offset is no longer a constant, so it goes in ScaledReg with a |
| // scale of 1. |
| assert(ScaledReg == nullptr); |
| ScaledReg = V; |
| Scale = 1; |
| BaseOffs = 0; |
| break; |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| #ifndef NDEBUG |
| static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { |
| AM.print(OS); |
| return OS; |
| } |
| #endif |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void ExtAddrMode::print(raw_ostream &OS) const { |
| bool NeedPlus = false; |
| OS << "["; |
| if (InBounds) |
| OS << "inbounds "; |
| if (BaseGV) { |
| OS << (NeedPlus ? " + " : "") |
| << "GV:"; |
| BaseGV->printAsOperand(OS, /*PrintType=*/false); |
| NeedPlus = true; |
| } |
| |
| if (BaseOffs) { |
| OS << (NeedPlus ? " + " : "") |
| << BaseOffs; |
| NeedPlus = true; |
| } |
| |
| if (BaseReg) { |
| OS << (NeedPlus ? " + " : "") |
| << "Base:"; |
| BaseReg->printAsOperand(OS, /*PrintType=*/false); |
| NeedPlus = true; |
| } |
| if (Scale) { |
| OS << (NeedPlus ? " + " : "") |
| << Scale << "*"; |
| ScaledReg->printAsOperand(OS, /*PrintType=*/false); |
| } |
| |
| OS << ']'; |
| } |
| |
| LLVM_DUMP_METHOD void ExtAddrMode::dump() const { |
| print(dbgs()); |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| /// This class provides transaction based operation on the IR. |
| /// Every change made through this class is recorded in the internal state and |
| /// can be undone (rollback) until commit is called. |
| /// CGP does not check if instructions could be speculatively executed when |
| /// moved. Preserving the original location would pessimize the debugging |
| /// experience, as well as negatively impact the quality of sample PGO. |
| class TypePromotionTransaction { |
| /// This represents the common interface of the individual transaction. |
| /// Each class implements the logic for doing one specific modification on |
| /// the IR via the TypePromotionTransaction. |
| class TypePromotionAction { |
| protected: |
| /// The Instruction modified. |
| Instruction *Inst; |
| |
| public: |
| /// Constructor of the action. |
| /// The constructor performs the related action on the IR. |
| TypePromotionAction(Instruction *Inst) : Inst(Inst) {} |
| |
| virtual ~TypePromotionAction() = default; |
| |
| /// Undo the modification done by this action. |
| /// When this method is called, the IR must be in the same state as it was |
| /// before this action was applied. |
| /// \pre Undoing the action works if and only if the IR is in the exact same |
| /// state as it was directly after this action was applied. |
| virtual void undo() = 0; |
| |
| /// Advocate every change made by this action. |
| /// When the results on the IR of the action are to be kept, it is important |
| /// to call this function, otherwise hidden information may be kept forever. |
| virtual void commit() { |
| // Nothing to be done, this action is not doing anything. |
| } |
| }; |
| |
| /// Utility to remember the position of an instruction. |
| class InsertionHandler { |
| /// Position of an instruction. |
| /// Either an instruction: |
| /// - Is the first in a basic block: BB is used. |
| /// - Has a previous instruction: PrevInst is used. |
| union { |
| Instruction *PrevInst; |
| BasicBlock *BB; |
| } Point; |
| |
| /// Remember whether or not the instruction had a previous instruction. |
| bool HasPrevInstruction; |
| |
| public: |
| /// Record the position of \p Inst. |
| InsertionHandler(Instruction *Inst) { |
| BasicBlock::iterator It = Inst->getIterator(); |
| HasPrevInstruction = (It != (Inst->getParent()->begin())); |
| if (HasPrevInstruction) |
| Point.PrevInst = &*--It; |
| else |
| Point.BB = Inst->getParent(); |
| } |
| |
| /// Insert \p Inst at the recorded position. |
| void insert(Instruction *Inst) { |
| if (HasPrevInstruction) { |
| if (Inst->getParent()) |
| Inst->removeFromParent(); |
| Inst->insertAfter(Point.PrevInst); |
| } else { |
| Instruction *Position = &*Point.BB->getFirstInsertionPt(); |
| if (Inst->getParent()) |
| Inst->moveBefore(Position); |
| else |
| Inst->insertBefore(Position); |
| } |
| } |
| }; |
| |
| /// Move an instruction before another. |
| class InstructionMoveBefore : public TypePromotionAction { |
| /// Original position of the instruction. |
| InsertionHandler Position; |
| |
| public: |
| /// Move \p Inst before \p Before. |
| InstructionMoveBefore(Instruction *Inst, Instruction *Before) |
| : TypePromotionAction(Inst), Position(Inst) { |
| LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before |
| << "\n"); |
| Inst->moveBefore(Before); |
| } |
| |
| /// Move the instruction back to its original position. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); |
| Position.insert(Inst); |
| } |
| }; |
| |
| /// Set the operand of an instruction with a new value. |
| class OperandSetter : public TypePromotionAction { |
| /// Original operand of the instruction. |
| Value *Origin; |
| |
| /// Index of the modified instruction. |
| unsigned Idx; |
| |
| public: |
| /// Set \p Idx operand of \p Inst with \p NewVal. |
| OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) |
| : TypePromotionAction(Inst), Idx(Idx) { |
| LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" |
| << "for:" << *Inst << "\n" |
| << "with:" << *NewVal << "\n"); |
| Origin = Inst->getOperand(Idx); |
| Inst->setOperand(Idx, NewVal); |
| } |
| |
| /// Restore the original value of the instruction. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" |
| << "for: " << *Inst << "\n" |
| << "with: " << *Origin << "\n"); |
| Inst->setOperand(Idx, Origin); |
| } |
| }; |
| |
| /// Hide the operands of an instruction. |
| /// Do as if this instruction was not using any of its operands. |
| class OperandsHider : public TypePromotionAction { |
| /// The list of original operands. |
| SmallVector<Value *, 4> OriginalValues; |
| |
| public: |
| /// Remove \p Inst from the uses of the operands of \p Inst. |
| OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { |
| LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); |
| unsigned NumOpnds = Inst->getNumOperands(); |
| OriginalValues.reserve(NumOpnds); |
| for (unsigned It = 0; It < NumOpnds; ++It) { |
| // Save the current operand. |
| Value *Val = Inst->getOperand(It); |
| OriginalValues.push_back(Val); |
| // Set a dummy one. |
| // We could use OperandSetter here, but that would imply an overhead |
| // that we are not willing to pay. |
| Inst->setOperand(It, UndefValue::get(Val->getType())); |
| } |
| } |
| |
| /// Restore the original list of uses. |
| void undo() override { |
| LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); |
| for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) |
| Inst->setOperand(It, OriginalValues[It]); |
| } |
| }; |
| |
| /// Build a truncate instruction. |
| class TruncBuilder : public TypePromotionAction { |
| Value *Val; |
| |
| public: |
| /// Build a truncate instruction of \p Opnd producing a \p Ty |
| /// result. |
| /// trunc Opnd to Ty. |
| TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { |
| IRBuilder<> Builder(Opnd); |
| Builder.SetCurrentDebugLocation(DebugLoc()); |
| Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); |
| LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); |
| } |
| |
| /// Get the built value. |
| Value *getBuiltValue() { return Val; } |
| |
| /// Remove the built instruction. |
| void undo() override { |
|