blob: 5ea34d03bec79fc5d26989c38168ee8ed08d6d5f [file] [log] [blame]
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorTransforms.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::vector;
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
assert(rank > 0 && "0-D vector corner case should have been handled already");
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank <= 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
rewriter.getI64ArrayAttr(pos));
}
// Helper that returns data layout alignment of a memref.
LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
MemRefType memrefType, unsigned &align) {
Type elementTy = typeConverter.convertType(memrefType.getElementType());
if (!elementTy)
return failure();
// TODO: this should use the MLIR data layout when it becomes available and
// stop depending on translation.
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(elementTy, typeConverter.getDataLayout());
return success();
}
// Return the minimal alignment value that satisfies all the AssumeAlignment
// uses of `value`. If no such uses exist, return 1.
static unsigned getAssumedAlignment(Value value) {
unsigned align = 1;
for (auto &u : value.getUses()) {
Operation *owner = u.getOwner();
if (auto op = dyn_cast<memref::AssumeAlignmentOp>(owner))
align = mlir::lcm(align, op.alignment());
}
return align;
}
// Helper that returns data layout alignment of a memref associated with a
// load, store, scatter, or gather op, including additional information from
// assume_alignment calls on the source of the transfer
template <class OpAdaptor>
LogicalResult getMemRefOpAlignment(LLVMTypeConverter &typeConverter,
OpAdaptor op, unsigned &align) {
if (failed(getMemRefAlignment(typeConverter, op.getMemRefType(), align)))
return failure();
align = std::max(align, getAssumedAlignment(op.base()));
return success();
}
// Add an index vector component to a base pointer. This almost always succeeds
// unless the last stride is non-unit or the memory space is not zero.
static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
Location loc, Value memref, Value base,
Value index, MemRefType memRefType,
VectorType vType, Value &ptrs) {
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(memRefType, strides, offset);
if (failed(successStrides) || strides.back() != 1 ||
memRefType.getMemorySpaceAsInt() != 0)
return failure();
auto pType = MemRefDescriptor(memref).getElementPtrType();
auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index);
return success();
}
// Casts a strided element pointer to a vector pointer. The vector pointer
// will be in the same address space as the incoming memref type.
static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
Value ptr, MemRefType memRefType, Type vt) {
auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt());
return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
}
namespace {
/// Conversion pattern for a vector.bitcast.
class VectorBitCastOpConversion
: public ConvertOpToLLVMPattern<vector::BitCastOp> {
public:
using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 1-D vectors can be lowered to LLVM.
VectorType resultTy = bitCastOp.getType();
if (resultTy.getRank() != 1)
return failure();
Type newResultTy = typeConverter->convertType(resultTy);
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
adaptor.getOperands()[0]);
return success();
}
};
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion
: public ConvertOpToLLVMPattern<vector::MatmulOp> {
public:
using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
matmulOp, typeConverter->convertType(matmulOp.res().getType()),
adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
matmulOp.lhs_columns(), matmulOp.rhs_columns());
return success();
}
};
/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion
: public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
public:
using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
transOp, typeConverter->convertType(transOp.res().getType()),
adaptor.matrix(), transOp.rows(), transOp.columns());
return success();
}
};
/// Overloaded utility that replaces a vector.load, vector.store,
/// vector.maskedload and vector.maskedstore with their respective LLVM
/// couterparts.
static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
vector::LoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align);
}
static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
vector::MaskedLoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
loadOp, vectorTy, ptr, adaptor.mask(), adaptor.pass_thru(), align);
}
static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
vector::StoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.valueToStore(),
ptr, align);
}
static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
vector::MaskedStoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
storeOp, adaptor.valueToStore(), ptr, adaptor.mask(), align);
}
/// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
/// vector.maskedstore.
template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
public:
using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(LoadOrStoreOp loadOrStoreOp,
typename LoadOrStoreOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 1-D vectors can be lowered to LLVM.
VectorType vectorTy = loadOrStoreOp.getVectorType();
if (vectorTy.getRank() > 1)
return failure();
auto loc = loadOrStoreOp->getLoc();
MemRefType memRefTy = loadOrStoreOp.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefOpAlignment(*this->getTypeConverter(), loadOrStoreOp,
align)))
return failure();
// Resolve address.
auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType())
.template cast<VectorType>();
Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.base(),
adaptor.indices(), rewriter);
Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype);
replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
return success();
}
};
/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion
: public ConvertOpToLLVMPattern<vector::GatherOp> {
public:
using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = gather->getLoc();
MemRefType memRefType = gather.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefOpAlignment(*getTypeConverter(), gather, align)))
return failure();
// Resolve address.
Value ptrs;
VectorType vType = gather.getVectorType();
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
adaptor.index_vec(), memRefType, vType, ptrs)))
return failure();
// Replace with the gather intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion
: public ConvertOpToLLVMPattern<vector::ScatterOp> {
public:
using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = scatter->getLoc();
MemRefType memRefType = scatter.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefOpAlignment(*getTypeConverter(), scatter, align)))
return failure();
// Resolve address.
Value ptrs;
VectorType vType = scatter.getVectorType();
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
adaptor.index_vec(), memRefType, vType, ptrs)))
return failure();
// Replace with the scatter intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
scatter, adaptor.valueToStore(), ptrs, adaptor.mask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion
: public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
public:
using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = expand->getLoc();
MemRefType memRefType = expand.getMemRefType();
// Resolve address.
auto vtype = typeConverter->convertType(expand.getVectorType());
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
return success();
}
};
/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion
: public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
public:
using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = compress->getLoc();
MemRefType memRefType = compress.getMemRefType();
// Resolve address.
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
compress, adaptor.valueToStore(), ptr, adaptor.mask());
return success();
}
};
/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion
: public ConvertOpToLLVMPattern<vector::ReductionOp> {
public:
explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
bool reassociateFPRed)
: ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
reassociateFPReductions(reassociateFPRed) {}
LogicalResult
matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto kind = reductionOp.kind();
Type eltType = reductionOp.dest().getType();
Type llvmType = typeConverter->convertType(eltType);
Value operand = adaptor.getOperands()[0];
if (eltType.isIntOrIndex()) {
// Integer reductions: add/mul/min/max/and/or/xor.
if (kind == "add")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(reductionOp,
llvmType, operand);
else if (kind == "mul")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(reductionOp,
llvmType, operand);
else if (kind == "minui")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
reductionOp, llvmType, operand);
else if (kind == "minsi")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
reductionOp, llvmType, operand);
else if (kind == "maxui")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
reductionOp, llvmType, operand);
else if (kind == "maxsi")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
reductionOp, llvmType, operand);
else if (kind == "and")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(reductionOp,
llvmType, operand);
else if (kind == "or")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(reductionOp,
llvmType, operand);
else if (kind == "xor")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(reductionOp,
llvmType, operand);
else
return failure();
return success();
}
if (!eltType.isa<FloatType>())
return failure();
// Floating-point reductions: add/mul/min/max
if (kind == "add") {
// Optional accumulator (or zero).
Value acc = adaptor.getOperands().size() > 1
? adaptor.getOperands()[1]
: rewriter.create<LLVM::ConstantOp>(
reductionOp->getLoc(), llvmType,
rewriter.getZeroAttr(eltType));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
reductionOp, llvmType, acc, operand,
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "mul") {
// Optional accumulator (or one).
Value acc = adaptor.getOperands().size() > 1
? adaptor.getOperands()[1]
: rewriter.create<LLVM::ConstantOp>(
reductionOp->getLoc(), llvmType,
rewriter.getFloatAttr(eltType, 1.0));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
reductionOp, llvmType, acc, operand,
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "minf")
// FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
// NaNs/-0.0/+0.0 in the same way.
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(reductionOp,
llvmType, operand);
else if (kind == "maxf")
// FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle
// NaNs/-0.0/+0.0 in the same way.
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(reductionOp,
llvmType, operand);
else
return failure();
return success();
}
private:
const bool reassociateFPReductions;
};
class VectorShuffleOpConversion
: public ConvertOpToLLVMPattern<vector::ShuffleOp> {
public:
using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = shuffleOp->getLoc();
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = typeConverter->convertType(vectorType);
auto maskArrayAttr = shuffleOp.mask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
assert(v1Type.getRank() == rank);
assert(v2Type.getRank() == rank);
int64_t v1Dim = v1Type.getDimSize(0);
// For rank 1, where both operands have *exactly* the same vector type,
// there is direct shuffle support in LLVM. Use it!
if (rank == 1 && v1Type == v2Type) {
Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
rewriter.replaceOp(shuffleOp, llvmShuffleOp);
return success();
}
// For all other cases, insert the individual values individually.
Type eltType;
if (auto arrayType = llvmType.dyn_cast<LLVM::LLVMArrayType>())
eltType = arrayType.getElementType();
else
eltType = llvmType.cast<VectorType>().getElementType();
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (auto en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.v1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.v2();
}
Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
eltType, rank, extPos);
insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(shuffleOp, insert);
return success();
}
};
class VectorExtractElementOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
public:
using ConvertOpToLLVMPattern<
vector::ExtractElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto vectorType = extractEltOp.getVectorType();
auto llvmType = typeConverter->convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
if (vectorType.getRank() == 0) {
Location loc = extractEltOp.getLoc();
auto idxType = rewriter.getIndexType();
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(idxType),
rewriter.getIntegerAttr(idxType, 0));
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.vector(), zero);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.vector(), adaptor.position());
return success();
}
};
class VectorExtractOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractOp> {
public:
using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = extractOp->getLoc();
auto vectorType = extractOp.getVectorType();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter->convertType(resultType);
auto positionArrayAttr = extractOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// Extract entire vector. Should be handled by folder, but just to be safe.
if (positionArrayAttr.empty()) {
rewriter.replaceOp(extractOp, adaptor.vector());
return success();
}
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(extractOp, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = extractOp->getContext();
Value extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
auto oneDVectorType = reducedVectorTypeBack(vectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(context, positionAttrs.drop_back());
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(extractOp, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
/// -> !llvm."<8 x f32>">
/// ```
class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
public:
using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() != 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
adaptor.rhs(), adaptor.acc());
return success();
}
};
class VectorInsertElementOpConversion
: public ConvertOpToLLVMPattern<vector::InsertElementOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter->convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
if (vectorType.getRank() == 0) {
Location loc = insertEltOp.getLoc();
auto idxType = rewriter.getIndexType();
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(idxType),
rewriter.getIntegerAttr(idxType, 0));
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.dest(), adaptor.source(), zero);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
adaptor.position());
return success();
}
};
class VectorInsertOpConversion
: public ConvertOpToLLVMPattern<vector::InsertOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = insertOp->getLoc();
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter->convertType(destVectorType);
auto positionArrayAttr = insertOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// Overwrite entire vector with value. Should be handled by folder, but
// just to be safe.
if (positionArrayAttr.empty()) {
rewriter.replaceOp(insertOp, adaptor.source());
return success();
}
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, llvmResultType, adaptor.dest(), adaptor.source(),
positionArrayAttr);
rewriter.replaceOp(insertOp, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = insertOp->getContext();
Value extracted = adaptor.dest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(context, positionAttrs.drop_back());
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
adaptor.source(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
auto nMinusOnePositionAttrs =
ArrayAttr::get(context, positionAttrs.drop_back());
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
adaptor.dest(), inserted,
nMinusOnePositionAttrs);
}
rewriter.replaceOp(insertOp, inserted);
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<arith::ConstantOp>(
loc, elemType, rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// Returns the strides if the memory underlying `memRefType` has a contiguous
/// static layout.
static llvm::Optional<SmallVector<int64_t, 4>>
computeContiguousStrides(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(memRefType, strides, offset)))
return None;
if (!strides.empty() && strides.back() != 1)
return None;
// If no layout or identity layout, this is contiguous by definition.
if (memRefType.getLayout().isIdentity())
return strides;
// Otherwise, we must determine contiguity form shapes. This can only ever
// work in static cases because MemRefType is underspecified to represent
// contiguous dynamic shapes in other ways than with just empty/identity
// layout.
auto sizes = memRefType.getShape();
for (int index = 0, e = strides.size() - 1; index < e; ++index) {
if (ShapedType::isDynamic(sizes[index + 1]) ||
ShapedType::isDynamicStrideOrOffset(strides[index]) ||
ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
return None;
if (strides[index] != strides[index + 1] * sizes[index + 1])
return None;
}
return strides;
}
class VectorTypeCastOpConversion
: public ConvertOpToLLVMPattern<vector::TypeCastOp> {
public:
using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = castOp->getLoc();
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType = castOp.getType();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
adaptor.getOperands()[0].getType().dyn_cast<LLVM::LLVMStructType>();
if (!llvmSourceDescriptorTy)
return failure();
MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]);
auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMStructType>();
if (!llvmTargetDescriptorTy)
return failure();
// Only contiguous source buffers supported atm.
auto sourceStrides = computeContiguousStrides(sourceMemRefType);
if (!sourceStrides)
return failure();
auto targetStrides = computeContiguousStrides(targetMemRefType);
if (!targetStrides)
return failure();
// Only support static strides for now, regardless of contiguity.
if (llvm::any_of(*targetStrides, [](int64_t stride) {
return ShapedType::isDynamicStrideOrOffset(stride);
}))
return failure();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementPtrType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
(*targetStrides)[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(castOp, {desc});
return success();
}
};
class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
public:
using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type printType = printOp.getPrintType();
if (typeConverter->convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support.
PrintConversion conversion = PrintConversion::None;
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
Operation *printer;
if (eltType.isF32()) {
printer =
LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>());
} else if (eltType.isF64()) {
printer =
LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>());
} else if (eltType.isIndex()) {
printer =
LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>());
} else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
// Integers need a zero or sign extension on the operand
// (depending on the source type) as well as a signed or
// unsigned print method. Up to 64-bit is supported.
unsigned width = intTy.getWidth();
if (intTy.isUnsigned()) {
if (width <= 64) {
if (width < 64)
conversion = PrintConversion::ZeroExt64;
printer = LLVM::lookupOrCreatePrintU64Fn(
printOp->getParentOfType<ModuleOp>());
} else {
return failure();
}
} else {
assert(intTy.isSignless() || intTy.isSigned());
if (width <= 64) {
// Note that we *always* zero extend booleans (1-bit integers),
// so that true/false is printed as 1/0 rather than -1/0.
if (width == 1)
conversion = PrintConversion::ZeroExt64;
else if (width < 64)
conversion = PrintConversion::SignExt64;
printer = LLVM::lookupOrCreatePrintI64Fn(
printOp->getParentOfType<ModuleOp>());
} else {
return failure();
}
}
} else {
return failure();
}
// Unroll vector into elementary print calls.
int64_t rank = vectorType ? vectorType.getRank() : 0;
Type type = vectorType ? vectorType : eltType;
emitRanks(rewriter, printOp, adaptor.source(), type, printer, rank,
conversion);
emitCall(rewriter, printOp->getLoc(),
LLVM::lookupOrCreatePrintNewlineFn(
printOp->getParentOfType<ModuleOp>()));
rewriter.eraseOp(printOp);
return success();
}
private:
enum class PrintConversion {
// clang-format off
None,
ZeroExt64,
SignExt64
// clang-format on
};
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, Type type, Operation *printer, int64_t rank,
PrintConversion conversion) const {
VectorType vectorType = type.dyn_cast<VectorType>();
Location loc = op->getLoc();
if (!vectorType) {
assert(rank == 0 && "The scalar case expects rank == 0");
switch (conversion) {
case PrintConversion::ZeroExt64:
value = rewriter.create<arith::ExtUIOp>(
loc, value, IntegerType::get(rewriter.getContext(), 64));
break;
case PrintConversion::SignExt64:
value = rewriter.create<arith::ExtSIOp>(
loc, value, IntegerType::get(rewriter.getContext(), 64));
break;
case PrintConversion::None:
break;
}
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc,
LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>()));
Operation *printComma =
LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>());
if (rank <= 1) {
auto reducedType = vectorType.getElementType();
auto llvmType = typeConverter->convertType(reducedType);
int64_t dim = rank == 0 ? 1 : vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, /*rank=*/0, /*pos=*/d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, /*rank=*/0,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(
rewriter, loc,
LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
return;
}
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType = reducedVectorTypeFront(vectorType);
auto llvmType = typeConverter->convertType(reducedType);
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc,
LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref),
params);
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns,
bool reassociateFPReductions) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.add<VectorFMAOpNDRewritePattern>(ctx);
populateVectorInsertExtractStridedSliceTransforms(patterns);
patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
patterns
.add<VectorBitCastOpConversion, VectorShuffleOpConversion,
VectorExtractElementOpConversion, VectorExtractOpConversion,
VectorFMAOp1DConversion, VectorInsertElementOpConversion,
VectorInsertOpConversion, VectorPrintOpConversion,
VectorTypeCastOpConversion,
VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
VectorLoadStoreConversion<vector::MaskedLoadOp,
vector::MaskedLoadOpAdaptor>,
VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
VectorLoadStoreConversion<vector::MaskedStoreOp,
vector::MaskedStoreOpAdaptor>,
VectorGatherOpConversion, VectorScatterOpConversion,
VectorExpandLoadOpConversion, VectorCompressStoreOpConversion>(
converter);
// Transfer ops with rank > 1 are handled by VectorToSCF.
populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<VectorMatmulOpConversion>(converter);
patterns.add<VectorFlatTransposeOpConversion>(converter);
}