| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCCodeEmitter.h" |
| #include "llvm/MC/MCCodeView.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCFixup.h" |
| #include "llvm/MC/MCFixupKindInfo.h" |
| #include "llvm/MC/MCFragment.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| class MCSubtargetInfo; |
| } |
| |
| #define DEBUG_TYPE "assembler" |
| |
| namespace { |
| namespace stats { |
| |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); |
| STATISTIC(EmittedRelaxableFragments, |
| "Number of emitted assembler fragments - relaxable"); |
| STATISTIC(EmittedDataFragments, |
| "Number of emitted assembler fragments - data"); |
| STATISTIC(EmittedCompactEncodedInstFragments, |
| "Number of emitted assembler fragments - compact encoded inst"); |
| STATISTIC(EmittedAlignFragments, |
| "Number of emitted assembler fragments - align"); |
| STATISTIC(EmittedFillFragments, |
| "Number of emitted assembler fragments - fill"); |
| STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); |
| STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); |
| STATISTIC(evaluateFixup, "Number of evaluated fixups"); |
| STATISTIC(ObjectBytes, "Number of emitted object file bytes"); |
| STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); |
| STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); |
| |
| } // end namespace stats |
| } // end anonymous namespace |
| |
| // FIXME FIXME FIXME: There are number of places in this file where we convert |
| // what is a 64-bit assembler value used for computation into a value in the |
| // object file, which may truncate it. We should detect that truncation where |
| // invalid and report errors back. |
| |
| /* *** */ |
| |
| MCAssembler::MCAssembler(MCContext &Context, |
| std::unique_ptr<MCAsmBackend> Backend, |
| std::unique_ptr<MCCodeEmitter> Emitter, |
| std::unique_ptr<MCObjectWriter> Writer) |
| : Context(Context), Backend(std::move(Backend)), |
| Emitter(std::move(Emitter)), Writer(std::move(Writer)) {} |
| |
| MCAssembler::~MCAssembler() = default; |
| |
| void MCAssembler::reset() { |
| RelaxAll = false; |
| SubsectionsViaSymbols = false; |
| Sections.clear(); |
| Symbols.clear(); |
| ThumbFuncs.clear(); |
| BundleAlignSize = 0; |
| |
| // reset objects owned by us |
| if (getBackendPtr()) |
| getBackendPtr()->reset(); |
| if (getEmitterPtr()) |
| getEmitterPtr()->reset(); |
| if (Writer) |
| Writer->reset(); |
| } |
| |
| bool MCAssembler::registerSection(MCSection &Section) { |
| if (Section.isRegistered()) |
| return false; |
| assert(Section.curFragList()->Head && "allocInitialFragment not called"); |
| Sections.push_back(&Section); |
| Section.setIsRegistered(true); |
| return true; |
| } |
| |
| bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { |
| if (ThumbFuncs.count(Symbol)) |
| return true; |
| |
| if (!Symbol->isVariable()) |
| return false; |
| |
| const MCExpr *Expr = Symbol->getVariableValue(); |
| |
| MCValue V; |
| if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) |
| return false; |
| |
| if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| const MCSymbolRefExpr *Ref = V.getSymA(); |
| if (!Ref) |
| return false; |
| |
| if (Ref->getKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| const MCSymbol &Sym = Ref->getSymbol(); |
| if (!isThumbFunc(&Sym)) |
| return false; |
| |
| ThumbFuncs.insert(Symbol); // Cache it. |
| return true; |
| } |
| |
| bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF, |
| MCValue &Target, const MCSubtargetInfo *STI, |
| uint64_t &Value, bool &WasForced) const { |
| ++stats::evaluateFixup; |
| |
| // FIXME: This code has some duplication with recordRelocation. We should |
| // probably merge the two into a single callback that tries to evaluate a |
| // fixup and records a relocation if one is needed. |
| |
| // On error claim to have completely evaluated the fixup, to prevent any |
| // further processing from being done. |
| const MCExpr *Expr = Fixup.getValue(); |
| MCContext &Ctx = getContext(); |
| Value = 0; |
| WasForced = false; |
| if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) { |
| Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); |
| return true; |
| } |
| if (const MCSymbolRefExpr *RefB = Target.getSymB()) { |
| if (RefB->getKind() != MCSymbolRefExpr::VK_None) { |
| Ctx.reportError(Fixup.getLoc(), |
| "unsupported subtraction of qualified symbol"); |
| return true; |
| } |
| } |
| |
| assert(getBackendPtr() && "Expected assembler backend"); |
| bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & |
| MCFixupKindInfo::FKF_IsTarget; |
| |
| if (IsTarget) |
| return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI, |
| Value, WasForced); |
| |
| unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; |
| bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & |
| MCFixupKindInfo::FKF_IsPCRel; |
| |
| bool IsResolved = false; |
| if (IsPCRel) { |
| if (Target.getSymB()) { |
| IsResolved = false; |
| } else if (!Target.getSymA()) { |
| IsResolved = false; |
| } else { |
| const MCSymbolRefExpr *A = Target.getSymA(); |
| const MCSymbol &SA = A->getSymbol(); |
| if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { |
| IsResolved = false; |
| } else { |
| IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || |
| getWriter().isSymbolRefDifferenceFullyResolvedImpl( |
| *this, SA, *DF, false, true); |
| } |
| } |
| } else { |
| IsResolved = Target.isAbsolute(); |
| } |
| |
| Value = Target.getConstant(); |
| |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| const MCSymbol &Sym = A->getSymbol(); |
| if (Sym.isDefined()) |
| Value += getSymbolOffset(Sym); |
| } |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| const MCSymbol &Sym = B->getSymbol(); |
| if (Sym.isDefined()) |
| Value -= getSymbolOffset(Sym); |
| } |
| |
| bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; |
| assert((ShouldAlignPC ? IsPCRel : true) && |
| "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); |
| |
| if (IsPCRel) { |
| uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset(); |
| |
| // A number of ARM fixups in Thumb mode require that the effective PC |
| // address be determined as the 32-bit aligned version of the actual offset. |
| if (ShouldAlignPC) Offset &= ~0x3; |
| Value -= Offset; |
| } |
| |
| // Let the backend force a relocation if needed. |
| if (IsResolved && |
| getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) { |
| IsResolved = false; |
| WasForced = true; |
| } |
| |
| // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let |
| // recordRelocation handle non-VK_None cases like A@plt-B+C. |
| if (!IsResolved && Target.getSymA() && Target.getSymB() && |
| Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None && |
| getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value)) |
| return true; |
| |
| return IsResolved; |
| } |
| |
| uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const { |
| assert(getBackendPtr() && "Requires assembler backend"); |
| switch (F.getKind()) { |
| case MCFragment::FT_Data: |
| return cast<MCDataFragment>(F).getContents().size(); |
| case MCFragment::FT_Relaxable: |
| return cast<MCRelaxableFragment>(F).getContents().size(); |
| case MCFragment::FT_CompactEncodedInst: |
| return cast<MCCompactEncodedInstFragment>(F).getContents().size(); |
| case MCFragment::FT_Fill: { |
| auto &FF = cast<MCFillFragment>(F); |
| int64_t NumValues = 0; |
| if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) { |
| getContext().reportError(FF.getLoc(), |
| "expected assembly-time absolute expression"); |
| return 0; |
| } |
| int64_t Size = NumValues * FF.getValueSize(); |
| if (Size < 0) { |
| getContext().reportError(FF.getLoc(), "invalid number of bytes"); |
| return 0; |
| } |
| return Size; |
| } |
| |
| case MCFragment::FT_Nops: |
| return cast<MCNopsFragment>(F).getNumBytes(); |
| |
| case MCFragment::FT_LEB: |
| return cast<MCLEBFragment>(F).getContents().size(); |
| |
| case MCFragment::FT_BoundaryAlign: |
| return cast<MCBoundaryAlignFragment>(F).getSize(); |
| |
| case MCFragment::FT_SymbolId: |
| return 4; |
| |
| case MCFragment::FT_Align: { |
| const MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| unsigned Offset = getFragmentOffset(AF); |
| unsigned Size = offsetToAlignment(Offset, AF.getAlignment()); |
| |
| // Insert extra Nops for code alignment if the target define |
| // shouldInsertExtraNopBytesForCodeAlign target hook. |
| if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() && |
| getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) |
| return Size; |
| |
| // If we are padding with nops, force the padding to be larger than the |
| // minimum nop size. |
| if (Size > 0 && AF.hasEmitNops()) { |
| while (Size % getBackend().getMinimumNopSize()) |
| Size += AF.getAlignment().value(); |
| } |
| if (Size > AF.getMaxBytesToEmit()) |
| return 0; |
| return Size; |
| } |
| |
| case MCFragment::FT_Org: { |
| const MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| MCValue Value; |
| if (!OF.getOffset().evaluateAsValue(Value, *this)) { |
| getContext().reportError(OF.getLoc(), |
| "expected assembly-time absolute expression"); |
| return 0; |
| } |
| |
| uint64_t FragmentOffset = getFragmentOffset(OF); |
| int64_t TargetLocation = Value.getConstant(); |
| if (const MCSymbolRefExpr *A = Value.getSymA()) { |
| uint64_t Val; |
| if (!getSymbolOffset(A->getSymbol(), Val)) { |
| getContext().reportError(OF.getLoc(), "expected absolute expression"); |
| return 0; |
| } |
| TargetLocation += Val; |
| } |
| int64_t Size = TargetLocation - FragmentOffset; |
| if (Size < 0 || Size >= 0x40000000) { |
| getContext().reportError( |
| OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + |
| "' (at offset '" + Twine(FragmentOffset) + "')"); |
| return 0; |
| } |
| return Size; |
| } |
| |
| case MCFragment::FT_Dwarf: |
| return cast<MCDwarfLineAddrFragment>(F).getContents().size(); |
| case MCFragment::FT_DwarfFrame: |
| return cast<MCDwarfCallFrameFragment>(F).getContents().size(); |
| case MCFragment::FT_CVInlineLines: |
| return cast<MCCVInlineLineTableFragment>(F).getContents().size(); |
| case MCFragment::FT_CVDefRange: |
| return cast<MCCVDefRangeFragment>(F).getContents().size(); |
| case MCFragment::FT_PseudoProbe: |
| return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); |
| case MCFragment::FT_Dummy: |
| llvm_unreachable("Should not have been added"); |
| } |
| |
| llvm_unreachable("invalid fragment kind"); |
| } |
| |
| // Compute the amount of padding required before the fragment \p F to |
| // obey bundling restrictions, where \p FOffset is the fragment's offset in |
| // its section and \p FSize is the fragment's size. |
| static uint64_t computeBundlePadding(unsigned BundleSize, |
| const MCEncodedFragment *F, |
| uint64_t FOffset, uint64_t FSize) { |
| uint64_t OffsetInBundle = FOffset & (BundleSize - 1); |
| uint64_t EndOfFragment = OffsetInBundle + FSize; |
| |
| // There are two kinds of bundling restrictions: |
| // |
| // 1) For alignToBundleEnd(), add padding to ensure that the fragment will |
| // *end* on a bundle boundary. |
| // 2) Otherwise, check if the fragment would cross a bundle boundary. If it |
| // would, add padding until the end of the bundle so that the fragment |
| // will start in a new one. |
| if (F->alignToBundleEnd()) { |
| // Three possibilities here: |
| // |
| // A) The fragment just happens to end at a bundle boundary, so we're good. |
| // B) The fragment ends before the current bundle boundary: pad it just |
| // enough to reach the boundary. |
| // C) The fragment ends after the current bundle boundary: pad it until it |
| // reaches the end of the next bundle boundary. |
| // |
| // Note: this code could be made shorter with some modulo trickery, but it's |
| // intentionally kept in its more explicit form for simplicity. |
| if (EndOfFragment == BundleSize) |
| return 0; |
| else if (EndOfFragment < BundleSize) |
| return BundleSize - EndOfFragment; |
| else { // EndOfFragment > BundleSize |
| return 2 * BundleSize - EndOfFragment; |
| } |
| } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize) |
| return BundleSize - OffsetInBundle; |
| else |
| return 0; |
| } |
| |
| void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const { |
| // If bundling is enabled and this fragment has instructions in it, it has to |
| // obey the bundling restrictions. With padding, we'll have: |
| // |
| // |
| // BundlePadding |
| // ||| |
| // ------------------------------------- |
| // Prev |##########| F | |
| // ------------------------------------- |
| // ^ |
| // | |
| // F->Offset |
| // |
| // The fragment's offset will point to after the padding, and its computed |
| // size won't include the padding. |
| // |
| // ".align N" is an example of a directive that introduces multiple |
| // fragments. We could add a special case to handle ".align N" by emitting |
| // within-fragment padding (which would produce less padding when N is less |
| // than the bundle size), but for now we don't. |
| // |
| assert(isa<MCEncodedFragment>(F) && |
| "Only MCEncodedFragment implementations have instructions"); |
| MCEncodedFragment *EF = cast<MCEncodedFragment>(F); |
| uint64_t FSize = computeFragmentSize(*EF); |
| |
| if (FSize > getBundleAlignSize()) |
| report_fatal_error("Fragment can't be larger than a bundle size"); |
| |
| uint64_t RequiredBundlePadding = |
| computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize); |
| if (RequiredBundlePadding > UINT8_MAX) |
| report_fatal_error("Padding cannot exceed 255 bytes"); |
| EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); |
| EF->Offset += RequiredBundlePadding; |
| if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev)) |
| if (DF->getContents().empty()) |
| DF->Offset = EF->Offset; |
| } |
| |
| // Simple getSymbolOffset helper for the non-variable case. |
| static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S, |
| bool ReportError, uint64_t &Val) { |
| if (!S.getFragment()) { |
| if (ReportError) |
| report_fatal_error("unable to evaluate offset to undefined symbol '" + |
| S.getName() + "'"); |
| return false; |
| } |
| Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset(); |
| return true; |
| } |
| |
| static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S, |
| bool ReportError, uint64_t &Val) { |
| if (!S.isVariable()) |
| return getLabelOffset(Asm, S, ReportError, Val); |
| |
| // If SD is a variable, evaluate it. |
| MCValue Target; |
| if (!S.getVariableValue()->evaluateAsValue(Target, Asm)) |
| report_fatal_error("unable to evaluate offset for variable '" + |
| S.getName() + "'"); |
| |
| uint64_t Offset = Target.getConstant(); |
| |
| const MCSymbolRefExpr *A = Target.getSymA(); |
| if (A) { |
| uint64_t ValA; |
| // FIXME: On most platforms, `Target`'s component symbols are labels from |
| // having been simplified during evaluation, but on Mach-O they can be |
| // variables due to PR19203. This, and the line below for `B` can be |
| // restored to call `getLabelOffset` when PR19203 is fixed. |
| if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA)) |
| return false; |
| Offset += ValA; |
| } |
| |
| const MCSymbolRefExpr *B = Target.getSymB(); |
| if (B) { |
| uint64_t ValB; |
| if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB)) |
| return false; |
| Offset -= ValB; |
| } |
| |
| Val = Offset; |
| return true; |
| } |
| |
| bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const { |
| return getSymbolOffsetImpl(*this, S, false, Val); |
| } |
| |
| uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const { |
| uint64_t Val; |
| getSymbolOffsetImpl(*this, S, true, Val); |
| return Val; |
| } |
| |
| const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const { |
| assert(HasLayout); |
| if (!Symbol.isVariable()) |
| return &Symbol; |
| |
| const MCExpr *Expr = Symbol.getVariableValue(); |
| MCValue Value; |
| if (!Expr->evaluateAsValue(Value, *this)) { |
| getContext().reportError(Expr->getLoc(), |
| "expression could not be evaluated"); |
| return nullptr; |
| } |
| |
| const MCSymbolRefExpr *RefB = Value.getSymB(); |
| if (RefB) { |
| getContext().reportError( |
| Expr->getLoc(), |
| Twine("symbol '") + RefB->getSymbol().getName() + |
| "' could not be evaluated in a subtraction expression"); |
| return nullptr; |
| } |
| |
| const MCSymbolRefExpr *A = Value.getSymA(); |
| if (!A) |
| return nullptr; |
| |
| const MCSymbol &ASym = A->getSymbol(); |
| if (ASym.isCommon()) { |
| getContext().reportError(Expr->getLoc(), |
| "Common symbol '" + ASym.getName() + |
| "' cannot be used in assignment expr"); |
| return nullptr; |
| } |
| |
| return &ASym; |
| } |
| |
| uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const { |
| assert(HasLayout); |
| // The size is the last fragment's end offset. |
| const MCFragment &F = *Sec.curFragList()->Tail; |
| return getFragmentOffset(F) + computeFragmentSize(F); |
| } |
| |
| uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const { |
| // Virtual sections have no file size. |
| if (Sec.isVirtualSection()) |
| return 0; |
| return getSectionAddressSize(Sec); |
| } |
| |
| bool MCAssembler::registerSymbol(const MCSymbol &Symbol) { |
| bool Changed = !Symbol.isRegistered(); |
| if (Changed) { |
| Symbol.setIsRegistered(true); |
| Symbols.push_back(&Symbol); |
| } |
| return Changed; |
| } |
| |
| void MCAssembler::writeFragmentPadding(raw_ostream &OS, |
| const MCEncodedFragment &EF, |
| uint64_t FSize) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| // Should NOP padding be written out before this fragment? |
| unsigned BundlePadding = EF.getBundlePadding(); |
| if (BundlePadding > 0) { |
| assert(isBundlingEnabled() && |
| "Writing bundle padding with disabled bundling"); |
| assert(EF.hasInstructions() && |
| "Writing bundle padding for a fragment without instructions"); |
| |
| unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); |
| const MCSubtargetInfo *STI = EF.getSubtargetInfo(); |
| if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { |
| // If the padding itself crosses a bundle boundary, it must be emitted |
| // in 2 pieces, since even nop instructions must not cross boundaries. |
| // v--------------v <- BundleAlignSize |
| // v---------v <- BundlePadding |
| // ---------------------------- |
| // | Prev |####|####| F | |
| // ---------------------------- |
| // ^-------------------^ <- TotalLength |
| unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); |
| if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) |
| report_fatal_error("unable to write NOP sequence of " + |
| Twine(DistanceToBoundary) + " bytes"); |
| BundlePadding -= DistanceToBoundary; |
| } |
| if (!getBackend().writeNopData(OS, BundlePadding, STI)) |
| report_fatal_error("unable to write NOP sequence of " + |
| Twine(BundlePadding) + " bytes"); |
| } |
| } |
| |
| /// Write the fragment \p F to the output file. |
| static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, |
| const MCFragment &F) { |
| // FIXME: Embed in fragments instead? |
| uint64_t FragmentSize = Asm.computeFragmentSize(F); |
| |
| llvm::endianness Endian = Asm.getBackend().Endian; |
| |
| if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) |
| Asm.writeFragmentPadding(OS, *EF, FragmentSize); |
| |
| // This variable (and its dummy usage) is to participate in the assert at |
| // the end of the function. |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| ++stats::EmittedFragments; |
| |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| ++stats::EmittedAlignFragments; |
| const MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); |
| |
| uint64_t Count = FragmentSize / AF.getValueSize(); |
| |
| // FIXME: This error shouldn't actually occur (the front end should emit |
| // multiple .align directives to enforce the semantics it wants), but is |
| // severe enough that we want to report it. How to handle this? |
| if (Count * AF.getValueSize() != FragmentSize) |
| report_fatal_error("undefined .align directive, value size '" + |
| Twine(AF.getValueSize()) + |
| "' is not a divisor of padding size '" + |
| Twine(FragmentSize) + "'"); |
| |
| // See if we are aligning with nops, and if so do that first to try to fill |
| // the Count bytes. Then if that did not fill any bytes or there are any |
| // bytes left to fill use the Value and ValueSize to fill the rest. |
| // If we are aligning with nops, ask that target to emit the right data. |
| if (AF.hasEmitNops()) { |
| if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) |
| report_fatal_error("unable to write nop sequence of " + |
| Twine(Count) + " bytes"); |
| break; |
| } |
| |
| // Otherwise, write out in multiples of the value size. |
| for (uint64_t i = 0; i != Count; ++i) { |
| switch (AF.getValueSize()) { |
| default: llvm_unreachable("Invalid size!"); |
| case 1: OS << char(AF.getValue()); break; |
| case 2: |
| support::endian::write<uint16_t>(OS, AF.getValue(), Endian); |
| break; |
| case 4: |
| support::endian::write<uint32_t>(OS, AF.getValue(), Endian); |
| break; |
| case 8: |
| support::endian::write<uint64_t>(OS, AF.getValue(), Endian); |
| break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Data: |
| ++stats::EmittedDataFragments; |
| OS << cast<MCDataFragment>(F).getContents(); |
| break; |
| |
| case MCFragment::FT_Relaxable: |
| ++stats::EmittedRelaxableFragments; |
| OS << cast<MCRelaxableFragment>(F).getContents(); |
| break; |
| |
| case MCFragment::FT_CompactEncodedInst: |
| ++stats::EmittedCompactEncodedInstFragments; |
| OS << cast<MCCompactEncodedInstFragment>(F).getContents(); |
| break; |
| |
| case MCFragment::FT_Fill: { |
| ++stats::EmittedFillFragments; |
| const MCFillFragment &FF = cast<MCFillFragment>(F); |
| uint64_t V = FF.getValue(); |
| unsigned VSize = FF.getValueSize(); |
| const unsigned MaxChunkSize = 16; |
| char Data[MaxChunkSize]; |
| assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); |
| // Duplicate V into Data as byte vector to reduce number of |
| // writes done. As such, do endian conversion here. |
| for (unsigned I = 0; I != VSize; ++I) { |
| unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1); |
| Data[I] = uint8_t(V >> (index * 8)); |
| } |
| for (unsigned I = VSize; I < MaxChunkSize; ++I) |
| Data[I] = Data[I - VSize]; |
| |
| // Set to largest multiple of VSize in Data. |
| const unsigned NumPerChunk = MaxChunkSize / VSize; |
| // Set ChunkSize to largest multiple of VSize in Data |
| const unsigned ChunkSize = VSize * NumPerChunk; |
| |
| // Do copies by chunk. |
| StringRef Ref(Data, ChunkSize); |
| for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) |
| OS << Ref; |
| |
| // do remainder if needed. |
| unsigned TrailingCount = FragmentSize % ChunkSize; |
| if (TrailingCount) |
| OS.write(Data, TrailingCount); |
| break; |
| } |
| |
| case MCFragment::FT_Nops: { |
| ++stats::EmittedNopsFragments; |
| const MCNopsFragment &NF = cast<MCNopsFragment>(F); |
| |
| int64_t NumBytes = NF.getNumBytes(); |
| int64_t ControlledNopLength = NF.getControlledNopLength(); |
| int64_t MaximumNopLength = |
| Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); |
| |
| assert(NumBytes > 0 && "Expected positive NOPs fragment size"); |
| assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); |
| |
| if (ControlledNopLength > MaximumNopLength) { |
| Asm.getContext().reportError(NF.getLoc(), |
| "illegal NOP size " + |
| std::to_string(ControlledNopLength) + |
| ". (expected within [0, " + |
| std::to_string(MaximumNopLength) + "])"); |
| // Clamp the NOP length as reportError does not stop the execution |
| // immediately. |
| ControlledNopLength = MaximumNopLength; |
| } |
| |
| // Use maximum value if the size of each NOP is not specified |
| if (!ControlledNopLength) |
| ControlledNopLength = MaximumNopLength; |
| |
| while (NumBytes) { |
| uint64_t NumBytesToEmit = |
| (uint64_t)std::min(NumBytes, ControlledNopLength); |
| assert(NumBytesToEmit && "try to emit empty NOP instruction"); |
| if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, |
| NF.getSubtargetInfo())) { |
| report_fatal_error("unable to write nop sequence of the remaining " + |
| Twine(NumBytesToEmit) + " bytes"); |
| break; |
| } |
| NumBytes -= NumBytesToEmit; |
| } |
| break; |
| } |
| |
| case MCFragment::FT_LEB: { |
| const MCLEBFragment &LF = cast<MCLEBFragment>(F); |
| OS << LF.getContents(); |
| break; |
| } |
| |
| case MCFragment::FT_BoundaryAlign: { |
| const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); |
| if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) |
| report_fatal_error("unable to write nop sequence of " + |
| Twine(FragmentSize) + " bytes"); |
| break; |
| } |
| |
| case MCFragment::FT_SymbolId: { |
| const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); |
| support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); |
| break; |
| } |
| |
| case MCFragment::FT_Org: { |
| ++stats::EmittedOrgFragments; |
| const MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| for (uint64_t i = 0, e = FragmentSize; i != e; ++i) |
| OS << char(OF.getValue()); |
| |
| break; |
| } |
| |
| case MCFragment::FT_Dwarf: { |
| const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); |
| OS << OF.getContents(); |
| break; |
| } |
| case MCFragment::FT_DwarfFrame: { |
| const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); |
| OS << CF.getContents(); |
| break; |
| } |
| case MCFragment::FT_CVInlineLines: { |
| const auto &OF = cast<MCCVInlineLineTableFragment>(F); |
| OS << OF.getContents(); |
| break; |
| } |
| case MCFragment::FT_CVDefRange: { |
| const auto &DRF = cast<MCCVDefRangeFragment>(F); |
| OS << DRF.getContents(); |
| break; |
| } |
| case MCFragment::FT_PseudoProbe: { |
| const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); |
| OS << PF.getContents(); |
| break; |
| } |
| case MCFragment::FT_Dummy: |
| llvm_unreachable("Should not have been added"); |
| } |
| |
| assert(OS.tell() - Start == FragmentSize && |
| "The stream should advance by fragment size"); |
| } |
| |
| void MCAssembler::writeSectionData(raw_ostream &OS, |
| const MCSection *Sec) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| |
| // Ignore virtual sections. |
| if (Sec->isVirtualSection()) { |
| assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!"); |
| |
| // Check that contents are only things legal inside a virtual section. |
| for (const MCFragment &F : *Sec) { |
| switch (F.getKind()) { |
| default: llvm_unreachable("Invalid fragment in virtual section!"); |
| case MCFragment::FT_Data: { |
| // Check that we aren't trying to write a non-zero contents (or fixups) |
| // into a virtual section. This is to support clients which use standard |
| // directives to fill the contents of virtual sections. |
| const MCDataFragment &DF = cast<MCDataFragment>(F); |
| if (DF.fixup_begin() != DF.fixup_end()) |
| getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + |
| " section '" + Sec->getName() + |
| "' cannot have fixups"); |
| for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) |
| if (DF.getContents()[i]) { |
| getContext().reportError(SMLoc(), |
| Sec->getVirtualSectionKind() + |
| " section '" + Sec->getName() + |
| "' cannot have non-zero initializers"); |
| break; |
| } |
| break; |
| } |
| case MCFragment::FT_Align: |
| // Check that we aren't trying to write a non-zero value into a virtual |
| // section. |
| assert((cast<MCAlignFragment>(F).getValueSize() == 0 || |
| cast<MCAlignFragment>(F).getValue() == 0) && |
| "Invalid align in virtual section!"); |
| break; |
| case MCFragment::FT_Fill: |
| assert((cast<MCFillFragment>(F).getValue() == 0) && |
| "Invalid fill in virtual section!"); |
| break; |
| case MCFragment::FT_Org: |
| break; |
| } |
| } |
| |
| return; |
| } |
| |
| uint64_t Start = OS.tell(); |
| (void)Start; |
| |
| for (const MCFragment &F : *Sec) |
| writeFragment(OS, *this, F); |
| |
| assert(getContext().hadError() || |
| OS.tell() - Start == getSectionAddressSize(*Sec)); |
| } |
| |
| std::tuple<MCValue, uint64_t, bool> |
| MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup, |
| const MCSubtargetInfo *STI) { |
| // Evaluate the fixup. |
| MCValue Target; |
| uint64_t FixedValue; |
| bool WasForced; |
| bool IsResolved = |
| evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced); |
| if (!IsResolved) { |
| // The fixup was unresolved, we need a relocation. Inform the object |
| // writer of the relocation, and give it an opportunity to adjust the |
| // fixup value if need be. |
| getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue); |
| } |
| return std::make_tuple(Target, FixedValue, IsResolved); |
| } |
| |
| void MCAssembler::layout() { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| DEBUG_WITH_TYPE("mc-dump", { |
| errs() << "assembler backend - pre-layout\n--\n"; |
| dump(); }); |
| |
| // Assign section ordinals. |
| unsigned SectionIndex = 0; |
| for (MCSection &Sec : *this) { |
| Sec.setOrdinal(SectionIndex++); |
| |
| // Chain together fragments from all subsections. |
| if (Sec.Subsections.size() > 1) { |
| MCDummyFragment Dummy; |
| MCFragment *Tail = &Dummy; |
| for (auto &[_, List] : Sec.Subsections) { |
| assert(List.Head); |
| Tail->Next = List.Head; |
| Tail = List.Tail; |
| } |
| Sec.Subsections.clear(); |
| Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}}); |
| Sec.CurFragList = &Sec.Subsections[0].second; |
| |
| unsigned FragmentIndex = 0; |
| for (MCFragment &Frag : Sec) |
| Frag.setLayoutOrder(FragmentIndex++); |
| } |
| } |
| |
| // Layout until everything fits. |
| this->HasLayout = true; |
| for (MCSection &Sec : *this) |
| layoutSection(Sec); |
| while (layoutOnce()) { |
| } |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| errs() << "assembler backend - post-relaxation\n--\n"; |
| dump(); }); |
| |
| // Some targets might want to adjust fragment offsets. If so, perform another |
| // layout loop. |
| if (getBackend().finishLayout(*this)) |
| for (MCSection &Sec : *this) |
| layoutSection(Sec); |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| errs() << "assembler backend - final-layout\n--\n"; |
| dump(); }); |
| |
| // Allow the object writer a chance to perform post-layout binding (for |
| // example, to set the index fields in the symbol data). |
| getWriter().executePostLayoutBinding(*this); |
| |
| // Evaluate and apply the fixups, generating relocation entries as necessary. |
| for (MCSection &Sec : *this) { |
| for (MCFragment &Frag : Sec) { |
| ArrayRef<MCFixup> Fixups; |
| MutableArrayRef<char> Contents; |
| const MCSubtargetInfo *STI = nullptr; |
| |
| // Process MCAlignFragment and MCEncodedFragmentWithFixups here. |
| switch (Frag.getKind()) { |
| default: |
| continue; |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(Frag); |
| // Insert fixup type for code alignment if the target define |
| // shouldInsertFixupForCodeAlign target hook. |
| if (Sec.useCodeAlign() && AF.hasEmitNops()) |
| getBackend().shouldInsertFixupForCodeAlign(*this, AF); |
| continue; |
| } |
| case MCFragment::FT_Data: { |
| MCDataFragment &DF = cast<MCDataFragment>(Frag); |
| Fixups = DF.getFixups(); |
| Contents = DF.getContents(); |
| STI = DF.getSubtargetInfo(); |
| assert(!DF.hasInstructions() || STI != nullptr); |
| break; |
| } |
| case MCFragment::FT_Relaxable: { |
| MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); |
| Fixups = RF.getFixups(); |
| Contents = RF.getContents(); |
| STI = RF.getSubtargetInfo(); |
| assert(!RF.hasInstructions() || STI != nullptr); |
| break; |
| } |
| case MCFragment::FT_CVDefRange: { |
| MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); |
| Fixups = CF.getFixups(); |
| Contents = CF.getContents(); |
| break; |
| } |
| case MCFragment::FT_Dwarf: { |
| MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); |
| Fixups = DF.getFixups(); |
| Contents = DF.getContents(); |
| break; |
| } |
| case MCFragment::FT_DwarfFrame: { |
| MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); |
| Fixups = DF.getFixups(); |
| Contents = DF.getContents(); |
| break; |
| } |
| case MCFragment::FT_LEB: { |
| auto &LF = cast<MCLEBFragment>(Frag); |
| Fixups = LF.getFixups(); |
| Contents = LF.getContents(); |
| break; |
| } |
| case MCFragment::FT_PseudoProbe: { |
| MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); |
| Fixups = PF.getFixups(); |
| Contents = PF.getContents(); |
| break; |
| } |
| } |
| for (const MCFixup &Fixup : Fixups) { |
| uint64_t FixedValue; |
| bool IsResolved; |
| MCValue Target; |
| std::tie(Target, FixedValue, IsResolved) = |
| handleFixup(Frag, Fixup, STI); |
| getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, |
| IsResolved, STI); |
| } |
| } |
| } |
| } |
| |
| void MCAssembler::Finish() { |
| layout(); |
| |
| // Write the object file. |
| stats::ObjectBytes += getWriter().writeObject(*this); |
| |
| HasLayout = false; |
| } |
| |
| bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, |
| const MCRelaxableFragment *DF) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| MCValue Target; |
| uint64_t Value; |
| bool WasForced; |
| bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(), |
| Value, WasForced); |
| if (Target.getSymA() && |
| Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && |
| Fixup.getKind() == FK_Data_1) |
| return false; |
| return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved, |
| Value, DF, WasForced); |
| } |
| |
| bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| // If this inst doesn't ever need relaxation, ignore it. This occurs when we |
| // are intentionally pushing out inst fragments, or because we relaxed a |
| // previous instruction to one that doesn't need relaxation. |
| if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) |
| return false; |
| |
| for (const MCFixup &Fixup : F->getFixups()) |
| if (fixupNeedsRelaxation(Fixup, F)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) { |
| assert(getEmitterPtr() && |
| "Expected CodeEmitter defined for relaxInstruction"); |
| if (!fragmentNeedsRelaxation(&F)) |
| return false; |
| |
| ++stats::RelaxedInstructions; |
| |
| // FIXME-PERF: We could immediately lower out instructions if we can tell |
| // they are fully resolved, to avoid retesting on later passes. |
| |
| // Relax the fragment. |
| |
| MCInst Relaxed = F.getInst(); |
| getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); |
| |
| // Encode the new instruction. |
| F.setInst(Relaxed); |
| F.getFixups().clear(); |
| F.getContents().clear(); |
| getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(), |
| *F.getSubtargetInfo()); |
| return true; |
| } |
| |
| bool MCAssembler::relaxLEB(MCLEBFragment &LF) { |
| const unsigned OldSize = static_cast<unsigned>(LF.getContents().size()); |
| unsigned PadTo = OldSize; |
| int64_t Value; |
| SmallVectorImpl<char> &Data = LF.getContents(); |
| LF.getFixups().clear(); |
| // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols |
| // requires that .uleb128 A-B is foldable where A and B reside in different |
| // fragments. This is used by __gcc_except_table. |
| bool Abs = getSubsectionsViaSymbols() |
| ? LF.getValue().evaluateKnownAbsolute(Value, *this) |
| : LF.getValue().evaluateAsAbsolute(Value, *this); |
| if (!Abs) { |
| bool Relaxed, UseZeroPad; |
| std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value); |
| if (!Relaxed) { |
| getContext().reportError(LF.getValue().getLoc(), |
| Twine(LF.isSigned() ? ".s" : ".u") + |
| "leb128 expression is not absolute"); |
| LF.setValue(MCConstantExpr::create(0, Context)); |
| } |
| uint8_t Tmp[10]; // maximum size: ceil(64/7) |
| PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp)); |
| if (UseZeroPad) |
| Value = 0; |
| } |
| Data.clear(); |
| raw_svector_ostream OSE(Data); |
| // The compiler can generate EH table assembly that is impossible to assemble |
| // without either adding padding to an LEB fragment or adding extra padding |
| // to a later alignment fragment. To accommodate such tables, relaxation can |
| // only increase an LEB fragment size here, not decrease it. See PR35809. |
| if (LF.isSigned()) |
| encodeSLEB128(Value, OSE, PadTo); |
| else |
| encodeULEB128(Value, OSE, PadTo); |
| return OldSize != LF.getContents().size(); |
| } |
| |
| /// Check if the branch crosses the boundary. |
| /// |
| /// \param StartAddr start address of the fused/unfused branch. |
| /// \param Size size of the fused/unfused branch. |
| /// \param BoundaryAlignment alignment requirement of the branch. |
| /// \returns true if the branch cross the boundary. |
| static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, |
| Align BoundaryAlignment) { |
| uint64_t EndAddr = StartAddr + Size; |
| return (StartAddr >> Log2(BoundaryAlignment)) != |
| ((EndAddr - 1) >> Log2(BoundaryAlignment)); |
| } |
| |
| /// Check if the branch is against the boundary. |
| /// |
| /// \param StartAddr start address of the fused/unfused branch. |
| /// \param Size size of the fused/unfused branch. |
| /// \param BoundaryAlignment alignment requirement of the branch. |
| /// \returns true if the branch is against the boundary. |
| static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, |
| Align BoundaryAlignment) { |
| uint64_t EndAddr = StartAddr + Size; |
| return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; |
| } |
| |
| /// Check if the branch needs padding. |
| /// |
| /// \param StartAddr start address of the fused/unfused branch. |
| /// \param Size size of the fused/unfused branch. |
| /// \param BoundaryAlignment alignment requirement of the branch. |
| /// \returns true if the branch needs padding. |
| static bool needPadding(uint64_t StartAddr, uint64_t Size, |
| Align BoundaryAlignment) { |
| return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || |
| isAgainstBoundary(StartAddr, Size, BoundaryAlignment); |
| } |
| |
| bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) { |
| // BoundaryAlignFragment that doesn't need to align any fragment should not be |
| // relaxed. |
| if (!BF.getLastFragment()) |
| return false; |
| |
| uint64_t AlignedOffset = getFragmentOffset(BF); |
| uint64_t AlignedSize = 0; |
| for (const MCFragment *F = BF.getNext();; F = F->getNext()) { |
| AlignedSize += computeFragmentSize(*F); |
| if (F == BF.getLastFragment()) |
| break; |
| } |
| |
| Align BoundaryAlignment = BF.getAlignment(); |
| uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) |
| ? offsetToAlignment(AlignedOffset, BoundaryAlignment) |
| : 0U; |
| if (NewSize == BF.getSize()) |
| return false; |
| BF.setSize(NewSize); |
| return true; |
| } |
| |
| bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) { |
| bool WasRelaxed; |
| if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed)) |
| return WasRelaxed; |
| |
| MCContext &Context = getContext(); |
| uint64_t OldSize = DF.getContents().size(); |
| int64_t AddrDelta; |
| bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this); |
| assert(Abs && "We created a line delta with an invalid expression"); |
| (void)Abs; |
| int64_t LineDelta; |
| LineDelta = DF.getLineDelta(); |
| SmallVectorImpl<char> &Data = DF.getContents(); |
| Data.clear(); |
| DF.getFixups().clear(); |
| |
| MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta, |
| AddrDelta, Data); |
| return OldSize != Data.size(); |
| } |
| |
| bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) { |
| bool WasRelaxed; |
| if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed)) |
| return WasRelaxed; |
| |
| MCContext &Context = getContext(); |
| int64_t Value; |
| bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this); |
| if (!Abs) { |
| getContext().reportError(DF.getAddrDelta().getLoc(), |
| "invalid CFI advance_loc expression"); |
| DF.setAddrDelta(MCConstantExpr::create(0, Context)); |
| return false; |
| } |
| |
| SmallVectorImpl<char> &Data = DF.getContents(); |
| uint64_t OldSize = Data.size(); |
| Data.clear(); |
| DF.getFixups().clear(); |
| |
| MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data); |
| return OldSize != Data.size(); |
| } |
| |
| bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) { |
| unsigned OldSize = F.getContents().size(); |
| getContext().getCVContext().encodeInlineLineTable(*this, F); |
| return OldSize != F.getContents().size(); |
| } |
| |
| bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) { |
| unsigned OldSize = F.getContents().size(); |
| getContext().getCVContext().encodeDefRange(*this, F); |
| return OldSize != F.getContents().size(); |
| } |
| |
| bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) { |
| uint64_t OldSize = PF.getContents().size(); |
| int64_t AddrDelta; |
| bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this); |
| assert(Abs && "We created a pseudo probe with an invalid expression"); |
| (void)Abs; |
| SmallVectorImpl<char> &Data = PF.getContents(); |
| Data.clear(); |
| raw_svector_ostream OSE(Data); |
| PF.getFixups().clear(); |
| |
| // AddrDelta is a signed integer |
| encodeSLEB128(AddrDelta, OSE, OldSize); |
| return OldSize != Data.size(); |
| } |
| |
| bool MCAssembler::relaxFragment(MCFragment &F) { |
| switch(F.getKind()) { |
| default: |
| return false; |
| case MCFragment::FT_Relaxable: |
| assert(!getRelaxAll() && |
| "Did not expect a MCRelaxableFragment in RelaxAll mode"); |
| return relaxInstruction(cast<MCRelaxableFragment>(F)); |
| case MCFragment::FT_Dwarf: |
| return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F)); |
| case MCFragment::FT_DwarfFrame: |
| return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F)); |
| case MCFragment::FT_LEB: |
| return relaxLEB(cast<MCLEBFragment>(F)); |
| case MCFragment::FT_BoundaryAlign: |
| return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F)); |
| case MCFragment::FT_CVInlineLines: |
| return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F)); |
| case MCFragment::FT_CVDefRange: |
| return relaxCVDefRange(cast<MCCVDefRangeFragment>(F)); |
| case MCFragment::FT_PseudoProbe: |
| return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F)); |
| } |
| } |
| |
| void MCAssembler::layoutSection(MCSection &Sec) { |
| MCFragment *Prev = nullptr; |
| uint64_t Offset = 0; |
| for (MCFragment &F : Sec) { |
| F.Offset = Offset; |
| if (LLVM_UNLIKELY(isBundlingEnabled())) { |
| if (F.hasInstructions()) { |
| layoutBundle(Prev, &F); |
| Offset = F.Offset; |
| } |
| Prev = &F; |
| } |
| Offset += computeFragmentSize(F); |
| } |
| } |
| |
| bool MCAssembler::layoutOnce() { |
| ++stats::RelaxationSteps; |
| |
| // Size of fragments in one section can depend on the size of fragments in |
| // another. If any fragment has changed size, we have to re-layout (and |
| // as a result possibly further relax) all. |
| bool ChangedAny = false; |
| for (MCSection &Sec : *this) { |
| for (;;) { |
| bool Changed = false; |
| for (MCFragment &F : Sec) |
| if (relaxFragment(F)) |
| Changed = true; |
| ChangedAny |= Changed; |
| if (!Changed) |
| break; |
| layoutSection(Sec); |
| } |
| } |
| return ChangedAny; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MCAssembler::dump() const{ |
| raw_ostream &OS = errs(); |
| |
| OS << "<MCAssembler\n"; |
| OS << " Sections:[\n "; |
| bool First = true; |
| for (const MCSection &Sec : *this) { |
| if (First) |
| First = false; |
| else |
| OS << ",\n "; |
| Sec.dump(); |
| } |
| OS << "],\n"; |
| OS << " Symbols:["; |
| |
| First = true; |
| for (const MCSymbol &Sym : symbols()) { |
| if (First) |
| First = false; |
| else |
| OS << ",\n "; |
| OS << "("; |
| Sym.dump(); |
| OS << ", Index:" << Sym.getIndex() << ", "; |
| OS << ")"; |
| } |
| OS << "]>\n"; |
| } |
| #endif |