| //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/ADT/CombinationGenerator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "gmock/gmock-matchers.h" |
| #include "gtest/gtest.h" |
| #include <memory> |
| |
| namespace llvm { |
| namespace { |
| |
| static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) { |
| SMDiagnostic Err; |
| std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C); |
| if (!Mod) |
| Err.print("InstructionsTests", errs()); |
| return Mod; |
| } |
| |
| TEST(InstructionsTest, ReturnInst) { |
| LLVMContext C; |
| |
| // test for PR6589 |
| const ReturnInst* r0 = ReturnInst::Create(C); |
| EXPECT_EQ(r0->getNumOperands(), 0U); |
| EXPECT_EQ(r0->op_begin(), r0->op_end()); |
| |
| IntegerType* Int1 = IntegerType::get(C, 1); |
| Constant* One = ConstantInt::get(Int1, 1, true); |
| const ReturnInst* r1 = ReturnInst::Create(C, One); |
| EXPECT_EQ(1U, r1->getNumOperands()); |
| User::const_op_iterator b(r1->op_begin()); |
| EXPECT_NE(r1->op_end(), b); |
| EXPECT_EQ(One, *b); |
| EXPECT_EQ(One, r1->getOperand(0)); |
| ++b; |
| EXPECT_EQ(r1->op_end(), b); |
| |
| // clean up |
| delete r0; |
| delete r1; |
| } |
| |
| // Test fixture that provides a module and a single function within it. Useful |
| // for tests that need to refer to the function in some way. |
| class ModuleWithFunctionTest : public testing::Test { |
| protected: |
| ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) { |
| FArgTypes.push_back(Type::getInt8Ty(Ctx)); |
| FArgTypes.push_back(Type::getInt32Ty(Ctx)); |
| FArgTypes.push_back(Type::getInt64Ty(Ctx)); |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false); |
| F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); |
| } |
| |
| LLVMContext Ctx; |
| std::unique_ptr<Module> M; |
| SmallVector<Type *, 3> FArgTypes; |
| Function *F; |
| }; |
| |
| TEST_F(ModuleWithFunctionTest, CallInst) { |
| Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), |
| ConstantInt::get(Type::getInt32Ty(Ctx), 9999), |
| ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; |
| std::unique_ptr<CallInst> Call(CallInst::Create(F, Args)); |
| |
| // Make sure iteration over a call's arguments works as expected. |
| unsigned Idx = 0; |
| for (Value *Arg : Call->args()) { |
| EXPECT_EQ(FArgTypes[Idx], Arg->getType()); |
| EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType()); |
| Idx++; |
| } |
| |
| Call->addRetAttr(Attribute::get(Call->getContext(), "test-str-attr")); |
| EXPECT_TRUE(Call->hasRetAttr("test-str-attr")); |
| EXPECT_FALSE(Call->hasRetAttr("not-on-call")); |
| } |
| |
| TEST_F(ModuleWithFunctionTest, InvokeInst) { |
| BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F); |
| BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F); |
| |
| Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), |
| ConstantInt::get(Type::getInt32Ty(Ctx), 9999), |
| ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; |
| std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args)); |
| |
| // Make sure iteration over invoke's arguments works as expected. |
| unsigned Idx = 0; |
| for (Value *Arg : Invoke->args()) { |
| EXPECT_EQ(FArgTypes[Idx], Arg->getType()); |
| EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType()); |
| Idx++; |
| } |
| } |
| |
| TEST(InstructionsTest, BranchInst) { |
| LLVMContext C; |
| |
| // Make a BasicBlocks |
| BasicBlock* bb0 = BasicBlock::Create(C); |
| BasicBlock* bb1 = BasicBlock::Create(C); |
| |
| // Mandatory BranchInst |
| const BranchInst* b0 = BranchInst::Create(bb0); |
| |
| EXPECT_TRUE(b0->isUnconditional()); |
| EXPECT_FALSE(b0->isConditional()); |
| EXPECT_EQ(1U, b0->getNumSuccessors()); |
| |
| // check num operands |
| EXPECT_EQ(1U, b0->getNumOperands()); |
| |
| EXPECT_NE(b0->op_begin(), b0->op_end()); |
| EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); |
| |
| EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); |
| |
| IntegerType* Int1 = IntegerType::get(C, 1); |
| Constant* One = ConstantInt::get(Int1, 1, true); |
| |
| // Conditional BranchInst |
| BranchInst* b1 = BranchInst::Create(bb0, bb1, One); |
| |
| EXPECT_FALSE(b1->isUnconditional()); |
| EXPECT_TRUE(b1->isConditional()); |
| EXPECT_EQ(2U, b1->getNumSuccessors()); |
| |
| // check num operands |
| EXPECT_EQ(3U, b1->getNumOperands()); |
| |
| User::const_op_iterator b(b1->op_begin()); |
| |
| // check COND |
| EXPECT_NE(b, b1->op_end()); |
| EXPECT_EQ(One, *b); |
| EXPECT_EQ(One, b1->getOperand(0)); |
| EXPECT_EQ(One, b1->getCondition()); |
| ++b; |
| |
| // check ELSE |
| EXPECT_EQ(bb1, *b); |
| EXPECT_EQ(bb1, b1->getOperand(1)); |
| EXPECT_EQ(bb1, b1->getSuccessor(1)); |
| ++b; |
| |
| // check THEN |
| EXPECT_EQ(bb0, *b); |
| EXPECT_EQ(bb0, b1->getOperand(2)); |
| EXPECT_EQ(bb0, b1->getSuccessor(0)); |
| ++b; |
| |
| EXPECT_EQ(b1->op_end(), b); |
| |
| // clean up |
| delete b0; |
| delete b1; |
| |
| delete bb0; |
| delete bb1; |
| } |
| |
| TEST(InstructionsTest, CastInst) { |
| LLVMContext C; |
| |
| Type *Int8Ty = Type::getInt8Ty(C); |
| Type *Int16Ty = Type::getInt16Ty(C); |
| Type *Int32Ty = Type::getInt32Ty(C); |
| Type *Int64Ty = Type::getInt64Ty(C); |
| Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8); |
| Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8); |
| Type *X86MMXTy = Type::getX86_MMXTy(C); |
| |
| Type *HalfTy = Type::getHalfTy(C); |
| Type *FloatTy = Type::getFloatTy(C); |
| Type *DoubleTy = Type::getDoubleTy(C); |
| |
| Type *V2Int32Ty = FixedVectorType::get(Int32Ty, 2); |
| Type *V2Int64Ty = FixedVectorType::get(Int64Ty, 2); |
| Type *V4Int16Ty = FixedVectorType::get(Int16Ty, 4); |
| Type *V1Int16Ty = FixedVectorType::get(Int16Ty, 1); |
| |
| Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2); |
| Type *VScaleV2Int64Ty = ScalableVectorType::get(Int64Ty, 2); |
| Type *VScaleV4Int16Ty = ScalableVectorType::get(Int16Ty, 4); |
| Type *VScaleV1Int16Ty = ScalableVectorType::get(Int16Ty, 1); |
| |
| Type *Int32PtrTy = PointerType::get(Int32Ty, 0); |
| Type *Int64PtrTy = PointerType::get(Int64Ty, 0); |
| |
| Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1); |
| Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1); |
| |
| Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2); |
| Type *V2Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 2); |
| Type *V4Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 4); |
| Type *VScaleV4Int32PtrAS1Ty = ScalableVectorType::get(Int32PtrAS1Ty, 4); |
| Type *V4Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 4); |
| |
| Type *V2Int64PtrTy = FixedVectorType::get(Int64PtrTy, 2); |
| Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2); |
| Type *VScaleV2Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 2); |
| Type *V4Int32PtrTy = FixedVectorType::get(Int32PtrTy, 4); |
| Type *VScaleV4Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 4); |
| Type *VScaleV4Int64PtrTy = ScalableVectorType::get(Int64PtrTy, 4); |
| |
| const Constant* c8 = Constant::getNullValue(V8x8Ty); |
| const Constant* c64 = Constant::getNullValue(V8x64Ty); |
| |
| const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy); |
| |
| EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true)); |
| EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true)); |
| |
| EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty)); |
| |
| // Check address space casts are rejected since we don't know the sizes here |
| EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty)); |
| EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true, |
| V2Int32PtrAS1Ty, |
| true)); |
| |
| // Test mismatched number of elements for pointers |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy)); |
| |
| EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty)); |
| EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty)); |
| |
| EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty)); |
| |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy)); |
| EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy)); |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty)); |
| EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty)); |
| |
| |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(V4Int32PtrTy), |
| V2Int32PtrTy)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(V2Int32PtrTy), |
| V4Int32PtrTy)); |
| |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, |
| Constant::getNullValue(V4Int32PtrAS1Ty), |
| V2Int32PtrTy)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, |
| Constant::getNullValue(V2Int32PtrTy), |
| V4Int32PtrAS1Ty)); |
| |
| // Address space cast of fixed/scalable vectors of pointers to scalable/fixed |
| // vector of pointers. |
| EXPECT_FALSE(CastInst::castIsValid( |
| Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty), |
| V4Int32PtrTy)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, |
| Constant::getNullValue(V4Int32PtrTy), |
| VScaleV4Int32PtrAS1Ty)); |
| // Address space cast of scalable vectors of pointers to scalable vector of |
| // pointers. |
| EXPECT_FALSE(CastInst::castIsValid( |
| Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty), |
| VScaleV2Int32PtrTy)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, |
| Constant::getNullValue(VScaleV2Int32PtrTy), |
| VScaleV4Int32PtrAS1Ty)); |
| EXPECT_TRUE(CastInst::castIsValid(Instruction::AddrSpaceCast, |
| Constant::getNullValue(VScaleV4Int64PtrTy), |
| VScaleV4Int32PtrAS1Ty)); |
| // Same number of lanes, different address space. |
| EXPECT_TRUE(CastInst::castIsValid( |
| Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty), |
| VScaleV4Int32PtrTy)); |
| // Same number of lanes, same address space. |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, |
| Constant::getNullValue(VScaleV4Int64PtrTy), |
| VScaleV4Int32PtrTy)); |
| |
| // Bit casting fixed/scalable vector to scalable/fixed vectors. |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(V2Int32Ty), |
| VScaleV2Int32Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(V2Int64Ty), |
| VScaleV2Int64Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(V4Int16Ty), |
| VScaleV4Int16Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV2Int32Ty), |
| V2Int32Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV2Int64Ty), |
| V2Int64Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV4Int16Ty), |
| V4Int16Ty)); |
| |
| // Bit casting scalable vectors to scalable vectors. |
| EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV4Int16Ty), |
| VScaleV2Int32Ty)); |
| EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV2Int32Ty), |
| VScaleV4Int16Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV2Int64Ty), |
| VScaleV2Int32Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV2Int32Ty), |
| VScaleV2Int64Ty)); |
| |
| // Bitcasting to/from <vscale x 1 x Ty> |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(VScaleV1Int16Ty), |
| V1Int16Ty)); |
| EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, |
| Constant::getNullValue(V1Int16Ty), |
| VScaleV1Int16Ty)); |
| |
| // Check that assertion is not hit when creating a cast with a vector of |
| // pointers |
| // First form |
| BasicBlock *BB = BasicBlock::Create(C); |
| Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy); |
| auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB); |
| |
| Constant *NullVScaleV2I32Ptr = Constant::getNullValue(VScaleV2Int32PtrTy); |
| auto Inst1VScale = CastInst::CreatePointerCast( |
| NullVScaleV2I32Ptr, VScaleV2Int32Ty, "foo.vscale", BB); |
| |
| // Second form |
| auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty); |
| auto Inst2VScale = |
| CastInst::CreatePointerCast(NullVScaleV2I32Ptr, VScaleV2Int32Ty); |
| |
| delete Inst2; |
| delete Inst2VScale; |
| Inst1->eraseFromParent(); |
| Inst1VScale->eraseFromParent(); |
| delete BB; |
| } |
| |
| TEST(InstructionsTest, VectorGep) { |
| LLVMContext C; |
| |
| // Type Definitions |
| Type *I8Ty = IntegerType::get(C, 8); |
| Type *I32Ty = IntegerType::get(C, 32); |
| PointerType *Ptri8Ty = PointerType::get(I8Ty, 0); |
| PointerType *Ptri32Ty = PointerType::get(I32Ty, 0); |
| |
| VectorType *V2xi8PTy = FixedVectorType::get(Ptri8Ty, 2); |
| VectorType *V2xi32PTy = FixedVectorType::get(Ptri32Ty, 2); |
| |
| // Test different aspects of the vector-of-pointers type |
| // and GEPs which use this type. |
| ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492)); |
| ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948)); |
| std::vector<Constant*> ConstVa(2, Ci32a); |
| std::vector<Constant*> ConstVb(2, Ci32b); |
| Constant *C2xi32a = ConstantVector::get(ConstVa); |
| Constant *C2xi32b = ConstantVector::get(ConstVb); |
| |
| CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy); |
| CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy); |
| |
| ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB); |
| ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB); |
| EXPECT_NE(ICmp0, ICmp1); // suppress warning. |
| |
| BasicBlock* BB0 = BasicBlock::Create(C); |
| // Test InsertAtEnd ICmpInst constructor. |
| ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB); |
| EXPECT_NE(ICmp0, ICmp2); // suppress warning. |
| |
| GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a); |
| GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b); |
| GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a); |
| GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b); |
| |
| CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy); |
| CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy); |
| CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy); |
| CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy); |
| |
| Value *S0 = BTC0->stripPointerCasts(); |
| Value *S1 = BTC1->stripPointerCasts(); |
| Value *S2 = BTC2->stripPointerCasts(); |
| Value *S3 = BTC3->stripPointerCasts(); |
| |
| EXPECT_NE(S0, Gep0); |
| EXPECT_NE(S1, Gep1); |
| EXPECT_NE(S2, Gep2); |
| EXPECT_NE(S3, Gep3); |
| |
| int64_t Offset; |
| DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3" |
| "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80" |
| ":128:128-n8:16:32:64-S128"); |
| // Make sure we don't crash |
| GetPointerBaseWithConstantOffset(Gep0, Offset, TD); |
| GetPointerBaseWithConstantOffset(Gep1, Offset, TD); |
| GetPointerBaseWithConstantOffset(Gep2, Offset, TD); |
| GetPointerBaseWithConstantOffset(Gep3, Offset, TD); |
| |
| // Gep of Geps |
| GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b); |
| GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a); |
| GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b); |
| GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a); |
| |
| EXPECT_EQ(GepII0->getNumIndices(), 1u); |
| EXPECT_EQ(GepII1->getNumIndices(), 1u); |
| EXPECT_EQ(GepII2->getNumIndices(), 1u); |
| EXPECT_EQ(GepII3->getNumIndices(), 1u); |
| |
| EXPECT_FALSE(GepII0->hasAllZeroIndices()); |
| EXPECT_FALSE(GepII1->hasAllZeroIndices()); |
| EXPECT_FALSE(GepII2->hasAllZeroIndices()); |
| EXPECT_FALSE(GepII3->hasAllZeroIndices()); |
| |
| delete GepII0; |
| delete GepII1; |
| delete GepII2; |
| delete GepII3; |
| |
| delete BTC0; |
| delete BTC1; |
| delete BTC2; |
| delete BTC3; |
| |
| delete Gep0; |
| delete Gep1; |
| delete Gep2; |
| delete Gep3; |
| |
| ICmp2->eraseFromParent(); |
| delete BB0; |
| |
| delete ICmp0; |
| delete ICmp1; |
| delete PtrVecA; |
| delete PtrVecB; |
| } |
| |
| TEST(InstructionsTest, FPMathOperator) { |
| LLVMContext Context; |
| IRBuilder<> Builder(Context); |
| MDBuilder MDHelper(Context); |
| Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); |
| MDNode *MD1 = MDHelper.createFPMath(1.0); |
| Value *V1 = Builder.CreateFAdd(I, I, "", MD1); |
| EXPECT_TRUE(isa<FPMathOperator>(V1)); |
| FPMathOperator *O1 = cast<FPMathOperator>(V1); |
| EXPECT_EQ(O1->getFPAccuracy(), 1.0); |
| V1->deleteValue(); |
| I->deleteValue(); |
| } |
| |
| |
| TEST(InstructionsTest, isEliminableCastPair) { |
| LLVMContext C; |
| |
| Type* Int16Ty = Type::getInt16Ty(C); |
| Type* Int32Ty = Type::getInt32Ty(C); |
| Type* Int64Ty = Type::getInt64Ty(C); |
| Type* Int64PtrTy = Type::getInt64PtrTy(C); |
| |
| // Source and destination pointers have same size -> bitcast. |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, |
| CastInst::IntToPtr, |
| Int64PtrTy, Int64Ty, Int64PtrTy, |
| Int32Ty, nullptr, Int32Ty), |
| CastInst::BitCast); |
| |
| // Source and destination have unknown sizes, but the same address space and |
| // the intermediate int is the maximum pointer size -> bitcast |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, |
| CastInst::IntToPtr, |
| Int64PtrTy, Int64Ty, Int64PtrTy, |
| nullptr, nullptr, nullptr), |
| CastInst::BitCast); |
| |
| // Source and destination have unknown sizes, but the same address space and |
| // the intermediate int is not the maximum pointer size -> nothing |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, |
| CastInst::IntToPtr, |
| Int64PtrTy, Int32Ty, Int64PtrTy, |
| nullptr, nullptr, nullptr), |
| 0U); |
| |
| // Middle pointer big enough -> bitcast. |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, |
| CastInst::PtrToInt, |
| Int64Ty, Int64PtrTy, Int64Ty, |
| nullptr, Int64Ty, nullptr), |
| CastInst::BitCast); |
| |
| // Middle pointer too small -> fail. |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, |
| CastInst::PtrToInt, |
| Int64Ty, Int64PtrTy, Int64Ty, |
| nullptr, Int32Ty, nullptr), |
| 0U); |
| |
| // Test that we don't eliminate bitcasts between different address spaces, |
| // or if we don't have available pointer size information. |
| DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16" |
| "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64" |
| "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128"); |
| |
| Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1); |
| Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2); |
| |
| IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1); |
| IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2); |
| |
| // Cannot simplify inttoptr, addrspacecast |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, |
| CastInst::AddrSpaceCast, |
| Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2, |
| nullptr, Int16SizePtr, Int64SizePtr), |
| 0U); |
| |
| // Cannot simplify addrspacecast, ptrtoint |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast, |
| CastInst::PtrToInt, |
| Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty, |
| Int64SizePtr, Int16SizePtr, nullptr), |
| 0U); |
| |
| // Pass since the bitcast address spaces are the same |
| EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, |
| CastInst::BitCast, |
| Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1, |
| nullptr, nullptr, nullptr), |
| CastInst::IntToPtr); |
| |
| } |
| |
| TEST(InstructionsTest, CloneCall) { |
| LLVMContext C; |
| Type *Int32Ty = Type::getInt32Ty(C); |
| Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty}; |
| FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false); |
| Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); |
| Value *Args[] = { |
| ConstantInt::get(Int32Ty, 1), |
| ConstantInt::get(Int32Ty, 2), |
| ConstantInt::get(Int32Ty, 3) |
| }; |
| std::unique_ptr<CallInst> Call( |
| CallInst::Create(FnTy, Callee, Args, "result")); |
| |
| // Test cloning the tail call kind. |
| CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail, |
| CallInst::TCK_MustTail}; |
| for (CallInst::TailCallKind TCK : Kinds) { |
| Call->setTailCallKind(TCK); |
| std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone())); |
| EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); |
| } |
| Call->setTailCallKind(CallInst::TCK_None); |
| |
| // Test cloning an attribute. |
| { |
| AttrBuilder AB; |
| AB.addAttribute(Attribute::ReadOnly); |
| Call->setAttributes( |
| AttributeList::get(C, AttributeList::FunctionIndex, AB)); |
| std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone())); |
| EXPECT_TRUE(Clone->onlyReadsMemory()); |
| } |
| } |
| |
| TEST(InstructionsTest, AlterCallBundles) { |
| LLVMContext C; |
| Type *Int32Ty = Type::getInt32Ty(C); |
| FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false); |
| Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); |
| Value *Args[] = {ConstantInt::get(Int32Ty, 42)}; |
| OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty)); |
| std::unique_ptr<CallInst> Call( |
| CallInst::Create(FnTy, Callee, Args, OldBundle, "result")); |
| Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail); |
| AttrBuilder AB; |
| AB.addAttribute(Attribute::Cold); |
| Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB)); |
| Call->setDebugLoc(DebugLoc(MDNode::get(C, None))); |
| |
| OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7)); |
| std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle)); |
| EXPECT_EQ(Call->arg_size(), Clone->arg_size()); |
| EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0)); |
| EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv()); |
| EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); |
| EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold)); |
| EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc()); |
| EXPECT_EQ(Clone->getNumOperandBundles(), 1U); |
| EXPECT_TRUE(Clone->getOperandBundle("after").hasValue()); |
| } |
| |
| TEST(InstructionsTest, AlterInvokeBundles) { |
| LLVMContext C; |
| Type *Int32Ty = Type::getInt32Ty(C); |
| FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false); |
| Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); |
| Value *Args[] = {ConstantInt::get(Int32Ty, 42)}; |
| std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C)); |
| std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C)); |
| OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty)); |
| std::unique_ptr<InvokeInst> Invoke( |
| InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args, |
| OldBundle, "result")); |
| AttrBuilder AB; |
| AB.addAttribute(Attribute::Cold); |
| Invoke->setAttributes( |
| AttributeList::get(C, AttributeList::FunctionIndex, AB)); |
| Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None))); |
| |
| OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7)); |
| std::unique_ptr<InvokeInst> Clone( |
| InvokeInst::Create(Invoke.get(), NewBundle)); |
| EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest()); |
| EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest()); |
| EXPECT_EQ(Invoke->arg_size(), Clone->arg_size()); |
| EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0)); |
| EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv()); |
| EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold)); |
| EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc()); |
| EXPECT_EQ(Clone->getNumOperandBundles(), 1U); |
| EXPECT_TRUE(Clone->getOperandBundle("after").hasValue()); |
| } |
| |
| TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) { |
| auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F); |
| auto *Arg0 = &*F->arg_begin(); |
| |
| IRBuilder<NoFolder> B(Ctx); |
| B.SetInsertPoint(OnlyBB); |
| |
| { |
| auto *UI = |
| cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true)); |
| ASSERT_TRUE(UI->isExact()); |
| UI->dropPoisonGeneratingFlags(); |
| ASSERT_FALSE(UI->isExact()); |
| } |
| |
| { |
| auto *ShrI = |
| cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true)); |
| ASSERT_TRUE(ShrI->isExact()); |
| ShrI->dropPoisonGeneratingFlags(); |
| ASSERT_FALSE(ShrI->isExact()); |
| } |
| |
| { |
| auto *AI = cast<Instruction>( |
| B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false)); |
| ASSERT_TRUE(AI->hasNoUnsignedWrap()); |
| AI->dropPoisonGeneratingFlags(); |
| ASSERT_FALSE(AI->hasNoUnsignedWrap()); |
| ASSERT_FALSE(AI->hasNoSignedWrap()); |
| } |
| |
| { |
| auto *SI = cast<Instruction>( |
| B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true)); |
| ASSERT_TRUE(SI->hasNoSignedWrap()); |
| SI->dropPoisonGeneratingFlags(); |
| ASSERT_FALSE(SI->hasNoUnsignedWrap()); |
| ASSERT_FALSE(SI->hasNoSignedWrap()); |
| } |
| |
| { |
| auto *ShlI = cast<Instruction>( |
| B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true)); |
| ASSERT_TRUE(ShlI->hasNoSignedWrap()); |
| ASSERT_TRUE(ShlI->hasNoUnsignedWrap()); |
| ShlI->dropPoisonGeneratingFlags(); |
| ASSERT_FALSE(ShlI->hasNoUnsignedWrap()); |
| ASSERT_FALSE(ShlI->hasNoSignedWrap()); |
| } |
| |
| { |
| Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy()); |
| auto *GI = cast<GetElementPtrInst>( |
| B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0)); |
| ASSERT_TRUE(GI->isInBounds()); |
| GI->dropPoisonGeneratingFlags(); |
| ASSERT_FALSE(GI->isInBounds()); |
| } |
| } |
| |
| TEST(InstructionsTest, GEPIndices) { |
| LLVMContext Context; |
| IRBuilder<NoFolder> Builder(Context); |
| Type *ElementTy = Builder.getInt8Ty(); |
| Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64); |
| Value *Indices[] = { |
| Builder.getInt32(0), |
| Builder.getInt32(13), |
| Builder.getInt32(42) }; |
| |
| Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)), |
| Indices); |
| ASSERT_TRUE(isa<GetElementPtrInst>(V)); |
| |
| auto *GEPI = cast<GetElementPtrInst>(V); |
| ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end()); |
| ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3)); |
| EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]); |
| EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]); |
| EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]); |
| EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin()); |
| EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end()); |
| |
| const auto *CGEPI = GEPI; |
| ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end()); |
| ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3)); |
| EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]); |
| EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]); |
| EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]); |
| EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin()); |
| EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end()); |
| |
| delete GEPI; |
| } |
| |
| TEST(InstructionsTest, SwitchInst) { |
| LLVMContext C; |
| |
| std::unique_ptr<BasicBlock> BB1, BB2, BB3; |
| BB1.reset(BasicBlock::Create(C)); |
| BB2.reset(BasicBlock::Create(C)); |
| BB3.reset(BasicBlock::Create(C)); |
| |
| // We create block 0 after the others so that it gets destroyed first and |
| // clears the uses of the other basic blocks. |
| std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C)); |
| |
| auto *Int32Ty = Type::getInt32Ty(C); |
| |
| SwitchInst *SI = |
| SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get()); |
| SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get()); |
| SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get()); |
| SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get()); |
| |
| auto CI = SI->case_begin(); |
| ASSERT_NE(CI, SI->case_end()); |
| EXPECT_EQ(1, CI->getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB1.get(), CI->getCaseSuccessor()); |
| EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor()); |
| EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor()); |
| EXPECT_EQ(CI + 1, std::next(CI)); |
| EXPECT_EQ(CI + 2, std::next(CI, 2)); |
| EXPECT_EQ(CI + 3, std::next(CI, 3)); |
| EXPECT_EQ(SI->case_end(), CI + 3); |
| EXPECT_EQ(0, CI - CI); |
| EXPECT_EQ(1, (CI + 1) - CI); |
| EXPECT_EQ(2, (CI + 2) - CI); |
| EXPECT_EQ(3, SI->case_end() - CI); |
| EXPECT_EQ(3, std::distance(CI, SI->case_end())); |
| |
| auto CCI = const_cast<const SwitchInst *>(SI)->case_begin(); |
| SwitchInst::ConstCaseIt CCE = SI->case_end(); |
| ASSERT_NE(CCI, SI->case_end()); |
| EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor()); |
| EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor()); |
| EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor()); |
| EXPECT_EQ(CCI + 1, std::next(CCI)); |
| EXPECT_EQ(CCI + 2, std::next(CCI, 2)); |
| EXPECT_EQ(CCI + 3, std::next(CCI, 3)); |
| EXPECT_EQ(CCE, CCI + 3); |
| EXPECT_EQ(0, CCI - CCI); |
| EXPECT_EQ(1, (CCI + 1) - CCI); |
| EXPECT_EQ(2, (CCI + 2) - CCI); |
| EXPECT_EQ(3, CCE - CCI); |
| EXPECT_EQ(3, std::distance(CCI, CCE)); |
| |
| // Make sure that the const iterator is compatible with a const auto ref. |
| const auto &Handle = *CCI; |
| EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue()); |
| EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor()); |
| } |
| |
| TEST(InstructionsTest, SwitchInstProfUpdateWrapper) { |
| LLVMContext C; |
| |
| std::unique_ptr<BasicBlock> BB1, BB2, BB3; |
| BB1.reset(BasicBlock::Create(C)); |
| BB2.reset(BasicBlock::Create(C)); |
| BB3.reset(BasicBlock::Create(C)); |
| |
| // We create block 0 after the others so that it gets destroyed first and |
| // clears the uses of the other basic blocks. |
| std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C)); |
| |
| auto *Int32Ty = Type::getInt32Ty(C); |
| |
| SwitchInst *SI = |
| SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get()); |
| SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get()); |
| SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get()); |
| SI->setMetadata(LLVMContext::MD_prof, |
| MDBuilder(C).createBranchWeights({ 9, 1, 22 })); |
| |
| { |
| SwitchInstProfUpdateWrapper SIW(*SI); |
| EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u); |
| SIW.setSuccessorWeight(0, 99u); |
| SIW.setSuccessorWeight(1, 11u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u); |
| } |
| |
| { // Create another wrapper and check that the data persist. |
| SwitchInstProfUpdateWrapper SIW(*SI); |
| EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u); |
| EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u); |
| } |
| } |
| |
| TEST(InstructionsTest, CommuteShuffleMask) { |
| SmallVector<int, 16> Indices({-1, 0, 7}); |
| ShuffleVectorInst::commuteShuffleMask(Indices, 4); |
| EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3}))); |
| } |
| |
| TEST(InstructionsTest, ShuffleMaskQueries) { |
| // Create the elements for various constant vectors. |
| LLVMContext Ctx; |
| Type *Int32Ty = Type::getInt32Ty(Ctx); |
| Constant *CU = UndefValue::get(Int32Ty); |
| Constant *C0 = ConstantInt::get(Int32Ty, 0); |
| Constant *C1 = ConstantInt::get(Int32Ty, 1); |
| Constant *C2 = ConstantInt::get(Int32Ty, 2); |
| Constant *C3 = ConstantInt::get(Int32Ty, 3); |
| Constant *C4 = ConstantInt::get(Int32Ty, 4); |
| Constant *C5 = ConstantInt::get(Int32Ty, 5); |
| Constant *C6 = ConstantInt::get(Int32Ty, 6); |
| Constant *C7 = ConstantInt::get(Int32Ty, 7); |
| |
| Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4}); |
| EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity)); |
| EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select |
| EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity)); |
| EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source |
| EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity)); |
| EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity)); |
| |
| Constant *Select = ConstantVector::get({CU, C1, C5}); |
| EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select)); |
| EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select)); |
| EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select)); |
| EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select)); |
| EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select)); |
| EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select)); |
| |
| Constant *Reverse = ConstantVector::get({C3, C2, C1, CU}); |
| EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse)); |
| EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse)); |
| EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse)); |
| EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source |
| EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse)); |
| EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse)); |
| |
| Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU}); |
| EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource)); |
| EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource)); |
| EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource)); |
| EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource)); |
| EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource)); |
| EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource)); |
| |
| Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0}); |
| EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat)); |
| EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat)); |
| EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat)); |
| EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source |
| EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat)); |
| EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat)); |
| |
| Constant *Transpose = ConstantVector::get({C0, C4, C2, C6}); |
| EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose)); |
| EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose)); |
| EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose)); |
| EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose)); |
| EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose)); |
| EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose)); |
| |
| // More tests to make sure the logic is/stays correct... |
| EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3}))); |
| EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU}))); |
| |
| EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU}))); |
| EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3}))); |
| |
| EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4}))); |
| EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU}))); |
| |
| EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7}))); |
| EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3}))); |
| |
| EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4}))); |
| EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0}))); |
| |
| EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7}))); |
| EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3}))); |
| |
| // Nothing special about the values here - just re-using inputs to reduce code. |
| Constant *V0 = ConstantVector::get({C0, C1, C2, C3}); |
| Constant *V1 = ConstantVector::get({C3, C2, C1, C0}); |
| |
| // Identity with undef elts. |
| ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C0, C1, CU, CU})); |
| EXPECT_TRUE(Id1->isIdentity()); |
| EXPECT_FALSE(Id1->isIdentityWithPadding()); |
| EXPECT_FALSE(Id1->isIdentityWithExtract()); |
| EXPECT_FALSE(Id1->isConcat()); |
| delete Id1; |
| |
| // Result has less elements than operands. |
| ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C0, C1, C2})); |
| EXPECT_FALSE(Id2->isIdentity()); |
| EXPECT_FALSE(Id2->isIdentityWithPadding()); |
| EXPECT_TRUE(Id2->isIdentityWithExtract()); |
| EXPECT_FALSE(Id2->isConcat()); |
| delete Id2; |
| |
| // Result has less elements than operands; choose from Op1. |
| ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C4, CU, C6})); |
| EXPECT_FALSE(Id3->isIdentity()); |
| EXPECT_FALSE(Id3->isIdentityWithPadding()); |
| EXPECT_TRUE(Id3->isIdentityWithExtract()); |
| EXPECT_FALSE(Id3->isConcat()); |
| delete Id3; |
| |
| // Result has less elements than operands; choose from Op0 and Op1 is not identity. |
| ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C4, C1, C6})); |
| EXPECT_FALSE(Id4->isIdentity()); |
| EXPECT_FALSE(Id4->isIdentityWithPadding()); |
| EXPECT_FALSE(Id4->isIdentityWithExtract()); |
| EXPECT_FALSE(Id4->isConcat()); |
| delete Id4; |
| |
| // Result has more elements than operands, and extra elements are undef. |
| ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({CU, C1, C2, C3, CU, CU})); |
| EXPECT_FALSE(Id5->isIdentity()); |
| EXPECT_TRUE(Id5->isIdentityWithPadding()); |
| EXPECT_FALSE(Id5->isIdentityWithExtract()); |
| EXPECT_FALSE(Id5->isConcat()); |
| delete Id5; |
| |
| // Result has more elements than operands, and extra elements are undef; choose from Op1. |
| ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C4, C5, C6, CU, CU, CU})); |
| EXPECT_FALSE(Id6->isIdentity()); |
| EXPECT_TRUE(Id6->isIdentityWithPadding()); |
| EXPECT_FALSE(Id6->isIdentityWithExtract()); |
| EXPECT_FALSE(Id6->isConcat()); |
| delete Id6; |
| |
| // Result has more elements than operands, but extra elements are not undef. |
| ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C0, C1, C2, C3, CU, C1})); |
| EXPECT_FALSE(Id7->isIdentity()); |
| EXPECT_FALSE(Id7->isIdentityWithPadding()); |
| EXPECT_FALSE(Id7->isIdentityWithExtract()); |
| EXPECT_FALSE(Id7->isConcat()); |
| delete Id7; |
| |
| // Result has more elements than operands; choose from Op0 and Op1 is not identity. |
| ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C4, CU, C2, C3, CU, CU})); |
| EXPECT_FALSE(Id8->isIdentity()); |
| EXPECT_FALSE(Id8->isIdentityWithPadding()); |
| EXPECT_FALSE(Id8->isIdentityWithExtract()); |
| EXPECT_FALSE(Id8->isConcat()); |
| delete Id8; |
| |
| // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat. |
| ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7})); |
| EXPECT_FALSE(Id9->isIdentity()); |
| EXPECT_FALSE(Id9->isIdentityWithPadding()); |
| EXPECT_FALSE(Id9->isIdentityWithExtract()); |
| EXPECT_TRUE(Id9->isConcat()); |
| delete Id9; |
| |
| // Result has less than twice as many elements as operands, so not a concat. |
| ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C0, CU, C2, C3, CU, CU, C6})); |
| EXPECT_FALSE(Id10->isIdentity()); |
| EXPECT_FALSE(Id10->isIdentityWithPadding()); |
| EXPECT_FALSE(Id10->isIdentityWithExtract()); |
| EXPECT_FALSE(Id10->isConcat()); |
| delete Id10; |
| |
| // Result has more than twice as many elements as operands, so not a concat. |
| ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1, |
| ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU})); |
| EXPECT_FALSE(Id11->isIdentity()); |
| EXPECT_FALSE(Id11->isIdentityWithPadding()); |
| EXPECT_FALSE(Id11->isIdentityWithExtract()); |
| EXPECT_FALSE(Id11->isConcat()); |
| delete Id11; |
| |
| // If an input is undef, it's not a concat. |
| // TODO: IdentityWithPadding should be true here even though the high mask values are not undef. |
| ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}), |
| ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7})); |
| EXPECT_FALSE(Id12->isIdentity()); |
| EXPECT_FALSE(Id12->isIdentityWithPadding()); |
| EXPECT_FALSE(Id12->isIdentityWithExtract()); |
| EXPECT_FALSE(Id12->isConcat()); |
| delete Id12; |
| |
| // Not possible to express shuffle mask for scalable vector for extract |
| // subvector. |
| Type *VScaleV4Int32Ty = ScalableVectorType::get(Int32Ty, 4); |
| ShuffleVectorInst *Id13 = |
| new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV4Int32Ty), |
| UndefValue::get(VScaleV4Int32Ty), |
| Constant::getNullValue(VScaleV4Int32Ty)); |
| int Index = 0; |
| EXPECT_FALSE(Id13->isExtractSubvectorMask(Index)); |
| EXPECT_FALSE(Id13->changesLength()); |
| EXPECT_FALSE(Id13->increasesLength()); |
| delete Id13; |
| |
| // Result has twice as many operands. |
| Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2); |
| ShuffleVectorInst *Id14 = |
| new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty), |
| UndefValue::get(VScaleV2Int32Ty), |
| Constant::getNullValue(VScaleV4Int32Ty)); |
| EXPECT_TRUE(Id14->changesLength()); |
| EXPECT_TRUE(Id14->increasesLength()); |
| delete Id14; |
| |
| // Not possible to express these masks for scalable vectors, make sure we |
| // don't crash. |
| ShuffleVectorInst *Id15 = |
| new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty), |
| Constant::getNullValue(VScaleV2Int32Ty), |
| Constant::getNullValue(VScaleV2Int32Ty)); |
| EXPECT_FALSE(Id15->isIdentityWithPadding()); |
| EXPECT_FALSE(Id15->isIdentityWithExtract()); |
| EXPECT_FALSE(Id15->isConcat()); |
| delete Id15; |
| } |
| |
| TEST(InstructionsTest, ShuffleMaskIsReplicationMask) { |
| for (int ReplicationFactor : seq_inclusive(1, 8)) { |
| for (int VF : seq_inclusive(1, 8)) { |
| const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF); |
| int GuessedReplicationFactor = -1, GuessedVF = -1; |
| EXPECT_TRUE(ShuffleVectorInst::isReplicationMask( |
| ReplicatedMask, GuessedReplicationFactor, GuessedVF)); |
| EXPECT_EQ(GuessedReplicationFactor, ReplicationFactor); |
| EXPECT_EQ(GuessedVF, VF); |
| |
| for (int OpVF : seq_inclusive(VF, 2 * VF + 1)) { |
| LLVMContext Ctx; |
| Type *OpVFTy = FixedVectorType::get(IntegerType::getInt1Ty(Ctx), OpVF); |
| Value *Op = ConstantVector::getNullValue(OpVFTy); |
| ShuffleVectorInst *SVI = new ShuffleVectorInst(Op, Op, ReplicatedMask); |
| EXPECT_EQ(SVI->isReplicationMask(GuessedReplicationFactor, GuessedVF), |
| OpVF == VF); |
| delete SVI; |
| } |
| } |
| } |
| } |
| |
| TEST(InstructionsTest, ShuffleMaskIsReplicationMask_undef) { |
| for (int ReplicationFactor : seq_inclusive(1, 4)) { |
| for (int VF : seq_inclusive(1, 4)) { |
| const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF); |
| int GuessedReplicationFactor = -1, GuessedVF = -1; |
| |
| // If we change some mask elements to undef, we should still match. |
| |
| SmallVector<SmallVector<bool>> ElementChoices(ReplicatedMask.size(), |
| {false, true}); |
| |
| CombinationGenerator<bool, decltype(ElementChoices)::value_type, |
| /*variable_smallsize=*/4> |
| G(ElementChoices); |
| |
| G.generate([&](ArrayRef<bool> UndefOverrides) -> bool { |
| SmallVector<int> AdjustedMask; |
| AdjustedMask.reserve(ReplicatedMask.size()); |
| for (auto I : zip(ReplicatedMask, UndefOverrides)) |
| AdjustedMask.emplace_back(std::get<1>(I) ? -1 : std::get<0>(I)); |
| assert(AdjustedMask.size() == ReplicatedMask.size() && |
| "Size misprediction"); |
| |
| EXPECT_TRUE(ShuffleVectorInst::isReplicationMask( |
| AdjustedMask, GuessedReplicationFactor, GuessedVF)); |
| // Do not check GuessedReplicationFactor and GuessedVF, |
| // with enough undef's we may deduce a different tuple. |
| |
| return /*Abort=*/false; |
| }); |
| } |
| } |
| } |
| |
| TEST(InstructionsTest, ShuffleMaskIsReplicationMask_Exhaustive_Correctness) { |
| for (int ShufMaskNumElts : seq_inclusive(1, 6)) { |
| SmallVector<int> PossibleShufMaskElts; |
| PossibleShufMaskElts.reserve(ShufMaskNumElts + 2); |
| for (int PossibleShufMaskElt : seq_inclusive(-1, ShufMaskNumElts)) |
| PossibleShufMaskElts.emplace_back(PossibleShufMaskElt); |
| assert(PossibleShufMaskElts.size() == ShufMaskNumElts + 2U && |
| "Size misprediction"); |
| |
| SmallVector<SmallVector<int>> ElementChoices(ShufMaskNumElts, |
| PossibleShufMaskElts); |
| |
| CombinationGenerator<int, decltype(ElementChoices)::value_type, |
| /*variable_smallsize=*/4> |
| G(ElementChoices); |
| |
| G.generate([&](ArrayRef<int> Mask) -> bool { |
| int GuessedReplicationFactor = -1, GuessedVF = -1; |
| bool Match = ShuffleVectorInst::isReplicationMask( |
| Mask, GuessedReplicationFactor, GuessedVF); |
| if (!Match) |
| return /*Abort=*/false; |
| |
| const auto ActualMask = |
| createReplicatedMask(GuessedReplicationFactor, GuessedVF); |
| EXPECT_EQ(Mask.size(), ActualMask.size()); |
| for (auto I : zip(Mask, ActualMask)) { |
| int Elt = std::get<0>(I); |
| int ActualElt = std::get<0>(I); |
| |
| if (Elt != -1) { |
| EXPECT_EQ(Elt, ActualElt); |
| } |
| } |
| |
| return /*Abort=*/false; |
| }); |
| } |
| } |
| |
| TEST(InstructionsTest, GetSplat) { |
| // Create the elements for various constant vectors. |
| LLVMContext Ctx; |
| Type *Int32Ty = Type::getInt32Ty(Ctx); |
| Constant *CU = UndefValue::get(Int32Ty); |
| Constant *C0 = ConstantInt::get(Int32Ty, 0); |
| Constant *C1 = ConstantInt::get(Int32Ty, 1); |
| |
| Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0}); |
| Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1}); |
| Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU}); |
| Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU}); |
| Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1}); |
| Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0}); |
| |
| // Default - undefs are not allowed. |
| EXPECT_EQ(Splat0->getSplatValue(), C0); |
| EXPECT_EQ(Splat1->getSplatValue(), C1); |
| EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr); |
| EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr); |
| EXPECT_EQ(NotSplat->getSplatValue(), nullptr); |
| EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr); |
| |
| // Disallow undefs explicitly. |
| EXPECT_EQ(Splat0->getSplatValue(false), C0); |
| EXPECT_EQ(Splat1->getSplatValue(false), C1); |
| EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr); |
| EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr); |
| EXPECT_EQ(NotSplat->getSplatValue(false), nullptr); |
| EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr); |
| |
| // Allow undefs. |
| EXPECT_EQ(Splat0->getSplatValue(true), C0); |
| EXPECT_EQ(Splat1->getSplatValue(true), C1); |
| EXPECT_EQ(Splat0Undef->getSplatValue(true), C0); |
| EXPECT_EQ(Splat1Undef->getSplatValue(true), C1); |
| EXPECT_EQ(NotSplat->getSplatValue(true), nullptr); |
| EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr); |
| } |
| |
| TEST(InstructionsTest, SkipDebug) { |
| LLVMContext C; |
| std::unique_ptr<Module> M = parseIR(C, |
| R"( |
| declare void @llvm.dbg.value(metadata, metadata, metadata) |
| |
| define void @f() { |
| entry: |
| call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13 |
| ret void |
| } |
| |
| !llvm.dbg.cu = !{!0} |
| !llvm.module.flags = !{!3, !4} |
| !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) |
| !1 = !DIFile(filename: "t2.c", directory: "foo") |
| !2 = !{} |
| !3 = !{i32 2, !"Dwarf Version", i32 4} |
| !4 = !{i32 2, !"Debug Info Version", i32 3} |
| !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2) |
| !9 = !DISubroutineType(types: !10) |
| !10 = !{null} |
| !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12) |
| !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed) |
| !13 = !DILocation(line: 2, column: 7, scope: !8) |
| )"); |
| ASSERT_TRUE(M); |
| Function *F = cast<Function>(M->getNamedValue("f")); |
| BasicBlock &BB = F->front(); |
| |
| // The first non-debug instruction is the terminator. |
| auto *Term = BB.getTerminator(); |
| EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction()); |
| EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin())); |
| |
| // After the terminator, there are no non-debug instructions. |
| EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction()); |
| } |
| |
| TEST(InstructionsTest, PhiMightNotBeFPMathOperator) { |
| LLVMContext Context; |
| IRBuilder<> Builder(Context); |
| MDBuilder MDHelper(Context); |
| Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0); |
| EXPECT_FALSE(isa<FPMathOperator>(I)); |
| I->deleteValue(); |
| Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0); |
| EXPECT_TRUE(isa<FPMathOperator>(FP)); |
| FP->deleteValue(); |
| } |
| |
| TEST(InstructionsTest, FPCallIsFPMathOperator) { |
| LLVMContext C; |
| |
| Type *ITy = Type::getInt32Ty(C); |
| FunctionType *IFnTy = FunctionType::get(ITy, {}); |
| Value *ICallee = Constant::getNullValue(IFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> ICall(CallInst::Create(IFnTy, ICallee, {}, "")); |
| EXPECT_FALSE(isa<FPMathOperator>(ICall)); |
| |
| Type *VITy = FixedVectorType::get(ITy, 2); |
| FunctionType *VIFnTy = FunctionType::get(VITy, {}); |
| Value *VICallee = Constant::getNullValue(VIFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> VICall(CallInst::Create(VIFnTy, VICallee, {}, "")); |
| EXPECT_FALSE(isa<FPMathOperator>(VICall)); |
| |
| Type *AITy = ArrayType::get(ITy, 2); |
| FunctionType *AIFnTy = FunctionType::get(AITy, {}); |
| Value *AICallee = Constant::getNullValue(AIFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> AICall(CallInst::Create(AIFnTy, AICallee, {}, "")); |
| EXPECT_FALSE(isa<FPMathOperator>(AICall)); |
| |
| Type *FTy = Type::getFloatTy(C); |
| FunctionType *FFnTy = FunctionType::get(FTy, {}); |
| Value *FCallee = Constant::getNullValue(FFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> FCall(CallInst::Create(FFnTy, FCallee, {}, "")); |
| EXPECT_TRUE(isa<FPMathOperator>(FCall)); |
| |
| Type *VFTy = FixedVectorType::get(FTy, 2); |
| FunctionType *VFFnTy = FunctionType::get(VFTy, {}); |
| Value *VFCallee = Constant::getNullValue(VFFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> VFCall(CallInst::Create(VFFnTy, VFCallee, {}, "")); |
| EXPECT_TRUE(isa<FPMathOperator>(VFCall)); |
| |
| Type *AFTy = ArrayType::get(FTy, 2); |
| FunctionType *AFFnTy = FunctionType::get(AFTy, {}); |
| Value *AFCallee = Constant::getNullValue(AFFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> AFCall(CallInst::Create(AFFnTy, AFCallee, {}, "")); |
| EXPECT_TRUE(isa<FPMathOperator>(AFCall)); |
| |
| Type *AVFTy = ArrayType::get(VFTy, 2); |
| FunctionType *AVFFnTy = FunctionType::get(AVFTy, {}); |
| Value *AVFCallee = Constant::getNullValue(AVFFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> AVFCall( |
| CallInst::Create(AVFFnTy, AVFCallee, {}, "")); |
| EXPECT_TRUE(isa<FPMathOperator>(AVFCall)); |
| |
| Type *AAVFTy = ArrayType::get(AVFTy, 2); |
| FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {}); |
| Value *AAVFCallee = Constant::getNullValue(AAVFFnTy->getPointerTo()); |
| std::unique_ptr<CallInst> AAVFCall( |
| CallInst::Create(AAVFFnTy, AAVFCallee, {}, "")); |
| EXPECT_TRUE(isa<FPMathOperator>(AAVFCall)); |
| } |
| |
| TEST(InstructionsTest, FNegInstruction) { |
| LLVMContext Context; |
| Type *FltTy = Type::getFloatTy(Context); |
| Constant *One = ConstantFP::get(FltTy, 1.0); |
| BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One); |
| FAdd->setHasNoNaNs(true); |
| UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd); |
| EXPECT_TRUE(FNeg->hasNoNaNs()); |
| EXPECT_FALSE(FNeg->hasNoInfs()); |
| EXPECT_FALSE(FNeg->hasNoSignedZeros()); |
| EXPECT_FALSE(FNeg->hasAllowReciprocal()); |
| EXPECT_FALSE(FNeg->hasAllowContract()); |
| EXPECT_FALSE(FNeg->hasAllowReassoc()); |
| EXPECT_FALSE(FNeg->hasApproxFunc()); |
| FAdd->deleteValue(); |
| FNeg->deleteValue(); |
| } |
| |
| TEST(InstructionsTest, CallBrInstruction) { |
| LLVMContext Context; |
| std::unique_ptr<Module> M = parseIR(Context, R"( |
| define void @foo() { |
| entry: |
| callbr void asm sideeffect "// XXX: ${0:l}", "X"(i8* blockaddress(@foo, %branch_test.exit)) |
| to label %land.rhs.i [label %branch_test.exit] |
| |
| land.rhs.i: |
| br label %branch_test.exit |
| |
| branch_test.exit: |
| %0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ] |
| br i1 %0, label %if.end, label %if.then |
| |
| if.then: |
| ret void |
| |
| if.end: |
| ret void |
| } |
| )"); |
| Function *Foo = M->getFunction("foo"); |
| auto BBs = Foo->getBasicBlockList().begin(); |
| CallBrInst &CBI = cast<CallBrInst>(BBs->front()); |
| ++BBs; |
| ++BBs; |
| BasicBlock &BranchTestExit = *BBs; |
| ++BBs; |
| BasicBlock &IfThen = *BBs; |
| |
| // Test that setting the first indirect destination of callbr updates the dest |
| EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0)); |
| CBI.setIndirectDest(0, &IfThen); |
| EXPECT_EQ(&IfThen, CBI.getIndirectDest(0)); |
| |
| // Further, test that changing the indirect destination updates the arg |
| // operand to use the block address of the new indirect destination basic |
| // block. This is a critical invariant of CallBrInst. |
| BlockAddress *IndirectBA = BlockAddress::get(CBI.getIndirectDest(0)); |
| BlockAddress *ArgBA = cast<BlockAddress>(CBI.getArgOperand(0)); |
| EXPECT_EQ(IndirectBA, ArgBA) |
| << "After setting the indirect destination, callbr had an indirect " |
| "destination of '" |
| << CBI.getIndirectDest(0)->getName() << "', but a argument of '" |
| << ArgBA->getBasicBlock()->getName() << "'. These should always match:\n" |
| << CBI; |
| EXPECT_EQ(IndirectBA->getBasicBlock(), &IfThen); |
| EXPECT_EQ(ArgBA->getBasicBlock(), &IfThen); |
| } |
| |
| TEST(InstructionsTest, UnaryOperator) { |
| LLVMContext Context; |
| IRBuilder<> Builder(Context); |
| Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); |
| Value *F = Builder.CreateFNeg(I); |
| |
| EXPECT_TRUE(isa<Value>(F)); |
| EXPECT_TRUE(isa<Instruction>(F)); |
| EXPECT_TRUE(isa<UnaryInstruction>(F)); |
| EXPECT_TRUE(isa<UnaryOperator>(F)); |
| EXPECT_FALSE(isa<BinaryOperator>(F)); |
| |
| F->deleteValue(); |
| I->deleteValue(); |
| } |
| |
| TEST(InstructionsTest, DropLocation) { |
| LLVMContext C; |
| std::unique_ptr<Module> M = parseIR(C, |
| R"( |
| declare void @callee() |
| |
| define void @no_parent_scope() { |
| call void @callee() ; I1: Call with no location. |
| call void @callee(), !dbg !11 ; I2: Call with location. |
| ret void, !dbg !11 ; I3: Non-call with location. |
| } |
| |
| define void @with_parent_scope() !dbg !8 { |
| call void @callee() ; I1: Call with no location. |
| call void @callee(), !dbg !11 ; I2: Call with location. |
| ret void, !dbg !11 ; I3: Non-call with location. |
| } |
| |
| !llvm.dbg.cu = !{!0} |
| !llvm.module.flags = !{!3, !4} |
| !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) |
| !1 = !DIFile(filename: "t2.c", directory: "foo") |
| !2 = !{} |
| !3 = !{i32 2, !"Dwarf Version", i32 4} |
| !4 = !{i32 2, !"Debug Info Version", i32 3} |
| !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2) |
| !9 = !DISubroutineType(types: !10) |
| !10 = !{null} |
| !11 = !DILocation(line: 2, column: 7, scope: !8, inlinedAt: !12) |
| !12 = !DILocation(line: 3, column: 8, scope: !8) |
| )"); |
| ASSERT_TRUE(M); |
| |
| { |
| Function *NoParentScopeF = |
| cast<Function>(M->getNamedValue("no_parent_scope")); |
| BasicBlock &BB = NoParentScopeF->front(); |
| |
| auto *I1 = BB.getFirstNonPHI(); |
| auto *I2 = I1->getNextNode(); |
| auto *I3 = BB.getTerminator(); |
| |
| EXPECT_EQ(I1->getDebugLoc(), DebugLoc()); |
| I1->dropLocation(); |
| EXPECT_EQ(I1->getDebugLoc(), DebugLoc()); |
| |
| EXPECT_EQ(I2->getDebugLoc().getLine(), 2U); |
| I2->dropLocation(); |
| EXPECT_EQ(I1->getDebugLoc(), DebugLoc()); |
| |
| EXPECT_EQ(I3->getDebugLoc().getLine(), 2U); |
| I3->dropLocation(); |
| EXPECT_EQ(I3->getDebugLoc(), DebugLoc()); |
| } |
| |
| { |
| Function *WithParentScopeF = |
| cast<Function>(M->getNamedValue("with_parent_scope")); |
| BasicBlock &BB = WithParentScopeF->front(); |
| |
| auto *I2 = BB.getFirstNonPHI()->getNextNode(); |
| |
| MDNode *Scope = cast<MDNode>(WithParentScopeF->getSubprogram()); |
| EXPECT_EQ(I2->getDebugLoc().getLine(), 2U); |
| I2->dropLocation(); |
| EXPECT_EQ(I2->getDebugLoc().getLine(), 0U); |
| EXPECT_EQ(I2->getDebugLoc().getScope(), Scope); |
| EXPECT_EQ(I2->getDebugLoc().getInlinedAt(), nullptr); |
| } |
| } |
| |
| TEST(InstructionsTest, BranchWeightOverflow) { |
| LLVMContext C; |
| std::unique_ptr<Module> M = parseIR(C, |
| R"( |
| declare void @callee() |
| |
| define void @caller() { |
| call void @callee(), !prof !1 |
| ret void |
| } |
| |
| !1 = !{!"branch_weights", i32 20000} |
| )"); |
| ASSERT_TRUE(M); |
| CallInst *CI = |
| cast<CallInst>(&M->getFunction("caller")->getEntryBlock().front()); |
| uint64_t ProfWeight; |
| CI->extractProfTotalWeight(ProfWeight); |
| ASSERT_EQ(ProfWeight, 20000U); |
| CI->updateProfWeight(10000000, 1); |
| CI->extractProfTotalWeight(ProfWeight); |
| ASSERT_EQ(ProfWeight, UINT32_MAX); |
| } |
| |
| TEST(InstructionsTest, AllocaInst) { |
| LLVMContext Ctx; |
| std::unique_ptr<Module> M = parseIR(Ctx, R"( |
| %T = type { i64, [3 x i32]} |
| define void @f(i32 %n) { |
| entry: |
| %A = alloca i32, i32 1 |
| %B = alloca i32, i32 4 |
| %C = alloca i32, i32 %n |
| %D = alloca <8 x double> |
| %E = alloca <vscale x 8 x double> |
| %F = alloca [2 x half] |
| %G = alloca [2 x [3 x i128]] |
| %H = alloca %T |
| ret void |
| } |
| )"); |
| const DataLayout &DL = M->getDataLayout(); |
| ASSERT_TRUE(M); |
| Function *Fun = cast<Function>(M->getNamedValue("f")); |
| BasicBlock &BB = Fun->front(); |
| auto It = BB.begin(); |
| AllocaInst &A = cast<AllocaInst>(*It++); |
| AllocaInst &B = cast<AllocaInst>(*It++); |
| AllocaInst &C = cast<AllocaInst>(*It++); |
| AllocaInst &D = cast<AllocaInst>(*It++); |
| AllocaInst &E = cast<AllocaInst>(*It++); |
| AllocaInst &F = cast<AllocaInst>(*It++); |
| AllocaInst &G = cast<AllocaInst>(*It++); |
| AllocaInst &H = cast<AllocaInst>(*It++); |
| EXPECT_EQ(A.getAllocationSizeInBits(DL), TypeSize::getFixed(32)); |
| EXPECT_EQ(B.getAllocationSizeInBits(DL), TypeSize::getFixed(128)); |
| EXPECT_FALSE(C.getAllocationSizeInBits(DL)); |
| EXPECT_EQ(D.getAllocationSizeInBits(DL), TypeSize::getFixed(512)); |
| EXPECT_EQ(E.getAllocationSizeInBits(DL), TypeSize::getScalable(512)); |
| EXPECT_EQ(F.getAllocationSizeInBits(DL), TypeSize::getFixed(32)); |
| EXPECT_EQ(G.getAllocationSizeInBits(DL), TypeSize::getFixed(768)); |
| EXPECT_EQ(H.getAllocationSizeInBits(DL), TypeSize::getFixed(160)); |
| } |
| |
| } // end anonymous namespace |
| } // end namespace llvm |