blob: b957bec7493e12b3d0ae0404bcc0ba091cd9c620 [file] [log] [blame]
//===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a set of BugReporter "visitors" which can be used to
// enhance the diagnostics reported for a bug.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Analysis/Analyses/Dominators.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <deque>
#include <memory>
#include <string>
#include <utility>
using namespace clang;
using namespace ento;
using namespace bugreporter;
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
if (B->isAdditiveOp() && B->getType()->isPointerType()) {
if (B->getLHS()->getType()->isPointerType()) {
return B->getLHS();
} else if (B->getRHS()->getType()->isPointerType()) {
return B->getRHS();
}
}
return nullptr;
}
/// Given that expression S represents a pointer that would be dereferenced,
/// try to find a sub-expression from which the pointer came from.
/// This is used for tracking down origins of a null or undefined value:
/// "this is null because that is null because that is null" etc.
/// We wipe away field and element offsets because they merely add offsets.
/// We also wipe away all casts except lvalue-to-rvalue casts, because the
/// latter represent an actual pointer dereference; however, we remove
/// the final lvalue-to-rvalue cast before returning from this function
/// because it demonstrates more clearly from where the pointer rvalue was
/// loaded. Examples:
/// x->y.z ==> x (lvalue)
/// foo()->y.z ==> foo() (rvalue)
const Expr *bugreporter::getDerefExpr(const Stmt *S) {
const auto *E = dyn_cast<Expr>(S);
if (!E)
return nullptr;
while (true) {
if (const auto *CE = dyn_cast<CastExpr>(E)) {
if (CE->getCastKind() == CK_LValueToRValue) {
// This cast represents the load we're looking for.
break;
}
E = CE->getSubExpr();
} else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
// Pointer arithmetic: '*(x + 2)' -> 'x') etc.
if (const Expr *Inner = peelOffPointerArithmetic(B)) {
E = Inner;
} else {
// Probably more arithmetic can be pattern-matched here,
// but for now give up.
break;
}
} else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
(U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
// Operators '*' and '&' don't actually mean anything.
// We look at casts instead.
E = U->getSubExpr();
} else {
// Probably more arithmetic can be pattern-matched here,
// but for now give up.
break;
}
}
// Pattern match for a few useful cases: a[0], p->f, *p etc.
else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
E = ME->getBase();
} else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
E = IvarRef->getBase();
} else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
E = AE->getBase();
} else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
E = PE->getSubExpr();
} else if (const auto *FE = dyn_cast<FullExpr>(E)) {
E = FE->getSubExpr();
} else {
// Other arbitrary stuff.
break;
}
}
// Special case: remove the final lvalue-to-rvalue cast, but do not recurse
// deeper into the sub-expression. This way we return the lvalue from which
// our pointer rvalue was loaded.
if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
if (CE->getCastKind() == CK_LValueToRValue)
E = CE->getSubExpr();
return E;
}
static const MemRegion *
getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
bool LookingForReference = true) {
if (const auto *DR = dyn_cast<DeclRefExpr>(E)) {
if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
if (LookingForReference && !VD->getType()->isReferenceType())
return nullptr;
return N->getState()
->getLValue(VD, N->getLocationContext())
.getAsRegion();
}
}
// FIXME: This does not handle other kinds of null references,
// for example, references from FieldRegions:
// struct Wrapper { int &ref; };
// Wrapper w = { *(int *)0 };
// w.ref = 1;
return nullptr;
}
/// Comparing internal representations of symbolic values (via
/// SVal::operator==()) is a valid way to check if the value was updated,
/// unless it's a LazyCompoundVal that may have a different internal
/// representation every time it is loaded from the state. In this function we
/// do an approximate comparison for lazy compound values, checking that they
/// are the immediate snapshots of the tracked region's bindings within the
/// node's respective states but not really checking that these snapshots
/// actually contain the same set of bindings.
static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
const ExplodedNode *RightNode, SVal RightVal) {
if (LeftVal == RightVal)
return true;
const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
if (!LLCV)
return false;
const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
if (!RLCV)
return false;
return LLCV->getRegion() == RLCV->getRegion() &&
LLCV->getStore() == LeftNode->getState()->getStore() &&
RLCV->getStore() == RightNode->getState()->getStore();
}
static Optional<SVal> getSValForVar(const Expr *CondVarExpr,
const ExplodedNode *N) {
ProgramStateRef State = N->getState();
const LocationContext *LCtx = N->getLocationContext();
assert(CondVarExpr);
CondVarExpr = CondVarExpr->IgnoreImpCasts();
// The declaration of the value may rely on a pointer so take its l-value.
// FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
// evaluate to a FieldRegion when it refers to a declaration of a lambda
// capture variable. We most likely need to duplicate that logic here.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
return State->getSVal(State->getLValue(VD, LCtx));
if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
return State->getRawSVal(*FieldL, FD->getType());
return None;
}
static Optional<const llvm::APSInt *>
getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
if (auto CI = V->getAs<nonloc::ConcreteInt>())
return &CI->getValue();
return None;
}
static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
const ExplodedNode *N,
const PathSensitiveBugReport *B) {
// Even if this condition is marked as interesting, it isn't *that*
// interesting if it didn't happen in a nested stackframe, the user could just
// follow the arrows.
if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
return false;
if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
if (Optional<bugreporter::TrackingKind> K = B->getInterestingnessKind(*V))
return *K == bugreporter::TrackingKind::Condition;
return false;
}
static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
const PathSensitiveBugReport *B) {
if (Optional<SVal> V = getSValForVar(E, N))
return B->getInterestingnessKind(*V).hasValue();
return false;
}
/// \return name of the macro inside the location \p Loc.
static StringRef getMacroName(SourceLocation Loc,
BugReporterContext &BRC) {
return Lexer::getImmediateMacroName(
Loc,
BRC.getSourceManager(),
BRC.getASTContext().getLangOpts());
}
/// \return Whether given spelling location corresponds to an expansion
/// of a function-like macro.
static bool isFunctionMacroExpansion(SourceLocation Loc,
const SourceManager &SM) {
if (!Loc.isMacroID())
return false;
while (SM.isMacroArgExpansion(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
return EInfo.isFunctionMacroExpansion();
}
/// \return Whether \c RegionOfInterest was modified at \p N,
/// where \p ValueAfter is \c RegionOfInterest's value at the end of the
/// stack frame.
static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
const ExplodedNode *N,
SVal ValueAfter) {
ProgramStateRef State = N->getState();
ProgramStateManager &Mgr = N->getState()->getStateManager();
if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
!N->getLocationAs<PostStmt>())
return false;
// Writing into region of interest.
if (auto PS = N->getLocationAs<PostStmt>())
if (auto *BO = PS->getStmtAs<BinaryOperator>())
if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
N->getSVal(BO->getLHS()).getAsRegion()))
return true;
// SVal after the state is possibly different.
SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
if (!Mgr.getSValBuilder()
.areEqual(State, ValueAtN, ValueAfter)
.isConstrainedTrue() &&
(!ValueAtN.isUndef() || !ValueAfter.isUndef()))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Implementation of BugReporterVisitor.
//===----------------------------------------------------------------------===//
PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
const ExplodedNode *,
PathSensitiveBugReport &) {
return nullptr;
}
void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
const ExplodedNode *,
PathSensitiveBugReport &) {}
PathDiagnosticPieceRef
BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
const ExplodedNode *EndPathNode,
const PathSensitiveBugReport &BR) {
PathDiagnosticLocation L = BR.getLocation();
const auto &Ranges = BR.getRanges();
// Only add the statement itself as a range if we didn't specify any
// special ranges for this report.
auto P = std::make_shared<PathDiagnosticEventPiece>(
L, BR.getDescription(), Ranges.begin() == Ranges.end());
for (SourceRange Range : Ranges)
P->addRange(Range);
return P;
}
//===----------------------------------------------------------------------===//
// Implementation of NoStateChangeFuncVisitor.
//===----------------------------------------------------------------------===//
bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
const LocationContext *Ctx = N->getLocationContext();
const StackFrameContext *SCtx = Ctx->getStackFrame();
if (!FramesModifyingCalculated.count(SCtx))
findModifyingFrames(N);
return FramesModifying.count(SCtx);
}
void NoStateChangeFuncVisitor::markFrameAsModifying(
const StackFrameContext *SCtx) {
while (!SCtx->inTopFrame()) {
auto p = FramesModifying.insert(SCtx);
if (!p.second)
break; // Frame and all its parents already inserted.
SCtx = SCtx->getParent()->getStackFrame();
}
}
static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
assert(N->getLocationAs<CallEnter>());
// The stackframe of the callee is only found in the nodes succeeding
// the CallEnter node. CallEnter's stack frame refers to the caller.
const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
// Similarly, the nodes preceding CallExitEnd refer to the callee's stack
// frame.
auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
return N->getLocationAs<CallExitEnd>() &&
OrigSCtx == N->getFirstPred()->getStackFrame();
};
while (N && !IsMatchingCallExitEnd(N)) {
assert(N->succ_size() <= 1 &&
"This function is to be used on the trimmed ExplodedGraph!");
N = N->getFirstSucc();
}
return N;
}
void NoStateChangeFuncVisitor::findModifyingFrames(
const ExplodedNode *const CallExitBeginN) {
assert(CallExitBeginN->getLocationAs<CallExitBegin>());
const StackFrameContext *const OriginalSCtx =
CallExitBeginN->getLocationContext()->getStackFrame();
const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
const StackFrameContext *CurrentSCtx = OriginalSCtx;
for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
CurrN = CurrN->getFirstPred()) {
// Found a new inlined call.
if (CurrN->getLocationAs<CallExitBegin>()) {
CurrCallExitBeginN = CurrN;
CurrentSCtx = CurrN->getStackFrame();
FramesModifyingCalculated.insert(CurrentSCtx);
// We won't see a change in between two identical exploded nodes: skip.
continue;
}
if (auto CE = CurrN->getLocationAs<CallEnter>()) {
if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
if (wasModifiedInFunction(CurrN, CallExitEndN))
markFrameAsModifying(CurrentSCtx);
// We exited this inlined call, lets actualize the stack frame.
CurrentSCtx = CurrN->getStackFrame();
// Stop calculating at the current function, but always regard it as
// modifying, so we can avoid notes like this:
// void f(Foo &F) {
// F.field = 0; // note: 0 assigned to 'F.field'
// // note: returning without writing to 'F.field'
// }
if (CE->getCalleeContext() == OriginalSCtx) {
markFrameAsModifying(CurrentSCtx);
break;
}
}
if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
markFrameAsModifying(CurrentSCtx);
}
}
PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
const LocationContext *Ctx = N->getLocationContext();
const StackFrameContext *SCtx = Ctx->getStackFrame();
ProgramStateRef State = N->getState();
auto CallExitLoc = N->getLocationAs<CallExitBegin>();
// No diagnostic if region was modified inside the frame.
if (!CallExitLoc || isModifiedInFrame(N))
return nullptr;
CallEventRef<> Call =
BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
// Optimistically suppress uninitialized value bugs that result
// from system headers having a chance to initialize the value
// but failing to do so. It's too unlikely a system header's fault.
// It's much more likely a situation in which the function has a failure
// mode that the user decided not to check. If we want to hunt such
// omitted checks, we should provide an explicit function-specific note
// describing the precondition under which the function isn't supposed to
// initialize its out-parameter, and additionally check that such
// precondition can actually be fulfilled on the current path.
if (Call->isInSystemHeader()) {
// We make an exception for system header functions that have no branches.
// Such functions unconditionally fail to initialize the variable.
// If they call other functions that have more paths within them,
// this suppression would still apply when we visit these inner functions.
// One common example of a standard function that doesn't ever initialize
// its out parameter is operator placement new; it's up to the follow-up
// constructor (if any) to initialize the memory.
if (!N->getStackFrame()->getCFG()->isLinear()) {
static int i = 0;
R.markInvalid(&i, nullptr);
}
return nullptr;
}
if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
// If we failed to construct a piece for self, we still want to check
// whether the entity of interest is in a parameter.
if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
return Piece;
}
if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
// Do not generate diagnostics for not modified parameters in
// constructors.
return maybeEmitNoteForCXXThis(R, *CCall, N);
}
return maybeEmitNoteForParameters(R, *Call, N);
}
//===----------------------------------------------------------------------===//
// Implementation of NoStoreFuncVisitor.
//===----------------------------------------------------------------------===//
namespace {
/// Put a diagnostic on return statement of all inlined functions
/// for which the region of interest \p RegionOfInterest was passed into,
/// but not written inside, and it has caused an undefined read or a null
/// pointer dereference outside.
class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
const SubRegion *RegionOfInterest;
MemRegionManager &MmrMgr;
const SourceManager &SM;
const PrintingPolicy &PP;
/// Recursion limit for dereferencing fields when looking for the
/// region of interest.
/// The limit of two indicates that we will dereference fields only once.
static const unsigned DEREFERENCE_LIMIT = 2;
using RegionVector = SmallVector<const MemRegion *, 5>;
public:
NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
: NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
MmrMgr(R->getMemRegionManager()),
SM(MmrMgr.getContext().getSourceManager()),
PP(MmrMgr.getContext().getPrintingPolicy()) {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int Tag = 0;
ID.AddPointer(&Tag);
ID.AddPointer(RegionOfInterest);
}
void *getTag() const {
static int Tag = 0;
return static_cast<void *>(&Tag);
}
private:
/// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
/// the value it holds in \p CallExitBeginN.
virtual bool
wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
const ExplodedNode *CallExitBeginN) override;
/// Attempts to find the region of interest in a given record decl,
/// by either following the base classes or fields.
/// Dereferences fields up to a given recursion limit.
/// Note that \p Vec is passed by value, leading to quadratic copying cost,
/// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
/// \return A chain fields leading to the region of interest or None.
const Optional<RegionVector>
findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
const MemRegion *R, const RegionVector &Vec = {},
int depth = 0);
// Region of interest corresponds to an IVar, exiting a method
// which could have written into that IVar, but did not.
virtual PathDiagnosticPieceRef
maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
const ObjCMethodCall &Call,
const ExplodedNode *N) override final;
virtual PathDiagnosticPieceRef
maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
const CXXConstructorCall &Call,
const ExplodedNode *N) override final;
virtual PathDiagnosticPieceRef
maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
const ExplodedNode *N) override final;
/// Consume the information on the no-store stack frame in order to
/// either emit a note or suppress the report enirely.
/// \return Diagnostics piece for region not modified in the current function,
/// if it decides to emit one.
PathDiagnosticPieceRef
maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
const ExplodedNode *N, const RegionVector &FieldChain,
const MemRegion *MatchedRegion, StringRef FirstElement,
bool FirstIsReferenceType, unsigned IndirectionLevel);
bool prettyPrintRegionName(const RegionVector &FieldChain,
const MemRegion *MatchedRegion,
StringRef FirstElement, bool FirstIsReferenceType,
unsigned IndirectionLevel,
llvm::raw_svector_ostream &os);
StringRef prettyPrintFirstElement(StringRef FirstElement,
bool MoreItemsExpected,
int IndirectionLevel,
llvm::raw_svector_ostream &os);
};
} // namespace
/// \return Whether the method declaration \p Parent
/// syntactically has a binary operation writing into the ivar \p Ivar.
static bool potentiallyWritesIntoIvar(const Decl *Parent,
const ObjCIvarDecl *Ivar) {
using namespace ast_matchers;
const char *IvarBind = "Ivar";
if (!Parent || !Parent->hasBody())
return false;
StatementMatcher WriteIntoIvarM = binaryOperator(
hasOperatorName("="),
hasLHS(ignoringParenImpCasts(
objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
for (BoundNodes &Match : Matches) {
auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
if (IvarRef->isFreeIvar())
return true;
const Expr *Base = IvarRef->getBase();
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
Base = ICE->getSubExpr();
if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf)
return true;
return false;
}
return false;
}
/// Attempts to find the region of interest in a given CXX decl,
/// by either following the base classes or fields.
/// Dereferences fields up to a given recursion limit.
/// Note that \p Vec is passed by value, leading to quadratic copying cost,
/// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
/// \return A chain fields leading to the region of interest or None.
const Optional<NoStoreFuncVisitor::RegionVector>
NoStoreFuncVisitor::findRegionOfInterestInRecord(
const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
int depth /* = 0 */) {
if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
return None;
if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
if (!RDX->hasDefinition())
return None;
// Recursively examine the base classes.
// Note that following base classes does not increase the recursion depth.
if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
for (const auto &II : RDX->bases())
if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
if (Optional<RegionVector> Out =
findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
return Out;
for (const FieldDecl *I : RD->fields()) {
QualType FT = I->getType();
const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
const SVal V = State->getSVal(FR);
const MemRegion *VR = V.getAsRegion();
RegionVector VecF = Vec;
VecF.push_back(FR);
if (RegionOfInterest == VR)
return VecF;
if (const RecordDecl *RRD = FT->getAsRecordDecl())
if (auto Out =
findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
return Out;
QualType PT = FT->getPointeeType();
if (PT.isNull() || PT->isVoidType() || !VR)
continue;
if (const RecordDecl *RRD = PT->getAsRecordDecl())
if (Optional<RegionVector> Out =
findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
return Out;
}
return None;
}
PathDiagnosticPieceRef
NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
const ObjCMethodCall &Call,
const ExplodedNode *N) {
if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
IvarR->getDecl()))
return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
/*FirstIsReferenceType=*/false, 1);
}
return nullptr;
}
PathDiagnosticPieceRef
NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
const CXXConstructorCall &Call,
const ExplodedNode *N) {
const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
return maybeEmitNote(R, Call, N, {}, ThisR, "this",
/*FirstIsReferenceType=*/false, 1);
// Do not generate diagnostics for not modified parameters in
// constructors.
return nullptr;
}
/// \return whether \p Ty points to a const type, or is a const reference.
static bool isPointerToConst(QualType Ty) {
return !Ty->getPointeeType().isNull() &&
Ty->getPointeeType().getCanonicalType().isConstQualified();
}
PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
const ParmVarDecl *PVD = Parameters[I];
SVal V = Call.getArgSVal(I);
bool ParamIsReferenceType = PVD->getType()->isReferenceType();
std::string ParamName = PVD->getNameAsString();
unsigned IndirectionLevel = 1;
QualType T = PVD->getType();
while (const MemRegion *MR = V.getAsRegion()) {
if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
return maybeEmitNote(R, Call, N, {}, MR, ParamName,
ParamIsReferenceType, IndirectionLevel);
QualType PT = T->getPointeeType();
if (PT.isNull() || PT->isVoidType())
break;
ProgramStateRef State = N->getState();
if (const RecordDecl *RD = PT->getAsRecordDecl())
if (Optional<RegionVector> P =
findRegionOfInterestInRecord(RD, State, MR))
return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
ParamIsReferenceType, IndirectionLevel);
V = State->getSVal(MR, PT);
T = PT;
IndirectionLevel++;
}
}
return nullptr;
}
bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
return ::wasRegionOfInterestModifiedAt(
RegionOfInterest, CurrN,
CallExitBeginN->getState()->getSVal(RegionOfInterest));
}
static llvm::StringLiteral WillBeUsedForACondition =
", which participates in a condition later";
PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
const RegionVector &FieldChain, const MemRegion *MatchedRegion,
StringRef FirstElement, bool FirstIsReferenceType,
unsigned IndirectionLevel) {
PathDiagnosticLocation L =
PathDiagnosticLocation::create(N->getLocation(), SM);
// For now this shouldn't trigger, but once it does (as we add more
// functions to the body farm), we'll need to decide if these reports
// are worth suppressing as well.
if (!L.hasValidLocation())
return nullptr;
SmallString<256> sbuf;
llvm::raw_svector_ostream os(sbuf);
os << "Returning without writing to '";
// Do not generate the note if failed to pretty-print.
if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
FirstIsReferenceType, IndirectionLevel, os))
return nullptr;
os << "'";
if (TKind == bugreporter::TrackingKind::Condition)
os << WillBeUsedForACondition;
return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
}
bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
const MemRegion *MatchedRegion,
StringRef FirstElement,
bool FirstIsReferenceType,
unsigned IndirectionLevel,
llvm::raw_svector_ostream &os) {
if (FirstIsReferenceType)
IndirectionLevel--;
RegionVector RegionSequence;
// Add the regions in the reverse order, then reverse the resulting array.
assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
const MemRegion *R = RegionOfInterest;
while (R != MatchedRegion) {
RegionSequence.push_back(R);
R = cast<SubRegion>(R)->getSuperRegion();
}
std::reverse(RegionSequence.begin(), RegionSequence.end());
RegionSequence.append(FieldChain.begin(), FieldChain.end());
StringRef Sep;
for (const MemRegion *R : RegionSequence) {
// Just keep going up to the base region.
// Element regions may appear due to casts.
if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
continue;
if (Sep.empty())
Sep = prettyPrintFirstElement(FirstElement,
/*MoreItemsExpected=*/true,
IndirectionLevel, os);
os << Sep;
// Can only reasonably pretty-print DeclRegions.
if (!isa<DeclRegion>(R))
return false;
const auto *DR = cast<DeclRegion>(R);
Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
DR->getDecl()->getDeclName().print(os, PP);
}
if (Sep.empty())
prettyPrintFirstElement(FirstElement,
/*MoreItemsExpected=*/false, IndirectionLevel, os);
return true;
}
StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
llvm::raw_svector_ostream &os) {
StringRef Out = ".";
if (IndirectionLevel > 0 && MoreItemsExpected) {
IndirectionLevel--;
Out = "->";
}
if (IndirectionLevel > 0 && MoreItemsExpected)
os << "(";
for (int i = 0; i < IndirectionLevel; i++)
os << "*";
os << FirstElement;
if (IndirectionLevel > 0 && MoreItemsExpected)
os << ")";
return Out;
}
//===----------------------------------------------------------------------===//
// Implementation of MacroNullReturnSuppressionVisitor.
//===----------------------------------------------------------------------===//
namespace {
/// Suppress null-pointer-dereference bugs where dereferenced null was returned
/// the macro.
class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
const SubRegion *RegionOfInterest;
const SVal ValueAtDereference;
// Do not invalidate the reports where the value was modified
// after it got assigned to from the macro.
bool WasModified = false;
public:
MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
: RegionOfInterest(R), ValueAtDereference(V) {}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override {
if (WasModified)
return nullptr;
auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
if (!BugPoint)
return nullptr;
const SourceManager &SMgr = BRC.getSourceManager();
if (auto Loc = matchAssignment(N)) {
if (isFunctionMacroExpansion(*Loc, SMgr)) {
std::string MacroName = std::string(getMacroName(*Loc, BRC));
SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
BR.markInvalid(getTag(), MacroName.c_str());
}
}
if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
WasModified = true;
return nullptr;
}
static void addMacroVisitorIfNecessary(
const ExplodedNode *N, const MemRegion *R,
bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
const SVal V) {
AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
V.getAs<Loc>())
BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
V);
}
void* getTag() const {
static int Tag = 0;
return static_cast<void *>(&Tag);
}
void Profile(llvm::FoldingSetNodeID &ID) const override {
ID.AddPointer(getTag());
}
private:
/// \return Source location of right hand side of an assignment
/// into \c RegionOfInterest, empty optional if none found.
Optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
const Stmt *S = N->getStmtForDiagnostics();
ProgramStateRef State = N->getState();
auto *LCtx = N->getLocationContext();
if (!S)
return None;
if (const auto *DS = dyn_cast<DeclStmt>(S)) {
if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
if (const Expr *RHS = VD->getInit())
if (RegionOfInterest->isSubRegionOf(
State->getLValue(VD, LCtx).getAsRegion()))
return RHS->getBeginLoc();
} else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
const Expr *RHS = BO->getRHS();
if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
return RHS->getBeginLoc();
}
}
return None;
}
};
} // end of anonymous namespace
namespace {
/// Emits an extra note at the return statement of an interesting stack frame.
///
/// The returned value is marked as an interesting value, and if it's null,
/// adds a visitor to track where it became null.
///
/// This visitor is intended to be used when another visitor discovers that an
/// interesting value comes from an inlined function call.
class ReturnVisitor : public TrackingBugReporterVisitor {
const StackFrameContext *CalleeSFC;
enum {
Initial,
MaybeUnsuppress,
Satisfied
} Mode = Initial;
bool EnableNullFPSuppression;
bool ShouldInvalidate = true;
AnalyzerOptions& Options;
bugreporter::TrackingKind TKind;
public:
ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
bool Suppressed, AnalyzerOptions &Options,
bugreporter::TrackingKind TKind)
: TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
static void *getTag() {
static int Tag = 0;
return static_cast<void *>(&Tag);
}
void Profile(llvm::FoldingSetNodeID &ID) const override {
ID.AddPointer(ReturnVisitor::getTag());
ID.AddPointer(CalleeSFC);
ID.AddBoolean(EnableNullFPSuppression);
}
PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
// Only print a message at the interesting return statement.
if (N->getLocationContext() != CalleeSFC)
return nullptr;
Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
if (!SP)
return nullptr;
const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
if (!Ret)
return nullptr;
// Okay, we're at the right return statement, but do we have the return
// value available?
ProgramStateRef State = N->getState();
SVal V = State->getSVal(Ret, CalleeSFC);
if (V.isUnknownOrUndef())
return nullptr;
// Don't print any more notes after this one.
Mode = Satisfied;
const Expr *RetE = Ret->getRetValue();
assert(RetE && "Tracking a return value for a void function");
// Handle cases where a reference is returned and then immediately used.
Optional<Loc> LValue;
if (RetE->isGLValue()) {
if ((LValue = V.getAs<Loc>())) {
SVal RValue = State->getRawSVal(*LValue, RetE->getType());
if (RValue.getAs<DefinedSVal>())
V = RValue;
}
}
// Ignore aggregate rvalues.
if (V.getAs<nonloc::LazyCompoundVal>() ||
V.getAs<nonloc::CompoundVal>())
return nullptr;
RetE = RetE->IgnoreParenCasts();
// Let's track the return value.
getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
// Build an appropriate message based on the return value.
SmallString<64> Msg;
llvm::raw_svector_ostream Out(Msg);
bool WouldEventBeMeaningless = false;
if (State->isNull(V).isConstrainedTrue()) {
if (V.getAs<Loc>()) {
// If we have counter-suppression enabled, make sure we keep visiting
// future nodes. We want to emit a path note as well, in case
// the report is resurrected as valid later on.
if (EnableNullFPSuppression &&
Options.ShouldAvoidSuppressingNullArgumentPaths)
Mode = MaybeUnsuppress;
if (RetE->getType()->isObjCObjectPointerType()) {
Out << "Returning nil";
} else {
Out << "Returning null pointer";
}
} else {
Out << "Returning zero";
}
} else {
if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
Out << "Returning the value " << CI->getValue();
} else {
// There is nothing interesting about returning a value, when it is
// plain value without any constraints, and the function is guaranteed
// to return that every time. We could use CFG::isLinear() here, but
// constexpr branches are obvious to the compiler, not necesserily to
// the programmer.
if (N->getCFG().size() == 3)
WouldEventBeMeaningless = true;
if (V.getAs<Loc>())
Out << "Returning pointer";
else
Out << "Returning value";
}
}
if (LValue) {
if (const MemRegion *MR = LValue->getAsRegion()) {
if (MR->canPrintPretty()) {
Out << " (reference to ";
MR->printPretty(Out);
Out << ")";
}
}
} else {
// FIXME: We should have a more generalized location printing mechanism.
if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
Out << " (loaded from '" << *DD << "')";
}
PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
if (!L.isValid() || !L.asLocation().isValid())
return nullptr;
if (TKind == bugreporter::TrackingKind::Condition)
Out << WillBeUsedForACondition;
auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
// If we determined that the note is meaningless, make it prunable, and
// don't mark the stackframe interesting.
if (WouldEventBeMeaningless)
EventPiece->setPrunable(true);
else
BR.markInteresting(CalleeSFC);
return EventPiece;
}
PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
// Are we at the entry node for this call?
Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
if (!CE)
return nullptr;
if (CE->getCalleeContext() != CalleeSFC)
return nullptr;
Mode = Satisfied;
// Don't automatically suppress a report if one of the arguments is
// known to be a null pointer. Instead, start tracking /that/ null
// value back to its origin.
ProgramStateManager &StateMgr = BRC.getStateManager();
CallEventManager &CallMgr = StateMgr.getCallEventManager();
ProgramStateRef State = N->getState();
CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
if (!ArgV)
continue;
const Expr *ArgE = Call->getArgExpr(I);
if (!ArgE)
continue;
// Is it possible for this argument to be non-null?
if (!State->isNull(*ArgV).isConstrainedTrue())
continue;
if (getParentTracker()
.track(ArgE, N, {TKind, EnableNullFPSuppression})
.FoundSomethingToTrack)
ShouldInvalidate = false;
// If we /can't/ track the null pointer, we should err on the side of
// false negatives, and continue towards marking this report invalid.
// (We will still look at the other arguments, though.)
}
return nullptr;
}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override {
switch (Mode) {
case Initial:
return visitNodeInitial(N, BRC, BR);
case MaybeUnsuppress:
return visitNodeMaybeUnsuppress(N, BRC, BR);
case Satisfied:
return nullptr;
}
llvm_unreachable("Invalid visit mode!");
}
void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
PathSensitiveBugReport &BR) override {
if (EnableNullFPSuppression && ShouldInvalidate)
BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
}
};
} // end of anonymous namespace
//===----------------------------------------------------------------------===//
// StoreSiteFinder
//===----------------------------------------------------------------------===//
/// Finds last store into the given region,
/// which is different from a given symbolic value.
class StoreSiteFinder final : public TrackingBugReporterVisitor {
const MemRegion *R;
SVal V;
bool Satisfied = false;
TrackingOptions Options;
const StackFrameContext *OriginSFC;
public:
/// \param V We're searching for the store where \c R received this value.
/// \param R The region we're tracking.
/// \param Options Tracking behavior options.
/// \param OriginSFC Only adds notes when the last store happened in a
/// different stackframe to this one. Disregarded if the tracking kind
/// is thorough.
/// This is useful, because for non-tracked regions, notes about
/// changes to its value in a nested stackframe could be pruned, and
/// this visitor can prevent that without polluting the bugpath too
/// much.
StoreSiteFinder(bugreporter::TrackerRef ParentTracker, KnownSVal V,
const MemRegion *R, TrackingOptions Options,
const StackFrameContext *OriginSFC = nullptr)
: TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
OriginSFC(OriginSFC) {
assert(R);
}
void Profile(llvm::FoldingSetNodeID &ID) const override;
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override;
};
void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
static int tag = 0;
ID.AddPointer(&tag);
ID.AddPointer(R);
ID.Add(V);
ID.AddInteger(static_cast<int>(Options.Kind));
ID.AddBoolean(Options.EnableNullFPSuppression);
}
/// Returns true if \p N represents the DeclStmt declaring and initializing
/// \p VR.
static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
Optional<PostStmt> P = N->getLocationAs<PostStmt>();
if (!P)
return false;
const DeclStmt *DS = P->getStmtAs<DeclStmt>();
if (!DS)
return false;
if (DS->getSingleDecl() != VR->getDecl())
return false;
const MemSpaceRegion *VarSpace = VR->getMemorySpace();
const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
if (!FrameSpace) {
// If we ever directly evaluate global DeclStmts, this assertion will be
// invalid, but this still seems preferable to silently accepting an
// initialization that may be for a path-sensitive variable.
assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
return true;
}
assert(VR->getDecl()->hasLocalStorage());
const LocationContext *LCtx = N->getLocationContext();
return FrameSpace->getStackFrame() == LCtx->getStackFrame();
}
static bool isObjCPointer(const MemRegion *R) {
if (R->isBoundable())
if (const auto *TR = dyn_cast<TypedValueRegion>(R))
return TR->getValueType()->isObjCObjectPointerType();
return false;
}
static bool isObjCPointer(const ValueDecl *D) {
return D->getType()->isObjCObjectPointerType();
}
/// Show diagnostics for initializing or declaring a region \p R with a bad value.
static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
const bool HasPrefix = SI.Dest->canPrintPretty();
if (HasPrefix) {
SI.Dest->printPretty(OS);
OS << " ";
}
const char *Action = nullptr;
switch (SI.StoreKind) {
case StoreInfo::Initialization:
Action = HasPrefix ? "initialized to " : "Initializing to ";
break;
case StoreInfo::BlockCapture:
Action = HasPrefix ? "captured by block as " : "Captured by block as ";
break;
default:
llvm_unreachable("Unexpected store kind");
}
if (SI.Value.getAs<loc::ConcreteInt>()) {
OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
} else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
OS << Action << CVal->getValue();
} else if (SI.Origin && SI.Origin->canPrintPretty()) {
OS << Action << "the value of ";
SI.Origin->printPretty(OS);
} else if (SI.StoreKind == StoreInfo::Initialization) {
// We don't need to check here, all these conditions were
// checked by StoreSiteFinder, when it figured out that it is
// initialization.
const auto *DS =
cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
if (SI.Value.isUndef()) {
if (isa<VarRegion>(SI.Dest)) {
const auto *VD = cast<VarDecl>(DS->getSingleDecl());
if (VD->getInit()) {
OS << (HasPrefix ? "initialized" : "Initializing")
<< " to a garbage value";
} else {
OS << (HasPrefix ? "declared" : "Declaring")
<< " without an initial value";
}
}
} else {
OS << (HasPrefix ? "initialized" : "Initialized") << " here";
}
}
}
/// Display diagnostics for passing bad region as a parameter.
static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
StoreInfo SI) {
const auto *VR = cast<VarRegion>(SI.Dest);
const auto *Param = cast<ParmVarDecl>(VR->getDecl());
OS << "Passing ";
if (SI.Value.getAs<loc::ConcreteInt>()) {
OS << (isObjCPointer(Param) ? "nil object reference"
: "null pointer value");
} else if (SI.Value.isUndef()) {
OS << "uninitialized value";
} else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
OS << "the value " << CI->getValue();
} else if (SI.Origin && SI.Origin->canPrintPretty()) {
SI.Origin->printPretty(OS);
} else {
OS << "value";
}
// Printed parameter indexes are 1-based, not 0-based.
unsigned Idx = Param->getFunctionScopeIndex() + 1;
OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
if (VR->canPrintPretty()) {
OS << " ";
VR->printPretty(OS);
}
}
/// Show default diagnostics for storing bad region.
static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
StoreInfo SI) {
const bool HasSuffix = SI.Dest->canPrintPretty();
if (SI.Value.getAs<loc::ConcreteInt>()) {
OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
: (HasSuffix ? "Null pointer value stored"
: "Storing null pointer value"));
} else if (SI.Value.isUndef()) {
OS << (HasSuffix ? "Uninitialized value stored"
: "Storing uninitialized value");
} else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
if (HasSuffix)
OS << "The value " << CV->getValue() << " is assigned";
else
OS << "Assigning " << CV->getValue();
} else if (SI.Origin && SI.Origin->canPrintPretty()) {
if (HasSuffix) {
OS << "The value of ";
SI.Origin->printPretty(OS);
OS << " is assigned";
} else {
OS << "Assigning the value of ";
SI.Origin->printPretty(OS);
}
} else {
OS << (HasSuffix ? "Value assigned" : "Assigning value");
}
if (HasSuffix) {
OS << " to ";
SI.Dest->printPretty(OS);
}
}
PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
if (Satisfied)
return nullptr;
const ExplodedNode *StoreSite = nullptr;
const ExplodedNode *Pred = Succ->getFirstPred();
const Expr *InitE = nullptr;
bool IsParam = false;
// First see if we reached the declaration of the region.
if (const auto *VR = dyn_cast<VarRegion>(R)) {
if (isInitializationOfVar(Pred, VR)) {
StoreSite = Pred;
InitE = VR->getDecl()->getInit();
}
}
// If this is a post initializer expression, initializing the region, we
// should track the initializer expression.
if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
if (FieldReg == R) {
StoreSite = Pred;
InitE = PIP->getInitializer()->getInit();
}
}
// Otherwise, see if this is the store site:
// (1) Succ has this binding and Pred does not, i.e. this is
// where the binding first occurred.
// (2) Succ has this binding and is a PostStore node for this region, i.e.
// the same binding was re-assigned here.
if (!StoreSite) {
if (Succ->getState()->getSVal(R) != V)
return nullptr;
if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
if (!PS || PS->getLocationValue() != R)
return nullptr;
}
StoreSite = Succ;
// If this is an assignment expression, we can track the value
// being assigned.
if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
if (BO->isAssignmentOp())
InitE = BO->getRHS();
// If this is a call entry, the variable should be a parameter.
// FIXME: Handle CXXThisRegion as well. (This is not a priority because
// 'this' should never be NULL, but this visitor isn't just for NULL and
// UndefinedVal.)
if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
if (const auto *VR = dyn_cast<VarRegion>(R)) {
if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
ProgramStateManager &StateMgr = BRC.getStateManager();
CallEventManager &CallMgr = StateMgr.getCallEventManager();
CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
Succ->getState());
InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
} else {
// Handle Objective-C 'self'.
assert(isa<ImplicitParamDecl>(VR->getDecl()));
InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
->getInstanceReceiver()->IgnoreParenCasts();
}
IsParam = true;
}
}
// If this is a CXXTempObjectRegion, the Expr responsible for its creation
// is wrapped inside of it.
if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
InitE = TmpR->getExpr();
}
if (!StoreSite)
return nullptr;
Satisfied = true;
// If we have an expression that provided the value, try to track where it
// came from.
if (InitE) {
if (!IsParam)
InitE = InitE->IgnoreParenCasts();
getParentTracker().track(InitE, StoreSite, Options);
}
// Let's try to find the region where the value came from.
const MemRegion *OldRegion = nullptr;
// If we have init expression, it might be simply a reference
// to a variable, so we can use it.
if (InitE) {
// That region might still be not exactly what we are looking for.
// In situations like `int &ref = val;`, we can't say that
// `ref` is initialized with `val`, rather refers to `val`.
//
// In order, to mitigate situations like this, we check if the last
// stored value in that region is the value that we track.
//
// TODO: support other situations better.
if (const MemRegion *Candidate =
getLocationRegionIfReference(InitE, Succ, false)) {
const StoreManager &SM = BRC.getStateManager().getStoreManager();
// Here we traverse the graph up to find the last node where the
// candidate region is still in the store.
for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
// And if it was bound to the target value, we can use it.
if (N->getState()->getSVal(Candidate) == V) {
OldRegion = Candidate;
}
break;
}
}
}
}
// Otherwise, if the current region does indeed contain the value
// we are looking for, we can look for a region where this value
// was before.
//
// It can be useful for situations like:
// new = identity(old)
// where the analyzer knows that 'identity' returns the value of its
// first argument.
//
// NOTE: If the region R is not a simple var region, it can contain
// V in one of its subregions.
if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
// Let's go up the graph to find the node where the region is
// bound to V.
const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
for (;
NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
}
if (NodeWithoutBinding) {
// Let's try to find a unique binding for the value in that node.
// We want to use this to find unique bindings because of the following
// situations:
// b = a;
// c = identity(b);
//
// Telling the user that the value of 'a' is assigned to 'c', while
// correct, can be confusing.
StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
if (FB)
OldRegion = FB.getRegion();
}
}
if (Options.Kind == TrackingKind::Condition && OriginSFC &&
!OriginSFC->isParentOf(StoreSite->getStackFrame()))
return nullptr;
// Okay, we've found the binding. Emit an appropriate message.
SmallString<256> sbuf;
llvm::raw_svector_ostream os(sbuf);
StoreInfo SI = {StoreInfo::Assignment, // default kind
StoreSite,
InitE,
V,
R,
OldRegion};
if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
const Stmt *S = PS->getStmt();
const auto *DS = dyn_cast<DeclStmt>(S);
const auto *VR = dyn_cast<VarRegion>(R);
if (DS) {
SI.StoreKind = StoreInfo::Initialization;
} else if (isa<BlockExpr>(S)) {
SI.StoreKind = StoreInfo::BlockCapture;
if (VR) {
// See if we can get the BlockVarRegion.
ProgramStateRef State = StoreSite->getState();
SVal V = StoreSite->getSVal(S);
if (const auto *BDR =
dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
getParentTracker().track(State->getSVal(OriginalR), OriginalR,
Options, OriginSFC);
}
}
}
}
} else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
isa<VarRegion>(SI.Dest)) {
SI.StoreKind = StoreInfo::CallArgument;
}
return getParentTracker().handle(SI, BRC, Options);
}
//===----------------------------------------------------------------------===//
// Implementation of TrackConstraintBRVisitor.
//===----------------------------------------------------------------------===//
void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
static int tag = 0;
ID.AddPointer(&tag);
ID.AddBoolean(Assumption);
ID.Add(Constraint);
}
/// Return the tag associated with this visitor. This tag will be used
/// to make all PathDiagnosticPieces created by this visitor.
const char *TrackConstraintBRVisitor::getTag() {
return "TrackConstraintBRVisitor";
}
bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
if (IsZeroCheck)
return N->getState()->isNull(Constraint).isUnderconstrained();
return (bool)N->getState()->assume(Constraint, !Assumption);
}
PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
const ExplodedNode *PrevN = N->getFirstPred();
if (IsSatisfied)
return nullptr;
// Start tracking after we see the first state in which the value is
// constrained.
if (!IsTrackingTurnedOn)
if (!isUnderconstrained(N))
IsTrackingTurnedOn = true;
if (!IsTrackingTurnedOn)
return nullptr;
// Check if in the previous state it was feasible for this constraint
// to *not* be true.
if (isUnderconstrained(PrevN)) {
IsSatisfied = true;
// At this point, the negation of the constraint should be infeasible. If it
// is feasible, make sure that the negation of the constrainti was
// infeasible in the current state. If it is feasible, we somehow missed
// the transition point.
assert(!isUnderconstrained(N));
// We found the transition point for the constraint. We now need to
// pretty-print the constraint. (work-in-progress)
SmallString<64> sbuf;
llvm::raw_svector_ostream os(sbuf);
if (Constraint.getAs<Loc>()) {
os << "Assuming pointer value is ";
os << (Assumption ? "non-null" : "null");
}
if (os.str().empty())
return nullptr;
// Construct a new PathDiagnosticPiece.
ProgramPoint P = N->getLocation();
PathDiagnosticLocation L =
PathDiagnosticLocation::create(P, BRC.getSourceManager());
if (!L.isValid())
return nullptr;
auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str());
X->setTag(getTag());
return std::move(X);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Implementation of SuppressInlineDefensiveChecksVisitor.
//===----------------------------------------------------------------------===//
SuppressInlineDefensiveChecksVisitor::
SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
: V(Value) {
// Check if the visitor is disabled.
AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
if (!Options.ShouldSuppressInlinedDefensiveChecks)
IsSatisfied = true;
}
void SuppressInlineDefensiveChecksVisitor::Profile(
llvm::FoldingSetNodeID &ID) const {
static int id = 0;
ID.AddPointer(&id);
ID.Add(V);
}
const char *SuppressInlineDefensiveChecksVisitor::getTag() {
return "IDCVisitor";
}
PathDiagnosticPieceRef
SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
const ExplodedNode *Pred = Succ->getFirstPred();
if (IsSatisfied)
return nullptr;
// Start tracking after we see the first state in which the value is null.
if (!IsTrackingTurnedOn)
if (Succ->getState()->isNull(V).isConstrainedTrue())
IsTrackingTurnedOn = true;
if (!IsTrackingTurnedOn)
return nullptr;
// Check if in the previous state it was feasible for this value
// to *not* be null.
if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
Succ->getState()->isNull(V).isConstrainedTrue()) {
IsSatisfied = true;
// Check if this is inlined defensive checks.
const LocationContext *CurLC = Succ->getLocationContext();
const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
BR.markInvalid("Suppress IDC", CurLC);
return nullptr;
}
// Treat defensive checks in function-like macros as if they were an inlined
// defensive check. If the bug location is not in a macro and the
// terminator for the current location is in a macro then suppress the
// warning.
auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
if (!BugPoint)
return nullptr;
ProgramPoint CurPoint = Succ->getLocation();
const Stmt *CurTerminatorStmt = nullptr;
if (auto BE = CurPoint.getAs<BlockEdge>()) {
CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
} else if (auto SP = CurPoint.getAs<StmtPoint>()) {
const Stmt *CurStmt = SP->getStmt();
if (!CurStmt->getBeginLoc().isMacroID())
return nullptr;
CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
} else {
return nullptr;
}
if (!CurTerminatorStmt)
return nullptr;
SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
if (TerminatorLoc.isMacroID()) {
SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
// Suppress reports unless we are in that same macro.
if (!BugLoc.isMacroID() ||
getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
BR.markInvalid("Suppress Macro IDC", CurLC);
}
return nullptr;
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// TrackControlDependencyCondBRVisitor.
//===----------------------------------------------------------------------===//
namespace {
/// Tracks the expressions that are a control dependency of the node that was
/// supplied to the constructor.
/// For example:
///
/// cond = 1;
/// if (cond)
/// 10 / 0;
///
/// An error is emitted at line 3. This visitor realizes that the branch
/// on line 2 is a control dependency of line 3, and tracks it's condition via
/// trackExpressionValue().
class TrackControlDependencyCondBRVisitor final
: public TrackingBugReporterVisitor {
const ExplodedNode *Origin;
ControlDependencyCalculator ControlDeps;
llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
public:
TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
const ExplodedNode *O)
: TrackingBugReporterVisitor(ParentTracker), Origin(O),
ControlDeps(&O->getCFG()) {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int x = 0;
ID.AddPointer(&x);
}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override;
};
} // end of anonymous namespace
static std::shared_ptr<PathDiagnosticEventPiece>
constructDebugPieceForTrackedCondition(const Expr *Cond,
const ExplodedNode *N,
BugReporterContext &BRC) {
if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
!BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
return nullptr;
std::string ConditionText = std::string(Lexer::getSourceText(
CharSourceRange::getTokenRange(Cond->getSourceRange()),
BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
return std::make_shared<PathDiagnosticEventPiece>(
PathDiagnosticLocation::createBegin(
Cond, BRC.getSourceManager(), N->getLocationContext()),
(Twine() + "Tracking condition '" + ConditionText + "'").str());
}
static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
if (B->succ_size() != 2)
return false;
const CFGBlock *Then = B->succ_begin()->getReachableBlock();
const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
if (!Then || !Else)
return false;
if (Then->isInevitablySinking() != Else->isInevitablySinking())
return true;
// For the following condition the following CFG would be built:
//
// ------------->
// / \
// [B1] -> [B2] -> [B3] -> [sink]
// assert(A && B || C); \ \
// -----------> [go on with the execution]
//
// It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
// B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
// reached the end of the condition!
if (const Stmt *ElseCond = Else->getTerminatorCondition())
if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
if (BinOp->isLogicalOp())
return isAssertlikeBlock(Else, Context);
return false;
}
PathDiagnosticPieceRef
TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
// We can only reason about control dependencies within the same stack frame.
if (Origin->getStackFrame() != N->getStackFrame())
return nullptr;
CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
// Skip if we already inspected this block.
if (!VisitedBlocks.insert(NB).second)
return nullptr;
CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
// TODO: Cache CFGBlocks for each ExplodedNode.
if (!OriginB || !NB)
return nullptr;
if (isAssertlikeBlock(NB, BRC.getASTContext()))
return nullptr;
if (ControlDeps.isControlDependent(OriginB, NB)) {
// We don't really want to explain for range loops. Evidence suggests that
// the only thing that leads to is the addition of calls to operator!=.
if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
return nullptr;
if (const Expr *Condition = NB->getLastCondition()) {
// Keeping track of the already tracked conditions on a visitor level
// isn't sufficient, because a new visitor is created for each tracked
// expression, hence the BugReport level set.
if (BR.addTrackedCondition(N)) {
getParentTracker().track(Condition, N,
{bugreporter::TrackingKind::Condition,
/*EnableNullFPSuppression=*/false});
return constructDebugPieceForTrackedCondition(Condition, N, BRC);
}
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Implementation of trackExpressionValue.
//===----------------------------------------------------------------------===//
/// \return A subexpression of @c Ex which represents the
/// expression-of-interest.
static const Expr *peelOffOuterExpr(const Expr *Ex,
const ExplodedNode *N) {
Ex = Ex->IgnoreParenCasts();
if (const auto *FE = dyn_cast<FullExpr>(Ex))
return peelOffOuterExpr(FE->getSubExpr(), N);
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
return peelOffOuterExpr(OVE->getSourceExpr(), N);
if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
if (PropRef && PropRef->isMessagingGetter()) {
const Expr *GetterMessageSend =
POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
return peelOffOuterExpr(GetterMessageSend, N);
}
}
// Peel off the ternary operator.
if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
// Find a node where the branching occurred and find out which branch
// we took (true/false) by looking at the ExplodedGraph.
const ExplodedNode *NI = N;
do {
ProgramPoint ProgPoint = NI->getLocation();
if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
const CFGBlock *srcBlk = BE->getSrc();
if (const Stmt *term = srcBlk->getTerminatorStmt()) {
if (term == CO) {
bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
if (TookTrueBranch)
return peelOffOuterExpr(CO->getTrueExpr(), N);
else
return peelOffOuterExpr(CO->getFalseExpr(), N);
}
}
}
NI = NI->getFirstPred();
} while (NI);
}
if (auto *BO = dyn_cast<BinaryOperator>(Ex))
if (const Expr *SubEx = peelOffPointerArithmetic(BO))
return peelOffOuterExpr(SubEx, N);
if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
if (UO->getOpcode() == UO_LNot)
return peelOffOuterExpr(UO->getSubExpr(), N);
// FIXME: There's a hack in our Store implementation that always computes
// field offsets around null pointers as if they are always equal to 0.
// The idea here is to report accesses to fields as null dereferences
// even though the pointer value that's being dereferenced is actually
// the offset of the field rather than exactly 0.
// See the FIXME in StoreManager's getLValueFieldOrIvar() method.
// This code interacts heavily with this hack; otherwise the value
// would not be null at all for most fields, so we'd be unable to track it.
if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
return peelOffOuterExpr(DerefEx, N);
}
return Ex;
}
/// Find the ExplodedNode where the lvalue (the value of 'Ex')
/// was computed.
static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
const Expr *Inner) {
while (N) {
if (N->getStmtForDiagnostics() == Inner)
return N;
N = N->getFirstPred();
}
return N;
}
//===----------------------------------------------------------------------===//
// Tracker implementation
//===----------------------------------------------------------------------===//
PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
BugReporterContext &BRC,
StringRef NodeText) {
// Construct a new PathDiagnosticPiece.
ProgramPoint P = SI.StoreSite->getLocation();
PathDiagnosticLocation L;
if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
P.getLocationContext());
if (!L.isValid() || !L.asLocation().isValid())
L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
if (!L.isValid() || !L.asLocation().isValid())
return nullptr;
return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
}
class DefaultStoreHandler final : public StoreHandler {
public:
using StoreHandler::StoreHandler;
PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
TrackingOptions Opts) override {
// Okay, we've found the binding. Emit an appropriate message.
SmallString<256> Buffer;
llvm::raw_svector_ostream OS(Buffer);
switch (SI.StoreKind) {
case StoreInfo::Initialization:
case StoreInfo::BlockCapture:
showBRDiagnostics(OS, SI);
break;
case StoreInfo::CallArgument:
showBRParamDiagnostics(OS, SI);
break;
case StoreInfo::Assignment:
showBRDefaultDiagnostics(OS, SI);
break;
}
if (Opts.Kind == bugreporter::TrackingKind::Condition)
OS << WillBeUsedForACondition;
return constructNote(SI, BRC, OS.str());
}
};
class ControlDependencyHandler final : public ExpressionHandler {
public:
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
const ExplodedNode *LVNode,
TrackingOptions Opts) override {
PathSensitiveBugReport &Report = getParentTracker().getReport();
// We only track expressions if we believe that they are important. Chances
// are good that control dependencies to the tracking point are also
// important because of this, let's explain why we believe control reached
// this point.
// TODO: Shouldn't we track control dependencies of every bug location,
// rather than only tracked expressions?
if (LVNode->getState()
->getAnalysisManager()
.getAnalyzerOptions()
.ShouldTrackConditions) {
Report.addVisitor<TrackControlDependencyCondBRVisitor>(
&getParentTracker(), InputNode);
return {/*FoundSomethingToTrack=*/true};
}
return {};
}
};
class NilReceiverHandler final : public ExpressionHandler {
public:
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
const ExplodedNode *LVNode,
TrackingOptions Opts) override {
// The message send could be nil due to the receiver being nil.
// At this point in the path, the receiver should be live since we are at
// the message send expr. If it is nil, start tracking it.
if (const Expr *Receiver =
NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
return getParentTracker().track(Receiver, LVNode, Opts);
return {};
}
};
class ArrayIndexHandler final : public ExpressionHandler {
public:
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
const ExplodedNode *LVNode,
TrackingOptions Opts) override {
// Track the index if this is an array subscript.
if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
return getParentTracker().track(
Arr->getIdx(), LVNode,
{Opts.Kind, /*EnableNullFPSuppression*/ false});
return {};
}
};
// TODO: extract it into more handlers
class InterestingLValueHandler final : public ExpressionHandler {
public:
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
const ExplodedNode *LVNode,
TrackingOptions Opts) override {
ProgramStateRef LVState = LVNode->getState();
const StackFrameContext *SFC = LVNode->getStackFrame();
PathSensitiveBugReport &Report = getParentTracker().getReport();
Tracker::Result Result;
// See if the expression we're interested refers to a variable.
// If so, we can track both its contents and constraints on its value.
if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
SVal LVal = LVNode->getSVal(Inner);
const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
// If this is a C++ reference to a null pointer, we are tracking the
// pointer. In addition, we should find the store at which the reference
// got initialized.
if (RR && !LVIsNull)
Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
// In case of C++ references, we want to differentiate between a null
// reference and reference to null pointer.
// If the LVal is null, check if we are dealing with null reference.
// For those, we want to track the location of the reference.
const MemRegion *R =
(RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
if (R) {
// Mark both the variable region and its contents as interesting.
SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
// When we got here, we do have something to track, and we will
// interrupt.
Result.FoundSomethingToTrack = true;
Result.WasInterrupted = true;
MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
LVNode, R, Opts.EnableNullFPSuppression, Report, V);
Report.markInteresting(V, Opts.Kind);
Report.addVisitor<UndefOrNullArgVisitor>(R);
// If the contents are symbolic and null, find out when they became
// null.
if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
if (LVState->isNull(V).isConstrainedTrue())
Report.addVisitor<TrackConstraintBRVisitor>(V.castAs<DefinedSVal>(),
false);
// Add visitor, which will suppress inline defensive checks.
if (auto DV = V.getAs<DefinedSVal>())
if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
// Note that LVNode may be too late (i.e., too far from the
// InputNode) because the lvalue may have been computed before the
// inlined call was evaluated. InputNode may as well be too early
// here, because the symbol is already dead; this, however, is fine
// because we can still find the node in which it collapsed to null
// previously.
Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
InputNode);
getParentTracker().track(V, R, Opts, SFC);
}
}
return Result;
}
};
/// Adds a ReturnVisitor if the given statement represents a call that was
/// inlined.
///
/// This will search back through the ExplodedGraph, starting from the given
/// node, looking for when the given statement was processed. If it turns out
/// the statement is a call that was inlined, we add the visitor to the
/// bug report, so it can print a note later.
class InlinedFunctionCallHandler final : public ExpressionHandler {
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
const ExplodedNode *ExprNode,
TrackingOptions Opts) override {
if (!CallEvent::isCallStmt(E))
return {};
// First, find when we processed the statement.
// If we work with a 'CXXNewExpr' that is going to be purged away before
// its call take place. We would catch that purge in the last condition
// as a 'StmtPoint' so we have to bypass it.
const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
// This is moving forward when we enter into another context.
const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
do {
// If that is satisfied we found our statement as an inlined call.
if (Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>())
if (CEE->getCalleeContext()->getCallSite() == E)
break;
// Try to move forward to the end of the call-chain.
ExprNode = ExprNode->getFirstPred();
if (!ExprNode)
break;
const StackFrameContext *PredSFC = ExprNode->getStackFrame();
// If that is satisfied we found our statement.
// FIXME: This code currently bypasses the call site for the
// conservatively evaluated allocator.
if (!BypassCXXNewExprEval)
if (Optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
// See if we do not enter into another context.
if (SP->getStmt() == E && CurrentSFC == PredSFC)
break;
CurrentSFC = PredSFC;
} while (ExprNode->getStackFrame() == CurrentSFC);
// Next, step over any post-statement checks.
while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
ExprNode = ExprNode->getFirstPred();
if (!ExprNode)
return {};
// Finally, see if we inlined the call.
Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
if (!CEE)
return {};
const StackFrameContext *CalleeContext = CEE->getCalleeContext();
if (CalleeContext->getCallSite() != E)
return {};
// Check the return value.
ProgramStateRef State = ExprNode->getState();
SVal RetVal = ExprNode->getSVal(E);
// Handle cases where a reference is returned and then immediately used.
if (cast<Expr>(E)->isGLValue())
if (Optional<Loc> LValue = RetVal.getAs<Loc>())
RetVal = State->getSVal(*LValue);
// See if the return value is NULL. If so, suppress the report.
AnalyzerOptions &Options = State->getAnalysisManager().options;
bool EnableNullFPSuppression = false;
if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
PathSensitiveBugReport &Report = getParentTracker().getReport();
Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
EnableNullFPSuppression, Options,
Opts.Kind);
return {true};
}
};
class DefaultExpressionHandler final : public ExpressionHandler {
public:
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
const ExplodedNode *LVNode,
TrackingOptions Opts) override {
ProgramStateRef LVState = LVNode->getState();
const StackFrameContext *SFC = LVNode->getStackFrame();
PathSensitiveBugReport &Report = getParentTracker().getReport();
Tracker::Result Result;
// If the expression is not an "lvalue expression", we can still
// track the constraints on its contents.
SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
// Is it a symbolic value?
if (auto L = V.getAs<loc::MemRegionVal>()) {
// FIXME: this is a hack for fixing a later crash when attempting to
// dereference a void* pointer.
// We should not try to dereference pointers at all when we don't care
// what is written inside the pointer.
bool CanDereference = true;
if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
if (SR->getSymbol()->getType()->getPointeeType()->isVoidType())
CanDereference = false;
} else if (L->getRegionAs<AllocaRegion>())
CanDereference = false;
// At this point we are dealing with the region's LValue.
// However, if the rvalue is a symbolic region, we should track it as
// well. Try to use the correct type when looking up the value.
SVal RVal;
if (ExplodedGraph::isInterestingLValueExpr(Inner))
RVal = LVState->getRawSVal(L.getValue(), Inner->getType());
else if (CanDereference)
RVal = LVState->getSVal(L->getRegion());
if (CanDereference) {
Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
Result.FoundSomethingToTrack = true;
if (auto KV = RVal.getAs<KnownSVal>())
Result.combineWith(
getParentTracker().track(*KV, L->getRegion(), Opts, SFC));
}
const MemRegion *RegionRVal = RVal.getAsRegion();
if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
Report.markInteresting(RegionRVal, Opts.Kind);
Report.addVisitor<TrackConstraintBRVisitor>(
loc::MemRegionVal(RegionRVal),
/*assumption=*/false);
Result.FoundSomethingToTrack = true;
}
}
return Result;
}
};
/// Attempts to add visitors to track an RValue expression back to its point of
/// origin.
class PRValueHandler final : public ExpressionHandler {
public:
using ExpressionHandler::ExpressionHandler;
Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
const ExplodedNode *ExprNode,
TrackingOptions Opts) override {
if (!E->isPRValue())
return {};
const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
if (!RVNode)
return {};
ProgramStateRef RVState = RVNode->getState();
SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
const auto *BO = dyn_cast<BinaryOperator>(E);
if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
return {};
SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
// Track both LHS and RHS of a multiplication.
Tracker::Result CombinedResult;
Tracker &Parent = getParentTracker();
const auto track = [&CombinedResult, &Parent, ExprNode, Opts](Expr *Inner) {
CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
};
if (BO->getOpcode() == BO_Mul) {
if (LHSV.isZeroConstant())
track(BO->getLHS());
if (RHSV.isZeroConstant())
track(BO->getRHS());
} else { // Track only the LHS of a division or a modulo.
if (LHSV.isZeroConstant())
track(BO->getLHS());
}
return CombinedResult;
}
};
Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
// Default expression handlers.
addLowPriorityHandler<ControlDependencyHandler>();
addLowPriorityHandler<NilReceiverHandler>();
addLowPriorityHandler<ArrayIndexHandler>();
addLowPriorityHandler<InterestingLValueHandler>();
addLowPriorityHandler<InlinedFunctionCallHandler>();
addLowPriorityHandler<DefaultExpressionHandler>();
addLowPriorityHandler<PRValueHandler>();
// Default store handlers.
addHighPriorityHandler<DefaultStoreHandler>();
}
Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
TrackingOptions Opts) {
if (!E || !N)
return {};
const Expr *Inner = peelOffOuterExpr(E, N);
const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
if (!LVNode)
return {};
Result CombinedResult;
// Iterate through the handlers in the order according to their priorities.
for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
if (CombinedResult.WasInterrupted) {
// There is no need to confuse our users here.
// We got interrupted, but our users don't need to know about it.
CombinedResult.WasInterrupted = false;
break;
}
}
return CombinedResult;
}
Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
const StackFrameContext *Origin) {
if (auto KV = V.getAs<KnownSVal>()) {
Report.addVisitor<StoreSiteFinder>(this, *KV, R, Opts, Origin);
return {true};
}
return {};
}
PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
TrackingOptions Opts) {
// Iterate through the handlers in the order according to their priorities.
for (StoreHandlerPtr &Handler : StoreHandlers) {
if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
// If the handler produced a non-null piece, return it.
// There is no need in asking other handlers.
return Result;
}
return {};
}
bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
const Expr *E,
PathSensitiveBugReport &Report,
TrackingOptions Opts) {
return Tracker::create(Report)
->track(E, InputNode, Opts)
.FoundSomethingToTrack;
}
void bugreporter::trackStoredValue(KnownSVal V, const MemRegion *R,
PathSensitiveBugReport &Report,
TrackingOptions Opts,
const StackFrameContext *Origin) {
Tracker::create(Report)->track(V, R, Opts, Origin);
}
//===----------------------------------------------------------------------===//
// Implementation of NulReceiverBRVisitor.
//===----------------------------------------------------------------------===//
const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
const ExplodedNode *N) {
const auto *ME = dyn_cast<ObjCMessageExpr>(S);
if (!ME)
return nullptr;
if (const Expr *Receiver = ME->getInstanceReceiver()) {
ProgramStateRef state = N->getState();
SVal V = N->getSVal(Receiver);
if (state->isNull(V).isConstrainedTrue())
return Receiver;
}
return nullptr;
}
PathDiagnosticPieceRef
NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
Optional<PreStmt> P = N->getLocationAs<PreStmt>();
if (!P)
return nullptr;
const Stmt *S = P->getStmt();
const Expr *Receiver = getNilReceiver(S, N);
if (!Receiver)
return nullptr;
llvm::SmallString<256> Buf;
llvm::raw_svector_ostream OS(Buf);
if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
OS << "'";
ME->getSelector().print(OS);
OS << "' not called";
}
else {
OS << "No method is called";
}
OS << " because the receiver is nil";
// The receiver was nil, and hence the method was skipped.
// Register a BugReporterVisitor to issue a message telling us how
// the receiver was null.
bugreporter::trackExpressionValue(N, Receiver, BR,
{bugreporter::TrackingKind::Thorough,
/*EnableNullFPSuppression*/ false});
// Issue a message saying that the method was skipped.
PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
N->getLocationContext());
return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
}
//===----------------------------------------------------------------------===//
// Visitor that tries to report interesting diagnostics from conditions.
//===----------------------------------------------------------------------===//
/// Return the tag associated with this visitor. This tag will be used
/// to make all PathDiagnosticPieces created by this visitor.
const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
PathDiagnosticPieceRef
ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
auto piece = VisitNodeImpl(N, BRC, BR);
if (piece) {
piece->setTag(getTag());
if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
ev->setPrunable(true, /* override */ false);
}
return piece;
}
PathDiagnosticPieceRef
ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
ProgramPoint ProgPoint = N->getLocation();
const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
// If an assumption was made on a branch, it should be caught
// here by looking at the state transition.
if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
const CFGBlock *SrcBlock = BE->getSrc();
if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
// If the tag of the previous node is 'Eagerly Assume...' the current
// 'BlockEdge' has the same constraint information. We do not want to
// report the value as it is just an assumption on the predecessor node
// which will be caught in the next VisitNode() iteration as a 'PostStmt'.
const ProgramPointTag *PreviousNodeTag =
N->getFirstPred()->getLocation().getTag();
if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
return nullptr;
return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
}
return nullptr;
}
if (Optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
const ProgramPointTag *CurrentNodeTag = PS->getTag();
if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
return nullptr;
bool TookTrue = CurrentNodeTag == Tags.first;
return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
}
return nullptr;
}
PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
const CFGBlock *dstBlk, PathSensitiveBugReport &R,
BugReporterContext &BRC) {
const Expr *Cond = nullptr;
// In the code below, Term is a CFG terminator and Cond is a branch condition
// expression upon which the decision is made on this terminator.
//
// For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
// and "x == 0" is the respective condition.
//
// Another example: in "if (x && y)", we've got two terminators and two
// conditions due to short-circuit nature of operator "&&":
// 1. The "if (x && y)" statement is a terminator,
// and "y" is the respective condition.
// 2. Also "x && ..." is another terminator,
// and "x" is its condition.
switch (Term->getStmtClass()) {
// FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
// more tricky because there are more than two branches to account for.
default:
return nullptr;
case Stmt::IfStmtClass:
Cond = cast<IfStmt>(Term)->getCond();
break;
case Stmt::ConditionalOperatorClass:
Cond = cast<ConditionalOperator>(Term)->getCond();
break;
case Stmt::BinaryOperatorClass:
// When we encounter a logical operator (&& or ||) as a CFG terminator,
// then the condition is actually its LHS; otherwise, we'd encounter
// the parent, such as if-statement, as a terminator.
const auto *BO = cast<BinaryOperator>(Term);
assert(BO->isLogicalOp() &&
"CFG terminator is not a short-circuit operator!");
Cond = BO->getLHS();
break;
}
Cond = Cond->IgnoreParens();
// However, when we encounter a logical operator as a branch condition,
// then the condition is actually its RHS, because LHS would be
// the condition for the logical operator terminator.
while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
if (!InnerBO->isLogicalOp())
break;
Cond = InnerBO->getRHS()->IgnoreParens();
}
assert(Cond);
assert(srcBlk->succ_size() == 2);
const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
return VisitTrueTest(Cond, BRC, R, N, TookTrue);
}
PathDiagnosticPieceRef
ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
PathSensitiveBugReport &R,
const ExplodedNode *N, bool TookTrue) {
ProgramStateRef CurrentState = N->getState();
ProgramStateRef PrevState = N->getFirstPred()->getState();
const LocationContext *LCtx = N->getLocationContext();
// If the constraint information is changed between the current and the
// previous program state we assuming the newly seen constraint information.
// If we cannot evaluate the condition (and the constraints are the same)
// the analyzer has no information about the value and just assuming it.
bool IsAssuming =
!BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
// These will be modified in code below, but we need to preserve the original
// values in case we want to throw the generic message.
const Expr *CondTmp = Cond;
bool TookTrueTmp = TookTrue;
while (true) {
CondTmp = CondTmp->IgnoreParenCasts();
switch (CondTmp->getStmtClass()) {
default:
break;
case Stmt::BinaryOperatorClass:
if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
BRC, R, N, TookTrueTmp, IsAssuming))
return P;
break;
case Stmt::DeclRefExprClass:
if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
BRC, R, N, TookTrueTmp, IsAssuming))
return P;
break;
case Stmt::MemberExprClass:
if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
BRC, R, N, TookTrueTmp, IsAssuming))
return P;
break;
case Stmt::UnaryOperatorClass: {
const auto *UO = cast<UnaryOperator>(CondTmp);
if (UO->getOpcode() == UO_LNot) {
TookTrueTmp = !TookTrueTmp;
CondTmp = UO->getSubExpr();
continue;
}
break;
}
}
break;
}
// Condition too complex to explain? Just say something so that the user
// knew we've made some path decision at this point.
// If it is too complex and we know the evaluation of the condition do not
// repeat the note from 'BugReporter.cpp'
if (!IsAssuming)
return nullptr;
PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
if (!Loc.isValid() || !Loc.asLocation().isValid())
return nullptr;
return std::make_shared<PathDiagnosticEventPiece>(
Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
}
bool ConditionBRVisitor::patternMatch(const Expr *Ex,
const Expr *ParentEx,
raw_ostream &Out,
BugReporterContext &BRC,
PathSensitiveBugReport &report,
const ExplodedNode *N,
Optional<bool> &prunable,
bool IsSameFieldName) {
const Expr *OriginalExpr = Ex;
Ex = Ex->IgnoreParenCasts();
if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
FloatingLiteral>(Ex)) {
// Use heuristics to determine if the expression is a macro
// expanding to a literal and if so, use the macro's name.
SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
SourceLocation EndLoc = OriginalExpr->getEndLoc();
if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
const SourceManager &SM = BRC.getSourceManager();
const LangOptions &LO = BRC.getASTContext().getL