| //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines BugReporter, a utility class for generating |
| // PathDiagnostics. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/CFGStmtMap.h" |
| #include "clang/Analysis/PathDiagnostic.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/Checker.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <iterator> |
| #include <memory> |
| #include <queue> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace clang; |
| using namespace ento; |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "BugReporter" |
| |
| STATISTIC(MaxBugClassSize, |
| "The maximum number of bug reports in the same equivalence class"); |
| STATISTIC(MaxValidBugClassSize, |
| "The maximum number of bug reports in the same equivalence class " |
| "where at least one report is valid (not suppressed)"); |
| |
| BugReporterVisitor::~BugReporterVisitor() = default; |
| |
| void BugReporterContext::anchor() {} |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnosticBuilder and its associated routines and helper objects. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// A (CallPiece, node assiciated with its CallEnter) pair. |
| using CallWithEntry = |
| std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; |
| using CallWithEntryStack = SmallVector<CallWithEntry, 6>; |
| |
| /// Map from each node to the diagnostic pieces visitors emit for them. |
| using VisitorsDiagnosticsTy = |
| llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>; |
| |
| /// A map from PathDiagnosticPiece to the LocationContext of the inlined |
| /// function call it represents. |
| using LocationContextMap = |
| llvm::DenseMap<const PathPieces *, const LocationContext *>; |
| |
| /// A helper class that contains everything needed to construct a |
| /// PathDiagnostic object. It does no much more then providing convenient |
| /// getters and some well placed asserts for extra security. |
| class PathDiagnosticConstruct { |
| /// The consumer we're constructing the bug report for. |
| const PathDiagnosticConsumer *Consumer; |
| /// Our current position in the bug path, which is owned by |
| /// PathDiagnosticBuilder. |
| const ExplodedNode *CurrentNode; |
| /// A mapping from parts of the bug path (for example, a function call, which |
| /// would span backwards from a CallExit to a CallEnter with the nodes in |
| /// between them) with the location contexts it is associated with. |
| LocationContextMap LCM; |
| const SourceManager &SM; |
| |
| public: |
| /// We keep stack of calls to functions as we're ascending the bug path. |
| /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use |
| /// that instead? |
| CallWithEntryStack CallStack; |
| /// The bug report we're constructing. For ease of use, this field is kept |
| /// public, though some "shortcut" getters are provided for commonly used |
| /// methods of PathDiagnostic. |
| std::unique_ptr<PathDiagnostic> PD; |
| |
| public: |
| PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC, |
| const ExplodedNode *ErrorNode, |
| const PathSensitiveBugReport *R); |
| |
| /// \returns the location context associated with the current position in the |
| /// bug path. |
| const LocationContext *getCurrLocationContext() const { |
| assert(CurrentNode && "Already reached the root!"); |
| return CurrentNode->getLocationContext(); |
| } |
| |
| /// Same as getCurrLocationContext (they should always return the same |
| /// location context), but works after reaching the root of the bug path as |
| /// well. |
| const LocationContext *getLocationContextForActivePath() const { |
| return LCM.find(&PD->getActivePath())->getSecond(); |
| } |
| |
| const ExplodedNode *getCurrentNode() const { return CurrentNode; } |
| |
| /// Steps the current node to its predecessor. |
| /// \returns whether we reached the root of the bug path. |
| bool ascendToPrevNode() { |
| CurrentNode = CurrentNode->getFirstPred(); |
| return static_cast<bool>(CurrentNode); |
| } |
| |
| const ParentMap &getParentMap() const { |
| return getCurrLocationContext()->getParentMap(); |
| } |
| |
| const SourceManager &getSourceManager() const { return SM; } |
| |
| const Stmt *getParent(const Stmt *S) const { |
| return getParentMap().getParent(S); |
| } |
| |
| void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) { |
| assert(Path && LC); |
| LCM[Path] = LC; |
| } |
| |
| const LocationContext *getLocationContextFor(const PathPieces *Path) const { |
| assert(LCM.count(Path) && |
| "Failed to find the context associated with these pieces!"); |
| return LCM.find(Path)->getSecond(); |
| } |
| |
| bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); } |
| |
| PathPieces &getActivePath() { return PD->getActivePath(); } |
| PathPieces &getMutablePieces() { return PD->getMutablePieces(); } |
| |
| bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); } |
| bool shouldAddControlNotes() const { |
| return Consumer->shouldAddControlNotes(); |
| } |
| bool shouldGenerateDiagnostics() const { |
| return Consumer->shouldGenerateDiagnostics(); |
| } |
| bool supportsLogicalOpControlFlow() const { |
| return Consumer->supportsLogicalOpControlFlow(); |
| } |
| }; |
| |
| /// Contains every contextual information needed for constructing a |
| /// PathDiagnostic object for a given bug report. This class and its fields are |
| /// immutable, and passes a BugReportConstruct object around during the |
| /// construction. |
| class PathDiagnosticBuilder : public BugReporterContext { |
| /// A linear path from the error node to the root. |
| std::unique_ptr<const ExplodedGraph> BugPath; |
| /// The bug report we're describing. Visitors create their diagnostics with |
| /// them being the last entities being able to modify it (for example, |
| /// changing interestingness here would cause inconsistencies as to how this |
| /// file and visitors construct diagnostics), hence its const. |
| const PathSensitiveBugReport *R; |
| /// The leaf of the bug path. This isn't the same as the bug reports error |
| /// node, which refers to the *original* graph, not the bug path. |
| const ExplodedNode *const ErrorNode; |
| /// The diagnostic pieces visitors emitted, which is expected to be collected |
| /// by the time this builder is constructed. |
| std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics; |
| |
| public: |
| /// Find a non-invalidated report for a given equivalence class, and returns |
| /// a PathDiagnosticBuilder able to construct bug reports for different |
| /// consumers. Returns None if no valid report is found. |
| static Optional<PathDiagnosticBuilder> |
| findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports, |
| PathSensitiveBugReporter &Reporter); |
| |
| PathDiagnosticBuilder( |
| BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, |
| PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, |
| std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics); |
| |
| /// This function is responsible for generating diagnostic pieces that are |
| /// *not* provided by bug report visitors. |
| /// These diagnostics may differ depending on the consumer's settings, |
| /// and are therefore constructed separately for each consumer. |
| /// |
| /// There are two path diagnostics generation modes: with adding edges (used |
| /// for plists) and without (used for HTML and text). When edges are added, |
| /// the path is modified to insert artificially generated edges. |
| /// Otherwise, more detailed diagnostics is emitted for block edges, |
| /// explaining the transitions in words. |
| std::unique_ptr<PathDiagnostic> |
| generate(const PathDiagnosticConsumer *PDC) const; |
| |
| private: |
| void updateStackPiecesWithMessage(PathDiagnosticPieceRef P, |
| const CallWithEntryStack &CallStack) const; |
| void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C, |
| PathDiagnosticLocation &PrevLoc) const; |
| |
| void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C, |
| BlockEdge BE) const; |
| |
| PathDiagnosticPieceRef |
| generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S, |
| PathDiagnosticLocation &Start) const; |
| |
| PathDiagnosticPieceRef |
| generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst, |
| PathDiagnosticLocation &Start) const; |
| |
| PathDiagnosticPieceRef |
| generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T, |
| const CFGBlock *Src, const CFGBlock *DstC) const; |
| |
| PathDiagnosticLocation |
| ExecutionContinues(const PathDiagnosticConstruct &C) const; |
| |
| PathDiagnosticLocation |
| ExecutionContinues(llvm::raw_string_ostream &os, |
| const PathDiagnosticConstruct &C) const; |
| |
| const PathSensitiveBugReport *getBugReport() const { return R; } |
| }; |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Base implementation of stack hint generators. |
| //===----------------------------------------------------------------------===// |
| |
| StackHintGenerator::~StackHintGenerator() = default; |
| |
| std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ |
| if (!N) |
| return getMessageForSymbolNotFound(); |
| |
| ProgramPoint P = N->getLocation(); |
| CallExitEnd CExit = P.castAs<CallExitEnd>(); |
| |
| // FIXME: Use CallEvent to abstract this over all calls. |
| const Stmt *CallSite = CExit.getCalleeContext()->getCallSite(); |
| const auto *CE = dyn_cast_or_null<CallExpr>(CallSite); |
| if (!CE) |
| return {}; |
| |
| // Check if one of the parameters are set to the interesting symbol. |
| unsigned ArgIndex = 0; |
| for (CallExpr::const_arg_iterator I = CE->arg_begin(), |
| E = CE->arg_end(); I != E; ++I, ++ArgIndex){ |
| SVal SV = N->getSVal(*I); |
| |
| // Check if the variable corresponding to the symbol is passed by value. |
| SymbolRef AS = SV.getAsLocSymbol(); |
| if (AS == Sym) { |
| return getMessageForArg(*I, ArgIndex); |
| } |
| |
| // Check if the parameter is a pointer to the symbol. |
| if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) { |
| // Do not attempt to dereference void*. |
| if ((*I)->getType()->isVoidPointerType()) |
| continue; |
| SVal PSV = N->getState()->getSVal(Reg->getRegion()); |
| SymbolRef AS = PSV.getAsLocSymbol(); |
| if (AS == Sym) { |
| return getMessageForArg(*I, ArgIndex); |
| } |
| } |
| } |
| |
| // Check if we are returning the interesting symbol. |
| SVal SV = N->getSVal(CE); |
| SymbolRef RetSym = SV.getAsLocSymbol(); |
| if (RetSym == Sym) { |
| return getMessageForReturn(CE); |
| } |
| |
| return getMessageForSymbolNotFound(); |
| } |
| |
| std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, |
| unsigned ArgIndex) { |
| // Printed parameters start at 1, not 0. |
| ++ArgIndex; |
| |
| return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) + |
| llvm::getOrdinalSuffix(ArgIndex) + " parameter").str(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Diagnostic cleanup. |
| //===----------------------------------------------------------------------===// |
| |
| static PathDiagnosticEventPiece * |
| eventsDescribeSameCondition(PathDiagnosticEventPiece *X, |
| PathDiagnosticEventPiece *Y) { |
| // Prefer diagnostics that come from ConditionBRVisitor over |
| // those that came from TrackConstraintBRVisitor, |
| // unless the one from ConditionBRVisitor is |
| // its generic fallback diagnostic. |
| const void *tagPreferred = ConditionBRVisitor::getTag(); |
| const void *tagLesser = TrackConstraintBRVisitor::getTag(); |
| |
| if (X->getLocation() != Y->getLocation()) |
| return nullptr; |
| |
| if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) |
| return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; |
| |
| if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) |
| return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; |
| |
| return nullptr; |
| } |
| |
| /// An optimization pass over PathPieces that removes redundant diagnostics |
| /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both |
| /// BugReporterVisitors use different methods to generate diagnostics, with |
| /// one capable of emitting diagnostics in some cases but not in others. This |
| /// can lead to redundant diagnostic pieces at the same point in a path. |
| static void removeRedundantMsgs(PathPieces &path) { |
| unsigned N = path.size(); |
| if (N < 2) |
| return; |
| // NOTE: this loop intentionally is not using an iterator. Instead, we |
| // are streaming the path and modifying it in place. This is done by |
| // grabbing the front, processing it, and if we decide to keep it append |
| // it to the end of the path. The entire path is processed in this way. |
| for (unsigned i = 0; i < N; ++i) { |
| auto piece = std::move(path.front()); |
| path.pop_front(); |
| |
| switch (piece->getKind()) { |
| case PathDiagnosticPiece::Call: |
| removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); |
| break; |
| case PathDiagnosticPiece::Macro: |
| removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); |
| break; |
| case PathDiagnosticPiece::Event: { |
| if (i == N-1) |
| break; |
| |
| if (auto *nextEvent = |
| dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { |
| auto *event = cast<PathDiagnosticEventPiece>(piece.get()); |
| // Check to see if we should keep one of the two pieces. If we |
| // come up with a preference, record which piece to keep, and consume |
| // another piece from the path. |
| if (auto *pieceToKeep = |
| eventsDescribeSameCondition(event, nextEvent)) { |
| piece = std::move(pieceToKeep == event ? piece : path.front()); |
| path.pop_front(); |
| ++i; |
| } |
| } |
| break; |
| } |
| case PathDiagnosticPiece::ControlFlow: |
| case PathDiagnosticPiece::Note: |
| case PathDiagnosticPiece::PopUp: |
| break; |
| } |
| path.push_back(std::move(piece)); |
| } |
| } |
| |
| /// Recursively scan through a path and prune out calls and macros pieces |
| /// that aren't needed. Return true if afterwards the path contains |
| /// "interesting stuff" which means it shouldn't be pruned from the parent path. |
| static bool removeUnneededCalls(const PathDiagnosticConstruct &C, |
| PathPieces &pieces, |
| const PathSensitiveBugReport *R, |
| bool IsInteresting = false) { |
| bool containsSomethingInteresting = IsInteresting; |
| const unsigned N = pieces.size(); |
| |
| for (unsigned i = 0 ; i < N ; ++i) { |
| // Remove the front piece from the path. If it is still something we |
| // want to keep once we are done, we will push it back on the end. |
| auto piece = std::move(pieces.front()); |
| pieces.pop_front(); |
| |
| switch (piece->getKind()) { |
| case PathDiagnosticPiece::Call: { |
| auto &call = cast<PathDiagnosticCallPiece>(*piece); |
| // Check if the location context is interesting. |
| if (!removeUnneededCalls( |
| C, call.path, R, |
| R->isInteresting(C.getLocationContextFor(&call.path)))) |
| continue; |
| |
| containsSomethingInteresting = true; |
| break; |
| } |
| case PathDiagnosticPiece::Macro: { |
| auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); |
| if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting)) |
| continue; |
| containsSomethingInteresting = true; |
| break; |
| } |
| case PathDiagnosticPiece::Event: { |
| auto &event = cast<PathDiagnosticEventPiece>(*piece); |
| |
| // We never throw away an event, but we do throw it away wholesale |
| // as part of a path if we throw the entire path away. |
| containsSomethingInteresting |= !event.isPrunable(); |
| break; |
| } |
| case PathDiagnosticPiece::ControlFlow: |
| case PathDiagnosticPiece::Note: |
| case PathDiagnosticPiece::PopUp: |
| break; |
| } |
| |
| pieces.push_back(std::move(piece)); |
| } |
| |
| return containsSomethingInteresting; |
| } |
| |
| /// Same logic as above to remove extra pieces. |
| static void removePopUpNotes(PathPieces &Path) { |
| for (unsigned int i = 0; i < Path.size(); ++i) { |
| auto Piece = std::move(Path.front()); |
| Path.pop_front(); |
| if (!isa<PathDiagnosticPopUpPiece>(*Piece)) |
| Path.push_back(std::move(Piece)); |
| } |
| } |
| |
| /// Returns true if the given decl has been implicitly given a body, either by |
| /// the analyzer or by the compiler proper. |
| static bool hasImplicitBody(const Decl *D) { |
| assert(D); |
| return D->isImplicit() || !D->hasBody(); |
| } |
| |
| /// Recursively scan through a path and make sure that all call pieces have |
| /// valid locations. |
| static void |
| adjustCallLocations(PathPieces &Pieces, |
| PathDiagnosticLocation *LastCallLocation = nullptr) { |
| for (const auto &I : Pieces) { |
| auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); |
| |
| if (!Call) |
| continue; |
| |
| if (LastCallLocation) { |
| bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); |
| if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) |
| Call->callEnter = *LastCallLocation; |
| if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) |
| Call->callReturn = *LastCallLocation; |
| } |
| |
| // Recursively clean out the subclass. Keep this call around if |
| // it contains any informative diagnostics. |
| PathDiagnosticLocation *ThisCallLocation; |
| if (Call->callEnterWithin.asLocation().isValid() && |
| !hasImplicitBody(Call->getCallee())) |
| ThisCallLocation = &Call->callEnterWithin; |
| else |
| ThisCallLocation = &Call->callEnter; |
| |
| assert(ThisCallLocation && "Outermost call has an invalid location"); |
| adjustCallLocations(Call->path, ThisCallLocation); |
| } |
| } |
| |
| /// Remove edges in and out of C++ default initializer expressions. These are |
| /// for fields that have in-class initializers, as opposed to being initialized |
| /// explicitly in a constructor or braced list. |
| static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { |
| for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { |
| if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) |
| removeEdgesToDefaultInitializers(C->path); |
| |
| if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) |
| removeEdgesToDefaultInitializers(M->subPieces); |
| |
| if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { |
| const Stmt *Start = CF->getStartLocation().asStmt(); |
| const Stmt *End = CF->getEndLocation().asStmt(); |
| if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) { |
| I = Pieces.erase(I); |
| continue; |
| } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) { |
| PathPieces::iterator Next = std::next(I); |
| if (Next != E) { |
| if (auto *NextCF = |
| dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { |
| NextCF->setStartLocation(CF->getStartLocation()); |
| } |
| } |
| I = Pieces.erase(I); |
| continue; |
| } |
| } |
| |
| I++; |
| } |
| } |
| |
| /// Remove all pieces with invalid locations as these cannot be serialized. |
| /// We might have pieces with invalid locations as a result of inlining Body |
| /// Farm generated functions. |
| static void removePiecesWithInvalidLocations(PathPieces &Pieces) { |
| for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { |
| if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) |
| removePiecesWithInvalidLocations(C->path); |
| |
| if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) |
| removePiecesWithInvalidLocations(M->subPieces); |
| |
| if (!(*I)->getLocation().isValid() || |
| !(*I)->getLocation().asLocation().isValid()) { |
| I = Pieces.erase(I); |
| continue; |
| } |
| I++; |
| } |
| } |
| |
| PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( |
| const PathDiagnosticConstruct &C) const { |
| if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) |
| return PathDiagnosticLocation(S, getSourceManager(), |
| C.getCurrLocationContext()); |
| |
| return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(), |
| getSourceManager()); |
| } |
| |
| PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( |
| llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const { |
| // Slow, but probably doesn't matter. |
| if (os.str().empty()) |
| os << ' '; |
| |
| const PathDiagnosticLocation &Loc = ExecutionContinues(C); |
| |
| if (Loc.asStmt()) |
| os << "Execution continues on line " |
| << getSourceManager().getExpansionLineNumber(Loc.asLocation()) |
| << '.'; |
| else { |
| os << "Execution jumps to the end of the "; |
| const Decl *D = C.getCurrLocationContext()->getDecl(); |
| if (isa<ObjCMethodDecl>(D)) |
| os << "method"; |
| else if (isa<FunctionDecl>(D)) |
| os << "function"; |
| else { |
| assert(isa<BlockDecl>(D)); |
| os << "anonymous block"; |
| } |
| os << '.'; |
| } |
| |
| return Loc; |
| } |
| |
| static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { |
| if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) |
| return PM.getParentIgnoreParens(S); |
| |
| const Stmt *Parent = PM.getParentIgnoreParens(S); |
| if (!Parent) |
| return nullptr; |
| |
| switch (Parent->getStmtClass()) { |
| case Stmt::ForStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::WhileStmtClass: |
| case Stmt::ObjCForCollectionStmtClass: |
| case Stmt::CXXForRangeStmtClass: |
| return Parent; |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| static PathDiagnosticLocation |
| getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, |
| bool allowNestedContexts = false) { |
| if (!S) |
| return {}; |
| |
| const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager(); |
| |
| while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) { |
| switch (Parent->getStmtClass()) { |
| case Stmt::BinaryOperatorClass: { |
| const auto *B = cast<BinaryOperator>(Parent); |
| if (B->isLogicalOp()) |
| return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); |
| break; |
| } |
| case Stmt::CompoundStmtClass: |
| case Stmt::StmtExprClass: |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::ChooseExprClass: |
| // Similar to '?' if we are referring to condition, just have the edge |
| // point to the entire choose expression. |
| if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) |
| return PathDiagnosticLocation(Parent, SMgr, LC); |
| else |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: |
| // For '?', if we are referring to condition, just have the edge point |
| // to the entire '?' expression. |
| if (allowNestedContexts || |
| cast<AbstractConditionalOperator>(Parent)->getCond() == S) |
| return PathDiagnosticLocation(Parent, SMgr, LC); |
| else |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::CXXForRangeStmtClass: |
| if (cast<CXXForRangeStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::DoStmtClass: |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::ForStmtClass: |
| if (cast<ForStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::IfStmtClass: |
| if (cast<IfStmt>(Parent)->getCond() != S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::ObjCForCollectionStmtClass: |
| if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::WhileStmtClass: |
| if (cast<WhileStmt>(Parent)->getCond() != S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| default: |
| break; |
| } |
| |
| S = Parent; |
| } |
| |
| assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); |
| |
| return PathDiagnosticLocation(S, SMgr, LC); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Minimal" path diagnostic generation algorithm. |
| //===----------------------------------------------------------------------===// |
| |
| /// If the piece contains a special message, add it to all the call pieces on |
| /// the active stack. For example, my_malloc allocated memory, so MallocChecker |
| /// will construct an event at the call to malloc(), and add a stack hint that |
| /// an allocated memory was returned. We'll use this hint to construct a message |
| /// when returning from the call to my_malloc |
| /// |
| /// void *my_malloc() { return malloc(sizeof(int)); } |
| /// void fishy() { |
| /// void *ptr = my_malloc(); // returned allocated memory |
| /// } // leak |
| void PathDiagnosticBuilder::updateStackPiecesWithMessage( |
| PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const { |
| if (R->hasCallStackHint(P)) |
| for (const auto &I : CallStack) { |
| PathDiagnosticCallPiece *CP = I.first; |
| const ExplodedNode *N = I.second; |
| std::string stackMsg = R->getCallStackMessage(P, N); |
| |
| // The last message on the path to final bug is the most important |
| // one. Since we traverse the path backwards, do not add the message |
| // if one has been previously added. |
| if (!CP->hasCallStackMessage()) |
| CP->setCallStackMessage(stackMsg); |
| } |
| } |
| |
| static void CompactMacroExpandedPieces(PathPieces &path, |
| const SourceManager& SM); |
| |
| PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP( |
| const PathDiagnosticConstruct &C, const CFGBlock *Dst, |
| PathDiagnosticLocation &Start) const { |
| |
| const SourceManager &SM = getSourceManager(); |
| // Figure out what case arm we took. |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| PathDiagnosticLocation End; |
| |
| if (const Stmt *S = Dst->getLabel()) { |
| End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext()); |
| |
| switch (S->getStmtClass()) { |
| default: |
| os << "No cases match in the switch statement. " |
| "Control jumps to line " |
| << End.asLocation().getExpansionLineNumber(); |
| break; |
| case Stmt::DefaultStmtClass: |
| os << "Control jumps to the 'default' case at line " |
| << End.asLocation().getExpansionLineNumber(); |
| break; |
| |
| case Stmt::CaseStmtClass: { |
| os << "Control jumps to 'case "; |
| const auto *Case = cast<CaseStmt>(S); |
| const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); |
| |
| // Determine if it is an enum. |
| bool GetRawInt = true; |
| |
| if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { |
| // FIXME: Maybe this should be an assertion. Are there cases |
| // were it is not an EnumConstantDecl? |
| const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); |
| |
| if (D) { |
| GetRawInt = false; |
| os << *D; |
| } |
| } |
| |
| if (GetRawInt) |
| os << LHS->EvaluateKnownConstInt(getASTContext()); |
| |
| os << ":' at line " << End.asLocation().getExpansionLineNumber(); |
| break; |
| } |
| } |
| } else { |
| os << "'Default' branch taken. "; |
| End = ExecutionContinues(os, C); |
| } |
| return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, |
| os.str()); |
| } |
| |
| PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP( |
| const PathDiagnosticConstruct &C, const Stmt *S, |
| PathDiagnosticLocation &Start) const { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| const PathDiagnosticLocation &End = |
| getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); |
| return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()); |
| } |
| |
| PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP( |
| const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, |
| const CFGBlock *Dst) const { |
| |
| const SourceManager &SM = getSourceManager(); |
| |
| const auto *B = cast<BinaryOperator>(T); |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "Left side of '"; |
| PathDiagnosticLocation Start, End; |
| |
| if (B->getOpcode() == BO_LAnd) { |
| os << "&&" |
| << "' is "; |
| |
| if (*(Src->succ_begin() + 1) == Dst) { |
| os << "false"; |
| End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); |
| Start = |
| PathDiagnosticLocation::createOperatorLoc(B, SM); |
| } else { |
| os << "true"; |
| Start = |
| PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); |
| End = ExecutionContinues(C); |
| } |
| } else { |
| assert(B->getOpcode() == BO_LOr); |
| os << "||" |
| << "' is "; |
| |
| if (*(Src->succ_begin() + 1) == Dst) { |
| os << "false"; |
| Start = |
| PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); |
| End = ExecutionContinues(C); |
| } else { |
| os << "true"; |
| End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); |
| Start = |
| PathDiagnosticLocation::createOperatorLoc(B, SM); |
| } |
| } |
| return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, |
| os.str()); |
| } |
| |
| void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge( |
| PathDiagnosticConstruct &C, BlockEdge BE) const { |
| const SourceManager &SM = getSourceManager(); |
| const LocationContext *LC = C.getCurrLocationContext(); |
| const CFGBlock *Src = BE.getSrc(); |
| const CFGBlock *Dst = BE.getDst(); |
| const Stmt *T = Src->getTerminatorStmt(); |
| if (!T) |
| return; |
| |
| auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); |
| switch (T->getStmtClass()) { |
| default: |
| break; |
| |
| case Stmt::GotoStmtClass: |
| case Stmt::IndirectGotoStmtClass: { |
| if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics()) |
| C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start)); |
| break; |
| } |
| |
| case Stmt::SwitchStmtClass: { |
| C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start)); |
| break; |
| } |
| |
| case Stmt::BreakStmtClass: |
| case Stmt::ContinueStmtClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| PathDiagnosticLocation End = ExecutionContinues(os, C); |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); |
| break; |
| } |
| |
| // Determine control-flow for ternary '?'. |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "'?' condition is "; |
| |
| if (*(Src->succ_begin() + 1) == Dst) |
| os << "false"; |
| else |
| os << "true"; |
| |
| PathDiagnosticLocation End = ExecutionContinues(C); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); |
| break; |
| } |
| |
| // Determine control-flow for short-circuited '&&' and '||'. |
| case Stmt::BinaryOperatorClass: { |
| if (!C.supportsLogicalOpControlFlow()) |
| break; |
| |
| C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst)); |
| break; |
| } |
| |
| case Stmt::DoStmtClass: |
| if (*(Src->succ_begin()) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is true. "; |
| PathDiagnosticLocation End = ExecutionContinues(os, C); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, |
| os.str())); |
| } else { |
| PathDiagnosticLocation End = ExecutionContinues(C); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>( |
| Start, End, "Loop condition is false. Exiting loop")); |
| } |
| break; |
| |
| case Stmt::WhileStmtClass: |
| case Stmt::ForStmtClass: |
| if (*(Src->succ_begin() + 1) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is false. "; |
| PathDiagnosticLocation End = ExecutionContinues(os, C); |
| if (const Stmt *S = End.asStmt()) |
| End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, |
| os.str())); |
| } else { |
| PathDiagnosticLocation End = ExecutionContinues(C); |
| if (const Stmt *S = End.asStmt()) |
| End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>( |
| Start, End, "Loop condition is true. Entering loop body")); |
| } |
| |
| break; |
| |
| case Stmt::IfStmtClass: { |
| PathDiagnosticLocation End = ExecutionContinues(C); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); |
| |
| if (*(Src->succ_begin() + 1) == Dst) |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>( |
| Start, End, "Taking false branch")); |
| else |
| C.getActivePath().push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>( |
| Start, End, "Taking true branch")); |
| |
| break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Functions for determining if a loop was executed 0 times. |
| //===----------------------------------------------------------------------===// |
| |
| static bool isLoop(const Stmt *Term) { |
| switch (Term->getStmtClass()) { |
| case Stmt::ForStmtClass: |
| case Stmt::WhileStmtClass: |
| case Stmt::ObjCForCollectionStmtClass: |
| case Stmt::CXXForRangeStmtClass: |
| return true; |
| default: |
| // Note that we intentionally do not include do..while here. |
| return false; |
| } |
| } |
| |
| static bool isJumpToFalseBranch(const BlockEdge *BE) { |
| const CFGBlock *Src = BE->getSrc(); |
| assert(Src->succ_size() == 2); |
| return (*(Src->succ_begin()+1) == BE->getDst()); |
| } |
| |
| static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, |
| const Stmt *SubS) { |
| while (SubS) { |
| if (SubS == S) |
| return true; |
| SubS = PM.getParent(SubS); |
| } |
| return false; |
| } |
| |
| static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, |
| const ExplodedNode *N) { |
| while (N) { |
| Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); |
| if (SP) { |
| const Stmt *S = SP->getStmt(); |
| if (!isContainedByStmt(PM, Term, S)) |
| return S; |
| } |
| N = N->getFirstPred(); |
| } |
| return nullptr; |
| } |
| |
| static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) { |
| const Stmt *LoopBody = nullptr; |
| switch (Term->getStmtClass()) { |
| case Stmt::CXXForRangeStmtClass: { |
| const auto *FR = cast<CXXForRangeStmt>(Term); |
| if (isContainedByStmt(PM, FR->getInc(), S)) |
| return true; |
| if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) |
| return true; |
| LoopBody = FR->getBody(); |
| break; |
| } |
| case Stmt::ForStmtClass: { |
| const auto *FS = cast<ForStmt>(Term); |
| if (isContainedByStmt(PM, FS->getInc(), S)) |
| return true; |
| LoopBody = FS->getBody(); |
| break; |
| } |
| case Stmt::ObjCForCollectionStmtClass: { |
| const auto *FC = cast<ObjCForCollectionStmt>(Term); |
| LoopBody = FC->getBody(); |
| break; |
| } |
| case Stmt::WhileStmtClass: |
| LoopBody = cast<WhileStmt>(Term)->getBody(); |
| break; |
| default: |
| return false; |
| } |
| return isContainedByStmt(PM, LoopBody, S); |
| } |
| |
| /// Adds a sanitized control-flow diagnostic edge to a path. |
| static void addEdgeToPath(PathPieces &path, |
| PathDiagnosticLocation &PrevLoc, |
| PathDiagnosticLocation NewLoc) { |
| if (!NewLoc.isValid()) |
| return; |
| |
| SourceLocation NewLocL = NewLoc.asLocation(); |
| if (NewLocL.isInvalid()) |
| return; |
| |
| if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { |
| PrevLoc = NewLoc; |
| return; |
| } |
| |
| // Ignore self-edges, which occur when there are multiple nodes at the same |
| // statement. |
| if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) |
| return; |
| |
| path.push_front( |
| std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); |
| PrevLoc = NewLoc; |
| } |
| |
| /// A customized wrapper for CFGBlock::getTerminatorCondition() |
| /// which returns the element for ObjCForCollectionStmts. |
| static const Stmt *getTerminatorCondition(const CFGBlock *B) { |
| const Stmt *S = B->getTerminatorCondition(); |
| if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) |
| return FS->getElement(); |
| return S; |
| } |
| |
| constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body"; |
| constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times"; |
| constexpr llvm::StringLiteral StrLoopRangeEmpty = |
| "Loop body skipped when range is empty"; |
| constexpr llvm::StringLiteral StrLoopCollectionEmpty = |
| "Loop body skipped when collection is empty"; |
| |
| static std::unique_ptr<FilesToLineNumsMap> |
| findExecutedLines(const SourceManager &SM, const ExplodedNode *N); |
| |
| void PathDiagnosticBuilder::generatePathDiagnosticsForNode( |
| PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const { |
| ProgramPoint P = C.getCurrentNode()->getLocation(); |
| const SourceManager &SM = getSourceManager(); |
| |
| // Have we encountered an entrance to a call? It may be |
| // the case that we have not encountered a matching |
| // call exit before this point. This means that the path |
| // terminated within the call itself. |
| if (auto CE = P.getAs<CallEnter>()) { |
| |
| if (C.shouldAddPathEdges()) { |
| // Add an edge to the start of the function. |
| const StackFrameContext *CalleeLC = CE->getCalleeContext(); |
| const Decl *D = CalleeLC->getDecl(); |
| // Add the edge only when the callee has body. We jump to the beginning |
| // of the *declaration*, however we expect it to be followed by the |
| // body. This isn't the case for autosynthesized property accessors in |
| // Objective-C. No need for a similar extra check for CallExit points |
| // because the exit edge comes from a statement (i.e. return), |
| // not from declaration. |
| if (D->hasBody()) |
| addEdgeToPath(C.getActivePath(), PrevLoc, |
| PathDiagnosticLocation::createBegin(D, SM)); |
| } |
| |
| // Did we visit an entire call? |
| bool VisitedEntireCall = C.PD->isWithinCall(); |
| C.PD->popActivePath(); |
| |
| PathDiagnosticCallPiece *Call; |
| if (VisitedEntireCall) { |
| Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get()); |
| } else { |
| // The path terminated within a nested location context, create a new |
| // call piece to encapsulate the rest of the path pieces. |
| const Decl *Caller = CE->getLocationContext()->getDecl(); |
| Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller); |
| assert(C.getActivePath().size() == 1 && |
| C.getActivePath().front().get() == Call); |
| |
| // Since we just transferred the path over to the call piece, reset the |
| // mapping of the active path to the current location context. |
| assert(C.isInLocCtxMap(&C.getActivePath()) && |
| "When we ascend to a previously unvisited call, the active path's " |
| "address shouldn't change, but rather should be compacted into " |
| "a single CallEvent!"); |
| C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext()); |
| |
| // Record the location context mapping for the path within the call. |
| assert(!C.isInLocCtxMap(&Call->path) && |
| "When we ascend to a previously unvisited call, this must be the " |
| "first time we encounter the caller context!"); |
| C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); |
| } |
| Call->setCallee(*CE, SM); |
| |
| // Update the previous location in the active path. |
| PrevLoc = Call->getLocation(); |
| |
| if (!C.CallStack.empty()) { |
| assert(C.CallStack.back().first == Call); |
| C.CallStack.pop_back(); |
| } |
| return; |
| } |
| |
| assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() && |
| "The current position in the bug path is out of sync with the " |
| "location context associated with the active path!"); |
| |
| // Have we encountered an exit from a function call? |
| if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { |
| |
| // We are descending into a call (backwards). Construct |
| // a new call piece to contain the path pieces for that call. |
| auto Call = PathDiagnosticCallPiece::construct(*CE, SM); |
| // Record the mapping from call piece to LocationContext. |
| assert(!C.isInLocCtxMap(&Call->path) && |
| "We just entered a call, this must've been the first time we " |
| "encounter its context!"); |
| C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); |
| |
| if (C.shouldAddPathEdges()) { |
| // Add the edge to the return site. |
| addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn); |
| PrevLoc.invalidate(); |
| } |
| |
| auto *P = Call.get(); |
| C.getActivePath().push_front(std::move(Call)); |
| |
| // Make the contents of the call the active path for now. |
| C.PD->pushActivePath(&P->path); |
| C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode())); |
| return; |
| } |
| |
| if (auto PS = P.getAs<PostStmt>()) { |
| if (!C.shouldAddPathEdges()) |
| return; |
| |
| // Add an edge. If this is an ObjCForCollectionStmt do |
| // not add an edge here as it appears in the CFG both |
| // as a terminator and as a terminator condition. |
| if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { |
| PathDiagnosticLocation L = |
| PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext()); |
| addEdgeToPath(C.getActivePath(), PrevLoc, L); |
| } |
| |
| } else if (auto BE = P.getAs<BlockEdge>()) { |
| |
| if (C.shouldAddControlNotes()) { |
| generateMinimalDiagForBlockEdge(C, *BE); |
| } |
| |
| if (!C.shouldAddPathEdges()) { |
| return; |
| } |
| |
| // Are we jumping to the head of a loop? Add a special diagnostic. |
| if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { |
| PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext()); |
| const Stmt *Body = nullptr; |
| |
| if (const auto *FS = dyn_cast<ForStmt>(Loop)) |
| Body = FS->getBody(); |
| else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) |
| Body = WS->getBody(); |
| else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { |
| Body = OFS->getBody(); |
| } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { |
| Body = FRS->getBody(); |
| } |
| // do-while statements are explicitly excluded here |
| |
| auto p = std::make_shared<PathDiagnosticEventPiece>( |
| L, "Looping back to the head of the loop"); |
| p->setPrunable(true); |
| |
| addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation()); |
| // We might've added a very similar control node already |
| if (!C.shouldAddControlNotes()) { |
| C.getActivePath().push_front(std::move(p)); |
| } |
| |
| if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { |
| addEdgeToPath(C.getActivePath(), PrevLoc, |
| PathDiagnosticLocation::createEndBrace(CS, SM)); |
| } |
| } |
| |
| const CFGBlock *BSrc = BE->getSrc(); |
| const ParentMap &PM = C.getParentMap(); |
| |
| if (const Stmt *Term = BSrc->getTerminatorStmt()) { |
| // Are we jumping past the loop body without ever executing the |
| // loop (because the condition was false)? |
| if (isLoop(Term)) { |
| const Stmt *TermCond = getTerminatorCondition(BSrc); |
| bool IsInLoopBody = isInLoopBody( |
| PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term); |
| |
| StringRef str; |
| |
| if (isJumpToFalseBranch(&*BE)) { |
| if (!IsInLoopBody) { |
| if (isa<ObjCForCollectionStmt>(Term)) { |
| str = StrLoopCollectionEmpty; |
| } else if (isa<CXXForRangeStmt>(Term)) { |
| str = StrLoopRangeEmpty; |
| } else { |
| str = StrLoopBodyZero; |
| } |
| } |
| } else { |
| str = StrEnteringLoop; |
| } |
| |
| if (!str.empty()) { |
| PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, |
| C.getCurrLocationContext()); |
| auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); |
| PE->setPrunable(true); |
| addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation()); |
| |
| // We might've added a very similar control node already |
| if (!C.shouldAddControlNotes()) { |
| C.getActivePath().push_front(std::move(PE)); |
| } |
| } |
| } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) { |
| PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext()); |
| addEdgeToPath(C.getActivePath(), PrevLoc, L); |
| } |
| } |
| } |
| } |
| |
| static std::unique_ptr<PathDiagnostic> |
| generateDiagnosticForBasicReport(const BasicBugReport *R) { |
| const BugType &BT = R->getBugType(); |
| return std::make_unique<PathDiagnostic>( |
| BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), |
| R->getDescription(), R->getShortDescription(/*UseFallback=*/false), |
| BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), |
| std::make_unique<FilesToLineNumsMap>()); |
| } |
| |
| static std::unique_ptr<PathDiagnostic> |
| generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, |
| const SourceManager &SM) { |
| const BugType &BT = R->getBugType(); |
| return std::make_unique<PathDiagnostic>( |
| BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(), |
| R->getDescription(), R->getShortDescription(/*UseFallback=*/false), |
| BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), |
| findExecutedLines(SM, R->getErrorNode())); |
| } |
| |
| static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { |
| if (!S) |
| return nullptr; |
| |
| while (true) { |
| S = PM.getParentIgnoreParens(S); |
| |
| if (!S) |
| break; |
| |
| if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S)) |
| continue; |
| |
| break; |
| } |
| |
| return S; |
| } |
| |
| static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { |
| switch (S->getStmtClass()) { |
| case Stmt::BinaryOperatorClass: { |
| const auto *BO = cast<BinaryOperator>(S); |
| if (!BO->isLogicalOp()) |
| return false; |
| return BO->getLHS() == Cond || BO->getRHS() == Cond; |
| } |
| case Stmt::IfStmtClass: |
| return cast<IfStmt>(S)->getCond() == Cond; |
| case Stmt::ForStmtClass: |
| return cast<ForStmt>(S)->getCond() == Cond; |
| case Stmt::WhileStmtClass: |
| return cast<WhileStmt>(S)->getCond() == Cond; |
| case Stmt::DoStmtClass: |
| return cast<DoStmt>(S)->getCond() == Cond; |
| case Stmt::ChooseExprClass: |
| return cast<ChooseExpr>(S)->getCond() == Cond; |
| case Stmt::IndirectGotoStmtClass: |
| return cast<IndirectGotoStmt>(S)->getTarget() == Cond; |
| case Stmt::SwitchStmtClass: |
| return cast<SwitchStmt>(S)->getCond() == Cond; |
| case Stmt::BinaryConditionalOperatorClass: |
| return cast<BinaryConditionalOperator>(S)->getCond() == Cond; |
| case Stmt::ConditionalOperatorClass: { |
| const auto *CO = cast<ConditionalOperator>(S); |
| return CO->getCond() == Cond || |
| CO->getLHS() == Cond || |
| CO->getRHS() == Cond; |
| } |
| case Stmt::ObjCForCollectionStmtClass: |
| return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; |
| case Stmt::CXXForRangeStmtClass: { |
| const auto *FRS = cast<CXXForRangeStmt>(S); |
| return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { |
| if (const auto *FS = dyn_cast<ForStmt>(FL)) |
| return FS->getInc() == S || FS->getInit() == S; |
| if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) |
| return FRS->getInc() == S || FRS->getRangeStmt() == S || |
| FRS->getLoopVarStmt() || FRS->getRangeInit() == S; |
| return false; |
| } |
| |
| using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; |
| |
| /// Adds synthetic edges from top-level statements to their subexpressions. |
| /// |
| /// This avoids a "swoosh" effect, where an edge from a top-level statement A |
| /// points to a sub-expression B.1 that's not at the start of B. In these cases, |
| /// we'd like to see an edge from A to B, then another one from B to B.1. |
| static void addContextEdges(PathPieces &pieces, const LocationContext *LC) { |
| const ParentMap &PM = LC->getParentMap(); |
| PathPieces::iterator Prev = pieces.end(); |
| for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; |
| Prev = I, ++I) { |
| auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); |
| |
| if (!Piece) |
| continue; |
| |
| PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); |
| SmallVector<PathDiagnosticLocation, 4> SrcContexts; |
| |
| PathDiagnosticLocation NextSrcContext = SrcLoc; |
| const Stmt *InnerStmt = nullptr; |
| while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { |
| SrcContexts.push_back(NextSrcContext); |
| InnerStmt = NextSrcContext.asStmt(); |
| NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC, |
| /*allowNested=*/true); |
| } |
| |
| // Repeatedly split the edge as necessary. |
| // This is important for nested logical expressions (||, &&, ?:) where we |
| // want to show all the levels of context. |
| while (true) { |
| const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); |
| |
| // We are looking at an edge. Is the destination within a larger |
| // expression? |
| PathDiagnosticLocation DstContext = |
| getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true); |
| if (!DstContext.isValid() || DstContext.asStmt() == Dst) |
| break; |
| |
| // If the source is in the same context, we're already good. |
| if (llvm::is_contained(SrcContexts, DstContext)) |
| break; |
| |
| // Update the subexpression node to point to the context edge. |
| Piece->setStartLocation(DstContext); |
| |
| // Try to extend the previous edge if it's at the same level as the source |
| // context. |
| if (Prev != E) { |
| auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); |
| |
| if (PrevPiece) { |
| if (const Stmt *PrevSrc = |
| PrevPiece->getStartLocation().getStmtOrNull()) { |
| const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); |
| if (PrevSrcParent == |
| getStmtParent(DstContext.getStmtOrNull(), PM)) { |
| PrevPiece->setEndLocation(DstContext); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Otherwise, split the current edge into a context edge and a |
| // subexpression edge. Note that the context statement may itself have |
| // context. |
| auto P = |
| std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); |
| Piece = P.get(); |
| I = pieces.insert(I, std::move(P)); |
| } |
| } |
| } |
| |
| /// Move edges from a branch condition to a branch target |
| /// when the condition is simple. |
| /// |
| /// This restructures some of the work of addContextEdges. That function |
| /// creates edges this may destroy, but they work together to create a more |
| /// aesthetically set of edges around branches. After the call to |
| /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from |
| /// the branch to the branch condition, and (3) an edge from the branch |
| /// condition to the branch target. We keep (1), but may wish to remove (2) |
| /// and move the source of (3) to the branch if the branch condition is simple. |
| static void simplifySimpleBranches(PathPieces &pieces) { |
| for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { |
| const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); |
| |
| if (!PieceI) |
| continue; |
| |
| const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); |
| const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); |
| |
| if (!s1Start || !s1End) |
| continue; |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| break; |
| |
| PathDiagnosticControlFlowPiece *PieceNextI = nullptr; |
| |
| while (true) { |
| if (NextI == E) |
| break; |
| |
| const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); |
| if (EV) { |
| StringRef S = EV->getString(); |
| if (S == StrEnteringLoop || S == StrLoopBodyZero || |
| S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { |
| ++NextI; |
| continue; |
| } |
| break; |
| } |
| |
| PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); |
| break; |
| } |
| |
| if (!PieceNextI) |
| continue; |
| |
| const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); |
| const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); |
| |
| if (!s2Start || !s2End || s1End != s2Start) |
| continue; |
| |
| // We only perform this transformation for specific branch kinds. |
| // We don't want to do this for do..while, for example. |
| if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt, |
| CXXForRangeStmt>(s1Start)) |
| continue; |
| |
| // Is s1End the branch condition? |
| if (!isConditionForTerminator(s1Start, s1End)) |
| continue; |
| |
| // Perform the hoisting by eliminating (2) and changing the start |
| // location of (3). |
| PieceNextI->setStartLocation(PieceI->getStartLocation()); |
| I = pieces.erase(I); |
| } |
| } |
| |
| /// Returns the number of bytes in the given (character-based) SourceRange. |
| /// |
| /// If the locations in the range are not on the same line, returns None. |
| /// |
| /// Note that this does not do a precise user-visible character or column count. |
| static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM, |
| SourceRange Range) { |
| SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), |
| SM.getExpansionRange(Range.getEnd()).getEnd()); |
| |
| FileID FID = SM.getFileID(ExpansionRange.getBegin()); |
| if (FID != SM.getFileID(ExpansionRange.getEnd())) |
| return None; |
| |
| Optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID); |
| if (!Buffer) |
| return None; |
| |
| unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); |
| unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); |
| StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); |
| |
| // We're searching the raw bytes of the buffer here, which might include |
| // escaped newlines and such. That's okay; we're trying to decide whether the |
| // SourceRange is covering a large or small amount of space in the user's |
| // editor. |
| if (Snippet.find_first_of("\r\n") != StringRef::npos) |
| return None; |
| |
| // This isn't Unicode-aware, but it doesn't need to be. |
| return Snippet.size(); |
| } |
| |
| /// \sa getLengthOnSingleLine(SourceManager, SourceRange) |
| static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM, |
| const Stmt *S) { |
| return getLengthOnSingleLine(SM, S->getSourceRange()); |
| } |
| |
| /// Eliminate two-edge cycles created by addContextEdges(). |
| /// |
| /// Once all the context edges are in place, there are plenty of cases where |
| /// there's a single edge from a top-level statement to a subexpression, |
| /// followed by a single path note, and then a reverse edge to get back out to |
| /// the top level. If the statement is simple enough, the subexpression edges |
| /// just add noise and make it harder to understand what's going on. |
| /// |
| /// This function only removes edges in pairs, because removing only one edge |
| /// might leave other edges dangling. |
| /// |
| /// This will not remove edges in more complicated situations: |
| /// - if there is more than one "hop" leading to or from a subexpression. |
| /// - if there is an inlined call between the edges instead of a single event. |
| /// - if the whole statement is large enough that having subexpression arrows |
| /// might be helpful. |
| static void removeContextCycles(PathPieces &Path, const SourceManager &SM) { |
| for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { |
| // Pattern match the current piece and its successor. |
| const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); |
| |
| if (!PieceI) { |
| ++I; |
| continue; |
| } |
| |
| const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); |
| const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| break; |
| |
| const auto *PieceNextI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); |
| |
| if (!PieceNextI) { |
| if (isa<PathDiagnosticEventPiece>(NextI->get())) { |
| ++NextI; |
| if (NextI == E) |
| break; |
| PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); |
| } |
| |
| if (!PieceNextI) { |
| ++I; |
| continue; |
| } |
| } |
| |
| const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); |
| const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); |
| |
| if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { |
| const size_t MAX_SHORT_LINE_LENGTH = 80; |
| Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); |
| if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { |
| Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); |
| if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { |
| Path.erase(I); |
| I = Path.erase(NextI); |
| continue; |
| } |
| } |
| } |
| |
| ++I; |
| } |
| } |
| |
| /// Return true if X is contained by Y. |
| static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) { |
| while (X) { |
| if (X == Y) |
| return true; |
| X = PM.getParent(X); |
| } |
| return false; |
| } |
| |
| // Remove short edges on the same line less than 3 columns in difference. |
| static void removePunyEdges(PathPieces &path, const SourceManager &SM, |
| const ParentMap &PM) { |
| bool erased = false; |
| |
| for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; |
| erased ? I : ++I) { |
| erased = false; |
| |
| const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); |
| |
| if (!PieceI) |
| continue; |
| |
| const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); |
| const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); |
| |
| if (!start || !end) |
| continue; |
| |
| const Stmt *endParent = PM.getParent(end); |
| if (!endParent) |
| continue; |
| |
| if (isConditionForTerminator(end, endParent)) |
| continue; |
| |
| SourceLocation FirstLoc = start->getBeginLoc(); |
| SourceLocation SecondLoc = end->getBeginLoc(); |
| |
| if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) |
| continue; |
| if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) |
| std::swap(SecondLoc, FirstLoc); |
| |
| SourceRange EdgeRange(FirstLoc, SecondLoc); |
| Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); |
| |
| // If the statements are on different lines, continue. |
| if (!ByteWidth) |
| continue; |
| |
| const size_t MAX_PUNY_EDGE_LENGTH = 2; |
| if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { |
| // FIXME: There are enough /bytes/ between the endpoints of the edge, but |
| // there might not be enough /columns/. A proper user-visible column count |
| // is probably too expensive, though. |
| I = path.erase(I); |
| erased = true; |
| continue; |
| } |
| } |
| } |
| |
| static void removeIdenticalEvents(PathPieces &path) { |
| for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { |
| const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); |
| |
| if (!PieceI) |
| continue; |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| return; |
| |
| const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); |
| |
| if (!PieceNextI) |
| continue; |
| |
| // Erase the second piece if it has the same exact message text. |
| if (PieceI->getString() == PieceNextI->getString()) { |
| path.erase(NextI); |
| } |
| } |
| } |
| |
| static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, |
| OptimizedCallsSet &OCS) { |
| bool hasChanges = false; |
| const LocationContext *LC = C.getLocationContextFor(&path); |
| assert(LC); |
| const ParentMap &PM = LC->getParentMap(); |
| const SourceManager &SM = C.getSourceManager(); |
| |
| for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { |
| // Optimize subpaths. |
| if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { |
| // Record the fact that a call has been optimized so we only do the |
| // effort once. |
| if (!OCS.count(CallI)) { |
| while (optimizeEdges(C, CallI->path, OCS)) { |
| } |
| OCS.insert(CallI); |
| } |
| ++I; |
| continue; |
| } |
| |
| // Pattern match the current piece and its successor. |
| auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); |
| |
| if (!PieceI) { |
| ++I; |
| continue; |
| } |
| |
| const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); |
| const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); |
| const Stmt *level1 = getStmtParent(s1Start, PM); |
| const Stmt *level2 = getStmtParent(s1End, PM); |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| break; |
| |
| const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); |
| |
| if (!PieceNextI) { |
| ++I; |
| continue; |
| } |
| |
| const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); |
| const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); |
| const Stmt *level3 = getStmtParent(s2Start, PM); |
| const Stmt *level4 = getStmtParent(s2End, PM); |
| |
| // Rule I. |
| // |
| // If we have two consecutive control edges whose end/begin locations |
| // are at the same level (e.g. statements or top-level expressions within |
| // a compound statement, or siblings share a single ancestor expression), |
| // then merge them if they have no interesting intermediate event. |
| // |
| // For example: |
| // |
| // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common |
| // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. |
| // |
| // NOTE: this will be limited later in cases where we add barriers |
| // to prevent this optimization. |
| if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { |
| PieceI->setEndLocation(PieceNextI->getEndLocation()); |
| path.erase(NextI); |
| hasChanges = true; |
| continue; |
| } |
| |
| // Rule II. |
| // |
| // Eliminate edges between subexpressions and parent expressions |
| // when the subexpression is consumed. |
| // |
| // NOTE: this will be limited later in cases where we add barriers |
| // to prevent this optimization. |
| if (s1End && s1End == s2Start && level2) { |
| bool removeEdge = false; |
| // Remove edges into the increment or initialization of a |
| // loop that have no interleaving event. This means that |
| // they aren't interesting. |
| if (isIncrementOrInitInForLoop(s1End, level2)) |
| removeEdge = true; |
| // Next only consider edges that are not anchored on |
| // the condition of a terminator. This are intermediate edges |
| // that we might want to trim. |
| else if (!isConditionForTerminator(level2, s1End)) { |
| // Trim edges on expressions that are consumed by |
| // the parent expression. |
| if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { |
| removeEdge = true; |
| } |
| // Trim edges where a lexical containment doesn't exist. |
| // For example: |
| // |
| // X -> Y -> Z |
| // |
| // If 'Z' lexically contains Y (it is an ancestor) and |
| // 'X' does not lexically contain Y (it is a descendant OR |
| // it has no lexical relationship at all) then trim. |
| // |
| // This can eliminate edges where we dive into a subexpression |
| // and then pop back out, etc. |
| else if (s1Start && s2End && |
| lexicalContains(PM, s2Start, s2End) && |
| !lexicalContains(PM, s1End, s1Start)) { |
| removeEdge = true; |
| } |
| // Trim edges from a subexpression back to the top level if the |
| // subexpression is on a different line. |
| // |
| // A.1 -> A -> B |
| // becomes |
| // A.1 -> B |
| // |
| // These edges just look ugly and don't usually add anything. |
| else if (s1Start && s2End && |
| lexicalContains(PM, s1Start, s1End)) { |
| SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), |
| PieceI->getStartLocation().asLocation()); |
| if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) |
| removeEdge = true; |
| } |
| } |
| |
| if (removeEdge) { |
| PieceI->setEndLocation(PieceNextI->getEndLocation()); |
| path.erase(NextI); |
| hasChanges = true; |
| continue; |
| } |
| } |
| |
| // Optimize edges for ObjC fast-enumeration loops. |
| // |
| // (X -> collection) -> (collection -> element) |
| // |
| // becomes: |
| // |
| // (X -> element) |
| if (s1End == s2Start) { |
| const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); |
| if (FS && FS->getCollection()->IgnoreParens() == s2Start && |
| s2End == FS->getElement()) { |
| PieceI->setEndLocation(PieceNextI->getEndLocation()); |
| path.erase(NextI); |
| hasChanges = true; |
| continue; |
| } |
| } |
| |
| // No changes at this index? Move to the next one. |
| ++I; |
| } |
| |
| if (!hasChanges) { |
| // Adjust edges into subexpressions to make them more uniform |
| // and aesthetically pleasing. |
| addContextEdges(path, LC); |
| // Remove "cyclical" edges that include one or more context edges. |
| removeContextCycles(path, SM); |
| // Hoist edges originating from branch conditions to branches |
| // for simple branches. |
| simplifySimpleBranches(path); |
| // Remove any puny edges left over after primary optimization pass. |
| removePunyEdges(path, SM, PM); |
| // Remove identical events. |
| removeIdenticalEvents(path); |
| } |
| |
| return hasChanges; |
| } |
| |
| /// Drop the very first edge in a path, which should be a function entry edge. |
| /// |
| /// If the first edge is not a function entry edge (say, because the first |
| /// statement had an invalid source location), this function does nothing. |
| // FIXME: We should just generate invalid edges anyway and have the optimizer |
| // deal with them. |
| static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, |
| PathPieces &Path) { |
| const auto *FirstEdge = |
| dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); |
| if (!FirstEdge) |
| return; |
| |
| const Decl *D = C.getLocationContextFor(&Path)->getDecl(); |
| PathDiagnosticLocation EntryLoc = |
| PathDiagnosticLocation::createBegin(D, C.getSourceManager()); |
| if (FirstEdge->getStartLocation() != EntryLoc) |
| return; |
| |
| Path.pop_front(); |
| } |
| |
| /// Populate executes lines with lines containing at least one diagnostics. |
| static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) { |
| |
| PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); |
| FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); |
| |
| for (const auto &P : path) { |
| FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); |
| FileID FID = Loc.getFileID(); |
| unsigned LineNo = Loc.getLineNumber(); |
| assert(FID.isValid()); |
| ExecutedLines[FID].insert(LineNo); |
| } |
| } |
| |
| PathDiagnosticConstruct::PathDiagnosticConstruct( |
| const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, |
| const PathSensitiveBugReport *R) |
| : Consumer(PDC), CurrentNode(ErrorNode), |
| SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()), |
| PD(generateEmptyDiagnosticForReport(R, getSourceManager())) { |
| LCM[&PD->getActivePath()] = ErrorNode->getLocationContext(); |
| } |
| |
| PathDiagnosticBuilder::PathDiagnosticBuilder( |
| BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, |
| PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, |
| std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics) |
| : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r), |
| ErrorNode(ErrorNode), |
| VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {} |
| |
| std::unique_ptr<PathDiagnostic> |
| PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const { |
| PathDiagnosticConstruct Construct(PDC, ErrorNode, R); |
| |
| const SourceManager &SM = getSourceManager(); |
| const AnalyzerOptions &Opts = getAnalyzerOptions(); |
| |
| if (!PDC->shouldGenerateDiagnostics()) |
| return generateEmptyDiagnosticForReport(R, getSourceManager()); |
| |
| // Construct the final (warning) event for the bug report. |
| auto EndNotes = VisitorsDiagnostics->find(ErrorNode); |
| PathDiagnosticPieceRef LastPiece; |
| if (EndNotes != VisitorsDiagnostics->end()) { |
| assert(!EndNotes->second.empty()); |
| LastPiece = EndNotes->second[0]; |
| } else { |
| LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode, |
| *getBugReport()); |
| } |
| Construct.PD->setEndOfPath(LastPiece); |
| |
| PathDiagnosticLocation PrevLoc = Construct.PD->getLocation(); |
| // From the error node to the root, ascend the bug path and construct the bug |
| // report. |
| while (Construct.ascendToPrevNode()) { |
| generatePathDiagnosticsForNode(Construct, PrevLoc); |
| |
| auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode()); |
| if (VisitorNotes == VisitorsDiagnostics->end()) |
| continue; |
| |
| // This is a workaround due to inability to put shared PathDiagnosticPiece |
| // into a FoldingSet. |
| std::set<llvm::FoldingSetNodeID> DeduplicationSet; |
| |
| // Add pieces from custom visitors. |
| for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) { |
| llvm::FoldingSetNodeID ID; |
| Note->Profile(ID); |
| if (!DeduplicationSet.insert(ID).second) |
| continue; |
| |
| if (PDC->shouldAddPathEdges()) |
| addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation()); |
| updateStackPiecesWithMessage(Note, Construct.CallStack); |
| Construct.getActivePath().push_front(Note); |
| } |
| } |
| |
| if (PDC->shouldAddPathEdges()) { |
| // Add an edge to the start of the function. |
| // We'll prune it out later, but it helps make diagnostics more uniform. |
| const StackFrameContext *CalleeLC = |
| Construct.getLocationContextForActivePath()->getStackFrame(); |
| const Decl *D = CalleeLC->getDecl(); |
| addEdgeToPath(Construct.getActivePath(), PrevLoc, |
| PathDiagnosticLocation::createBegin(D, SM)); |
| } |
| |
| |
| // Finally, prune the diagnostic path of uninteresting stuff. |
| if (!Construct.PD->path.empty()) { |
| if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { |
| bool stillHasNotes = |
| removeUnneededCalls(Construct, Construct.getMutablePieces(), R); |
| assert(stillHasNotes); |
| (void)stillHasNotes; |
| } |
| |
| // Remove pop-up notes if needed. |
| if (!Opts.ShouldAddPopUpNotes) |
| removePopUpNotes(Construct.getMutablePieces()); |
| |
| // Redirect all call pieces to have valid locations. |
| adjustCallLocations(Construct.getMutablePieces()); |
| removePiecesWithInvalidLocations(Construct.getMutablePieces()); |
| |
| if (PDC->shouldAddPathEdges()) { |
| |
| // Reduce the number of edges from a very conservative set |
| // to an aesthetically pleasing subset that conveys the |
| // necessary information. |
| OptimizedCallsSet OCS; |
| while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) { |
| } |
| |
| // Drop the very first function-entry edge. It's not really necessary |
| // for top-level functions. |
| dropFunctionEntryEdge(Construct, Construct.getMutablePieces()); |
| } |
| |
| // Remove messages that are basically the same, and edges that may not |
| // make sense. |
| // We have to do this after edge optimization in the Extensive mode. |
| removeRedundantMsgs(Construct.getMutablePieces()); |
| removeEdgesToDefaultInitializers(Construct.getMutablePieces()); |
| } |
| |
| if (Opts.ShouldDisplayMacroExpansions) |
| CompactMacroExpandedPieces(Construct.getMutablePieces(), SM); |
| |
| return std::move(Construct.PD); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugType and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| void BugType::anchor() {} |
| |
| void BuiltinBug::anchor() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReport and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| LLVM_ATTRIBUTE_USED static bool |
| isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) { |
| for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) { |
| if (Pair.second == CheckerName) |
| return true; |
| } |
| return false; |
| } |
| |
| LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry, |
| StringRef CheckerName) { |
| for (const CheckerInfo &Checker : Registry.Checkers) { |
| if (Checker.FullName == CheckerName) |
| return Checker.IsHidden; |
| } |
| llvm_unreachable( |
| "Checker name not found in CheckerRegistry -- did you retrieve it " |
| "correctly from CheckerManager::getCurrentCheckerName?"); |
| } |
| |
| PathSensitiveBugReport::PathSensitiveBugReport( |
| const BugType &bt, StringRef shortDesc, StringRef desc, |
| const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique, |
| const Decl *DeclToUnique) |
| : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode), |
| ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()), |
| UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) { |
| assert(!isDependency(ErrorNode->getState() |
| ->getAnalysisManager() |
| .getCheckerManager() |
| ->getCheckerRegistryData(), |
| bt.getCheckerName()) && |
| "Some checkers depend on this one! We don't allow dependency " |
| "checkers to emit warnings, because checkers should depend on " |
| "*modeling*, not *diagnostics*."); |
| |
| assert( |
| (bt.getCheckerName().startswith("debug") || |
| !isHidden(ErrorNode->getState() |
| ->getAnalysisManager() |
| .getCheckerManager() |
| ->getCheckerRegistryData(), |
| bt.getCheckerName())) && |
| "Hidden checkers musn't emit diagnostics as they are by definition " |
| "non-user facing!"); |
| } |
| |
| void PathSensitiveBugReport::addVisitor( |
| std::unique_ptr<BugReporterVisitor> visitor) { |
| if (!visitor) |
| return; |
| |
| llvm::FoldingSetNodeID ID; |
| visitor->Profile(ID); |
| |
| void *InsertPos = nullptr; |
| if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { |
| return; |
| } |
| |
| Callbacks.push_back(std::move(visitor)); |
| } |
| |
| void PathSensitiveBugReport::clearVisitors() { |
| Callbacks.clear(); |
| } |
| |
| const Decl *PathSensitiveBugReport::getDeclWithIssue() const { |
| const ExplodedNode *N = getErrorNode(); |
| if (!N) |
| return nullptr; |
| |
| const LocationContext *LC = N->getLocationContext(); |
| return LC->getStackFrame()->getDecl(); |
| } |
| |
| void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const { |
| hash.AddInteger(static_cast<int>(getKind())); |
| hash.AddPointer(&BT); |
| hash.AddString(Description); |
| assert(Location.isValid()); |
| Location.Profile(hash); |
| |
| for (SourceRange range : Ranges) { |
| if (!range.isValid()) |
| continue; |
| hash.Add(range.getBegin()); |
| hash.Add(range.getEnd()); |
| } |
| } |
| |
| void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const { |
| hash.AddInteger(static_cast<int>(getKind())); |
| hash.AddPointer(&BT); |
| hash.AddString(Description); |
| PathDiagnosticLocation UL = getUniqueingLocation(); |
| if (UL.isValid()) { |
| UL.Profile(hash); |
| } else { |
| // TODO: The statement may be null if the report was emitted before any |
| // statements were executed. In particular, some checkers by design |
| // occasionally emit their reports in empty functions (that have no |
| // statements in their body). Do we profile correctly in this case? |
| hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics()); |
| } |
| |
| for (SourceRange range : Ranges) { |
| if (!range.isValid()) |
| continue; |
| hash.Add(range.getBegin()); |
| hash.Add(range.getEnd()); |
| } |
| } |
| |
| template <class T> |
| static void insertToInterestingnessMap( |
| llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val, |
| bugreporter::TrackingKind TKind) { |
| auto Result = InterestingnessMap.insert({Val, TKind}); |
| |
| if (Result.second) |
| return; |
| |
| // Even if this symbol/region was already marked as interesting as a |
| // condition, if we later mark it as interesting again but with |
| // thorough tracking, overwrite it. Entities marked with thorough |
| // interestiness are the most important (or most interesting, if you will), |
| // and we wouldn't like to downplay their importance. |
| |
| switch (TKind) { |
| case bugreporter::TrackingKind::Thorough: |
| Result.first->getSecond() = bugreporter::TrackingKind::Thorough; |
| return; |
| case bugreporter::TrackingKind::Condition: |
| return; |
| } |
| |
| llvm_unreachable( |
| "BugReport::markInteresting currently can only handle 2 different " |
| "tracking kinds! Please define what tracking kind should this entitiy" |
| "have, if it was already marked as interesting with a different kind!"); |
| } |
| |
| void PathSensitiveBugReport::markInteresting(SymbolRef sym, |
| bugreporter::TrackingKind TKind) { |
| if (!sym) |
| return; |
| |
| insertToInterestingnessMap(InterestingSymbols, sym, TKind); |
| |
| // FIXME: No tests exist for this code and it is questionable: |
| // How to handle multiple metadata for the same region? |
| if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) |
| markInteresting(meta->getRegion(), TKind); |
| } |
| |
| void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) { |
| if (!sym) |
| return; |
| InterestingSymbols.erase(sym); |
| |
| // The metadata part of markInteresting is not reversed here. |
| // Just making the same region not interesting is incorrect |
| // in specific cases. |
| if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) |
| markNotInteresting(meta->getRegion()); |
| } |
| |
| void PathSensitiveBugReport::markInteresting(const MemRegion *R, |
| bugreporter::TrackingKind TKind) { |
| if (!R) |
| return; |
| |
| R = R->getBaseRegion(); |
| insertToInterestingnessMap(InterestingRegions, R, TKind); |
| |
| if (const auto *SR = dyn_cast<SymbolicRegion>(R)) |
| markInteresting(SR->getSymbol(), TKind); |
| } |
| |
| void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) { |
| if (!R) |
| return; |
| |
| R = R->getBaseRegion(); |
| InterestingRegions.erase(R); |
| |
| if (const auto *SR = dyn_cast<SymbolicRegion>(R)) |
| markNotInteresting(SR->getSymbol()); |
| } |
| |
| void PathSensitiveBugReport::markInteresting(SVal V, |
| bugreporter::TrackingKind TKind) { |
| markInteresting(V.getAsRegion(), TKind); |
| markInteresting(V.getAsSymbol(), TKind); |
| } |
| |
| void PathSensitiveBugReport::markInteresting(const LocationContext *LC) { |
| if (!LC) |
| return; |
| InterestingLocationContexts.insert(LC); |
| } |
| |
| Optional<bugreporter::TrackingKind> |
| PathSensitiveBugReport::getInterestingnessKind(SVal V) const { |
| auto RKind = getInterestingnessKind(V.getAsRegion()); |
| auto SKind = getInterestingnessKind(V.getAsSymbol()); |
| if (!RKind) |
| return SKind; |
| if (!SKind) |
| return RKind; |
| |
| // If either is marked with throrough tracking, return that, we wouldn't like |
| // to downplay a note's importance by 'only' mentioning it as a condition. |
| switch(*RKind) { |
| case bugreporter::TrackingKind::Thorough: |
| return RKind; |
| case bugreporter::TrackingKind::Condition: |
| return SKind; |
| } |
| |
| llvm_unreachable( |
| "BugReport::getInterestingnessKind currently can only handle 2 different " |
| "tracking kinds! Please define what tracking kind should we return here " |
| "when the kind of getAsRegion() and getAsSymbol() is different!"); |
| return None; |
| } |
| |
| Optional<bugreporter::TrackingKind> |
| PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const { |
| if (!sym) |
| return None; |
| // We don't currently consider metadata symbols to be interesting |
| // even if we know their region is interesting. Is that correct behavior? |
| auto It = InterestingSymbols.find(sym); |
| if (It == InterestingSymbols.end()) |
| return None; |
| return It->getSecond(); |
| } |
| |
| Optional<bugreporter::TrackingKind> |
| PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const { |
| if (!R) |
| return None; |
| |
| R = R->getBaseRegion(); |
| auto It = InterestingRegions.find(R); |
| if (It != InterestingRegions.end()) |
| return It->getSecond(); |
| |
| if (const auto *SR = dyn_cast<SymbolicRegion>(R)) |
| return getInterestingnessKind(SR->getSymbol()); |
| return None; |
| } |
| |
| bool PathSensitiveBugReport::isInteresting(SVal V) const { |
| return getInterestingnessKind(V).hasValue(); |
| } |
| |
| bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const { |
| return getInterestingnessKind(sym).hasValue(); |
| } |
| |
| bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const { |
| return getInterestingnessKind(R).hasValue(); |
| } |
| |
| bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const { |
| if (!LC) |
| return false; |
| return InterestingLocationContexts.count(LC); |
| } |
| |
| const Stmt *PathSensitiveBugReport::getStmt() const { |
| if (!ErrorNode) |
| return nullptr; |
| |
| ProgramPoint ProgP = ErrorNode->getLocation(); |
| const Stmt *S = nullptr; |
| |
| if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { |
| CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); |
| if (BE->getBlock() == &Exit) |
| S = ErrorNode->getPreviousStmtForDiagnostics(); |
| } |
| if (!S) |
| S = ErrorNode->getStmtForDiagnostics(); |
| |
| return S; |
| } |
| |
| ArrayRef<SourceRange> |
| PathSensitiveBugReport::getRanges() const { |
| // If no custom ranges, add the range of the statement corresponding to |
| // the error node. |
| if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt())) |
| return ErrorNodeRange; |
| |
| return Ranges; |
| } |
| |
| PathDiagnosticLocation |
| PathSensitiveBugReport::getLocation() const { |
| assert(ErrorNode && "Cannot create a location with a null node."); |
| const Stmt *S = ErrorNode->getStmtForDiagnostics(); |
| ProgramPoint P = ErrorNode->getLocation(); |
| const LocationContext *LC = P.getLocationContext(); |
| SourceManager &SM = |
| ErrorNode->getState()->getStateManager().getContext().getSourceManager(); |
| |
| if (!S) { |
| // If this is an implicit call, return the implicit call point location. |
| if (Optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>()) |
| return PathDiagnosticLocation(PIE->getLocation(), SM); |
| if (auto FE = P.getAs<FunctionExitPoint>()) { |
| if (const ReturnStmt *RS = FE->getStmt()) |
| return PathDiagnosticLocation::createBegin(RS, SM, LC); |
| } |
| S = ErrorNode->getNextStmtForDiagnostics(); |
| } |
| |
| if (S) { |
| // For member expressions, return the location of the '.' or '->'. |
| if (const auto *ME = dyn_cast<MemberExpr>(S)) |
| return PathDiagnosticLocation::createMemberLoc(ME, SM); |
| |
| // For binary operators, return the location of the operator. |
| if (const auto *B = dyn_cast<BinaryOperator>(S)) |
| return PathDiagnosticLocation::createOperatorLoc(B, SM); |
| |
| if (P.getAs<PostStmtPurgeDeadSymbols>()) |
| return PathDiagnosticLocation::createEnd(S, SM, LC); |
| |
| if (S->getBeginLoc().isValid()) |
| return PathDiagnosticLocation(S, SM, LC); |
| |
| return PathDiagnosticLocation( |
| PathDiagnosticLocation::getValidSourceLocation(S, LC), SM); |
| } |
| |
| return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(), |
| SM); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReporter and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| const ExplodedGraph &PathSensitiveBugReporter::getGraph() const { |
| return Eng.getGraph(); |
| } |
| |
| ProgramStateManager &PathSensitiveBugReporter::getStateManager() const { |
| return Eng.getStateManager(); |
| } |
| |
| BugReporter::BugReporter(BugReporterData &d) : D(d) {} |
| BugReporter::~BugReporter() { |
| // Make sure reports are flushed. |
| assert(StrBugTypes.empty() && |
| "Destroying BugReporter before diagnostics are emitted!"); |
| |
| // Free the bug reports we are tracking. |
| for (const auto I : EQClassesVector) |
| delete I; |
| } |
| |
| void BugReporter::FlushReports() { |
| // We need to flush reports in deterministic order to ensure the order |
| // of the reports is consistent between runs. |
| for (const auto EQ : EQClassesVector) |
| FlushReport(*EQ); |
| |
| // BugReporter owns and deletes only BugTypes created implicitly through |
| // EmitBasicReport. |
| // FIXME: There are leaks from checkers that assume that the BugTypes they |
| // create will be destroyed by the BugReporter. |
| StrBugTypes.clear(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnostics generation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// A wrapper around an ExplodedGraph that contains a single path from the root |
| /// to the error node. |
| class BugPathInfo { |
| public: |
| std::unique_ptr<ExplodedGraph> BugPath; |
| PathSensitiveBugReport *Report; |
| const ExplodedNode *ErrorNode; |
| }; |
| |
| /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can |
| /// conveniently retrieve bug paths from a single error node to the root. |
| class BugPathGetter { |
| std::unique_ptr<ExplodedGraph> TrimmedGraph; |
| |
| using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; |
| |
| /// Assign each node with its distance from the root. |
| PriorityMapTy PriorityMap; |
| |
| /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph, |
| /// we need to pair it to the error node of the constructed trimmed graph. |
| using ReportNewNodePair = |
| std::pair<PathSensitiveBugReport *, const ExplodedNode *>; |
| SmallVector<ReportNewNodePair, 32> ReportNodes; |
| |
| BugPathInfo CurrentBugPath; |
| |
| /// A helper class for sorting ExplodedNodes by priority. |
| template <bool Descending> |
| class PriorityCompare { |
| const PriorityMapTy &PriorityMap; |
| |
| public: |
| PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} |
| |
| bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { |
| PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); |
| PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); |
| PriorityMapTy::const_iterator E = PriorityMap.end(); |
| |
| if (LI == E) |
| return Descending; |
| if (RI == E) |
| return !Descending; |
| |
| return Descending ? LI->second > RI->second |
| : LI->second < RI->second; |
| } |
| |
| bool operator()(const ReportNewNodePair &LHS, |
| const ReportNewNodePair &RHS) const { |
| return (*this)(LHS.second, RHS.second); |
| } |
| }; |
| |
| public: |
| BugPathGetter(const ExplodedGraph *OriginalGraph, |
| ArrayRef<PathSensitiveBugReport *> &bugReports); |
| |
| BugPathInfo *getNextBugPath(); |
| }; |
| |
| } // namespace |
| |
| BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph, |
| ArrayRef<PathSensitiveBugReport *> &bugReports) { |
| SmallVector<const ExplodedNode *, 32> Nodes; |
| for (const auto I : bugReports) { |
| assert(I->isValid() && |
| "We only allow BugReporterVisitors and BugReporter itself to " |
| "invalidate reports!"); |
| Nodes.emplace_back(I->getErrorNode()); |
| } |
| |
| // The trimmed graph is created in the body of the constructor to ensure |
| // that the DenseMaps have been initialized already. |
| InterExplodedGraphMap ForwardMap; |
| TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap); |
| |
| // Find the (first) error node in the trimmed graph. We just need to consult |
| // the node map which maps from nodes in the original graph to nodes |
| // in the new graph. |
| llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; |
| |
| for (PathSensitiveBugReport *Report : bugReports) { |
| const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode()); |
| assert(NewNode && |
| "Failed to construct a trimmed graph that contains this error " |
| "node!"); |
| ReportNodes.emplace_back(Report, NewNode); |
| RemainingNodes.insert(NewNode); |
| } |
| |
| assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); |
| |
| // Perform a forward BFS to find all the shortest paths. |
| std::queue<const ExplodedNode *> WS; |
| |
| assert(TrimmedGraph->num_roots() == 1); |
| WS.push(*TrimmedGraph->roots_begin()); |
| unsigned Priority = 0; |
| |
| while (!WS.empty()) { |
| const ExplodedNode *Node = WS.front(); |
| WS.pop(); |
| |
| PriorityMapTy::iterator PriorityEntry; |
| bool IsNew; |
| std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority}); |
| ++Priority; |
| |
| if (!IsNew) { |
| assert(PriorityEntry->second <= Priority); |
| continue; |
| } |
| |
| if (RemainingNodes.erase(Node)) |
| if (RemainingNodes.empty()) |
| break; |
| |
| for (const ExplodedNode *Succ : Node->succs()) |
| WS.push(Succ); |
| } |
| |
| // Sort the error paths from longest to shortest. |
| llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap)); |
| } |
| |
| BugPathInfo *BugPathGetter::getNextBugPath() { |
| if (ReportNodes.empty()) |
| return nullptr; |
| |
| const ExplodedNode *OrigN; |
| std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val(); |
| assert(PriorityMap.find(OrigN) != PriorityMap.end() && |
| "error node not accessible from root"); |
| |
| // Create a new graph with a single path. This is the graph that will be |
| // returned to the caller. |
| auto GNew = std::make_unique<ExplodedGraph>(); |
| |
| // Now walk from the error node up the BFS path, always taking the |
| // predeccessor with the lowest number. |
| ExplodedNode *Succ = nullptr; |
| while (true) { |
| // Create the equivalent node in the new graph with the same state |
| // and location. |
| ExplodedNode *NewN = GNew->createUncachedNode( |
| OrigN->getLocation(), OrigN->getState(), |
| OrigN->getID(), OrigN->isSink()); |
| |
| // Link up the new node with the previous node. |
| if (Succ) |
| Succ->addPredecessor(NewN, *GNew); |
| else |
| CurrentBugPath.ErrorNode = NewN; |
| |
| Succ = NewN; |
| |
| // Are we at the final node? |
| if (OrigN->pred_empty()) { |
| GNew->addRoot(NewN); |
| break; |
| } |
| |
| // Find the next predeccessor node. We choose the node that is marked |
| // with the lowest BFS number. |
| OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), |
| PriorityCompare<false>(PriorityMap)); |
| } |
| |
| CurrentBugPath.BugPath = std::move(GNew); |
| |
| return &CurrentBugPath; |
| } |
| |
| /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic |
| /// object and collapses PathDiagosticPieces that are expanded by macros. |
| static void CompactMacroExpandedPieces(PathPieces &path, |
| const SourceManager& SM) { |
| using MacroStackTy = std::vector< |
| std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; |
| |
| using PiecesTy = std::vector<PathDiagnosticPieceRef>; |
| |
| MacroStackTy MacroStack; |
| PiecesTy Pieces; |
| |
| for (PathPieces::const_iterator I = path.begin(), E = path.end(); |
| I != E; ++I) { |
| const auto &piece = *I; |
| |
| // Recursively compact calls. |
| if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { |
| CompactMacroExpandedPieces(call->path, SM); |
| } |
| |
| // Get the location of the PathDiagnosticPiece. |
| const FullSourceLoc Loc = piece->getLocation().asLocation(); |
| |
| // Determine the instantiation location, which is the location we group |
| // related PathDiagnosticPieces. |
| SourceLocation InstantiationLoc = Loc.isMacroID() ? |
| SM.getExpansionLoc(Loc) : |
| SourceLocation(); |
| |
| if (Loc.isFileID()) { |
| MacroStack.clear(); |
| Pieces.push_back(piece); |
| continue; |
| } |
| |
| assert(Loc.isMacroID()); |
| |
| // Is the PathDiagnosticPiece within the same macro group? |
| if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { |
| MacroStack.back().first->subPieces.push_back(piece); |
| continue; |
| } |
| |
| // We aren't in the same group. Are we descending into a new macro |
| // or are part of an old one? |
| std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; |
| |
| SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? |
| SM.getExpansionLoc(Loc) : |
| SourceLocation(); |
| |
| // Walk the entire macro stack. |
| while (!MacroStack.empty()) { |
| if (InstantiationLoc == MacroStack.back().second) { |
| MacroGroup = MacroStack.back().first; |
| break; |
| } |
| |
| if (ParentInstantiationLoc == MacroStack.back().second) { |
| MacroGroup = MacroStack.back().first; |
| break; |
| } |
| |
| MacroStack.pop_back(); |
| } |
| |
| if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { |
| // Create a new macro group and add it to the stack. |
| auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( |
| PathDiagnosticLocation::createSingleLocation(piece->getLocation())); |
| |
| if (MacroGroup) |
| MacroGroup->subPieces.push_back(NewGroup); |
| else { |
| assert(InstantiationLoc.isFileID()); |
| Pieces.push_back(NewGroup); |
| } |
| |
| MacroGroup = NewGroup; |
| MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); |
| } |
| |
| // Finally, add the PathDiagnosticPiece to the group. |
| MacroGroup->subPieces.push_back(piece); |
| } |
| |
| // Now take the pieces and construct a new PathDiagnostic. |
| path.clear(); |
| |
| path.insert(path.end(), Pieces.begin(), Pieces.end()); |
| } |
| |
| /// Generate notes from all visitors. |
| /// Notes associated with @c ErrorNode are generated using |
| /// @c getEndPath, and the rest are generated with @c VisitNode. |
| static std::unique_ptr<VisitorsDiagnosticsTy> |
| generateVisitorsDiagnostics(PathSensitiveBugReport *R, |
| const ExplodedNode *ErrorNode, |
| BugReporterContext &BRC) { |
| std::unique_ptr<VisitorsDiagnosticsTy> Notes = |
| std::make_unique<VisitorsDiagnosticsTy>(); |
| PathSensitiveBugReport::VisitorList visitors; |
| |
| // Run visitors on all nodes starting from the node *before* the last one. |
| // The last node is reserved for notes generated with @c getEndPath. |
| const ExplodedNode *NextNode = ErrorNode->getFirstPred(); |
| while (NextNode) { |
| |
| // At each iteration, move all visitors from report to visitor list. This is |
| // important, because the Profile() functions of the visitors make sure that |
| // a visitor isn't added multiple times for the same node, but it's fine |
| // to add the a visitor with Profile() for different nodes (e.g. tracking |
| // a region at different points of the symbolic execution). |
| for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors()) |
| visitors.push_back(std::move(Visitor)); |
| |
| R->clearVisitors(); |
| |
| const ExplodedNode *Pred = NextNode->getFirstPred(); |
| if (!Pred) { |
| PathDiagnosticPieceRef LastPiece; |
| for (auto &V : visitors) { |
| V->finalizeVisitor(BRC, ErrorNode, *R); |
| |
| if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { |
| assert(!LastPiece && |
| "There can only be one final piece in a diagnostic."); |
| assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event && |
| "The final piece must contain a message!"); |
| LastPiece = std::move(Piece); |
| (*Notes)[ErrorNode].push_back(LastPiece); |
| } |
| } |
| break; |
| } |
| |
| for (auto &V : visitors) { |
| auto P = V->VisitNode(NextNode, BRC, *R); |
| if (P) |
| (*Notes)[NextNode].push_back(std::move(P)); |
| } |
| |
| if (!R->isValid()) |
| break; |
| |
| NextNode = Pred; |
| } |
| |
| return Notes; |
| } |
| |
| Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport( |
|