| //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Preprocessor interface. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Options to support: |
| // -H - Print the name of each header file used. |
| // -d[DNI] - Dump various things. |
| // -fworking-directory - #line's with preprocessor's working dir. |
| // -fpreprocessed |
| // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD |
| // -W* |
| // -w |
| // |
| // Messages to emit: |
| // "Multiple include guards may be useful for:\n" |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/FileSystemStatCache.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/Module.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/CodeCompletionHandler.h" |
| #include "clang/Lex/ExternalPreprocessorSource.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/LexDiagnostic.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/MacroArgs.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Lex/ModuleLoader.h" |
| #include "clang/Lex/Pragma.h" |
| #include "clang/Lex/PreprocessingRecord.h" |
| #include "clang/Lex/PreprocessorLexer.h" |
| #include "clang/Lex/PreprocessorOptions.h" |
| #include "clang/Lex/ScratchBuffer.h" |
| #include "clang/Lex/Token.h" |
| #include "clang/Lex/TokenLexer.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/Capacity.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace clang; |
| |
| LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) |
| |
| ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; |
| |
| Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, |
| DiagnosticsEngine &diags, LangOptions &opts, |
| SourceManager &SM, HeaderSearch &Headers, |
| ModuleLoader &TheModuleLoader, |
| IdentifierInfoLookup *IILookup, bool OwnsHeaders, |
| TranslationUnitKind TUKind) |
| : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), |
| FileMgr(Headers.getFileMgr()), SourceMgr(SM), |
| ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), |
| TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), |
| // As the language options may have not been loaded yet (when |
| // deserializing an ASTUnit), adding keywords to the identifier table is |
| // deferred to Preprocessor::Initialize(). |
| Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), |
| TUKind(TUKind), SkipMainFilePreamble(0, true), |
| CurSubmoduleState(&NullSubmoduleState) { |
| OwnsHeaderSearch = OwnsHeaders; |
| |
| // Default to discarding comments. |
| KeepComments = false; |
| KeepMacroComments = false; |
| SuppressIncludeNotFoundError = false; |
| |
| // Macro expansion is enabled. |
| DisableMacroExpansion = false; |
| MacroExpansionInDirectivesOverride = false; |
| InMacroArgs = false; |
| ArgMacro = nullptr; |
| InMacroArgPreExpansion = false; |
| NumCachedTokenLexers = 0; |
| PragmasEnabled = true; |
| ParsingIfOrElifDirective = false; |
| PreprocessedOutput = false; |
| |
| // We haven't read anything from the external source. |
| ReadMacrosFromExternalSource = false; |
| |
| BuiltinInfo = std::make_unique<Builtin::Context>(); |
| |
| // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of |
| // a macro. They get unpoisoned where it is allowed. |
| (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); |
| SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); |
| (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); |
| SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); |
| |
| // Initialize the pragma handlers. |
| RegisterBuiltinPragmas(); |
| |
| // Initialize builtin macros like __LINE__ and friends. |
| RegisterBuiltinMacros(); |
| |
| if(LangOpts.Borland) { |
| Ident__exception_info = getIdentifierInfo("_exception_info"); |
| Ident___exception_info = getIdentifierInfo("__exception_info"); |
| Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); |
| Ident__exception_code = getIdentifierInfo("_exception_code"); |
| Ident___exception_code = getIdentifierInfo("__exception_code"); |
| Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); |
| Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); |
| Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); |
| Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); |
| } else { |
| Ident__exception_info = Ident__exception_code = nullptr; |
| Ident__abnormal_termination = Ident___exception_info = nullptr; |
| Ident___exception_code = Ident___abnormal_termination = nullptr; |
| Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; |
| Ident_AbnormalTermination = nullptr; |
| } |
| |
| // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. |
| if (usingPCHWithPragmaHdrStop()) |
| SkippingUntilPragmaHdrStop = true; |
| |
| // If using a PCH with a through header, start skipping tokens. |
| if (!this->PPOpts->PCHThroughHeader.empty() && |
| !this->PPOpts->ImplicitPCHInclude.empty()) |
| SkippingUntilPCHThroughHeader = true; |
| |
| if (this->PPOpts->GeneratePreamble) |
| PreambleConditionalStack.startRecording(); |
| |
| ExcludedConditionalDirectiveSkipMappings = |
| this->PPOpts->ExcludedConditionalDirectiveSkipMappings; |
| if (ExcludedConditionalDirectiveSkipMappings) |
| ExcludedConditionalDirectiveSkipMappings->clear(); |
| |
| MaxTokens = LangOpts.MaxTokens; |
| } |
| |
| Preprocessor::~Preprocessor() { |
| assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); |
| |
| IncludeMacroStack.clear(); |
| |
| // Destroy any macro definitions. |
| while (MacroInfoChain *I = MIChainHead) { |
| MIChainHead = I->Next; |
| I->~MacroInfoChain(); |
| } |
| |
| // Free any cached macro expanders. |
| // This populates MacroArgCache, so all TokenLexers need to be destroyed |
| // before the code below that frees up the MacroArgCache list. |
| std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); |
| CurTokenLexer.reset(); |
| |
| // Free any cached MacroArgs. |
| for (MacroArgs *ArgList = MacroArgCache; ArgList;) |
| ArgList = ArgList->deallocate(); |
| |
| // Delete the header search info, if we own it. |
| if (OwnsHeaderSearch) |
| delete &HeaderInfo; |
| } |
| |
| void Preprocessor::Initialize(const TargetInfo &Target, |
| const TargetInfo *AuxTarget) { |
| assert((!this->Target || this->Target == &Target) && |
| "Invalid override of target information"); |
| this->Target = &Target; |
| |
| assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && |
| "Invalid override of aux target information."); |
| this->AuxTarget = AuxTarget; |
| |
| // Initialize information about built-ins. |
| BuiltinInfo->InitializeTarget(Target, AuxTarget); |
| HeaderInfo.setTarget(Target); |
| |
| // Populate the identifier table with info about keywords for the current language. |
| Identifiers.AddKeywords(LangOpts); |
| } |
| |
| void Preprocessor::InitializeForModelFile() { |
| NumEnteredSourceFiles = 0; |
| |
| // Reset pragmas |
| PragmaHandlersBackup = std::move(PragmaHandlers); |
| PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef()); |
| RegisterBuiltinPragmas(); |
| |
| // Reset PredefinesFileID |
| PredefinesFileID = FileID(); |
| } |
| |
| void Preprocessor::FinalizeForModelFile() { |
| NumEnteredSourceFiles = 1; |
| |
| PragmaHandlers = std::move(PragmaHandlersBackup); |
| } |
| |
| void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { |
| llvm::errs() << tok::getTokenName(Tok.getKind()) << " '" |
| << getSpelling(Tok) << "'"; |
| |
| if (!DumpFlags) return; |
| |
| llvm::errs() << "\t"; |
| if (Tok.isAtStartOfLine()) |
| llvm::errs() << " [StartOfLine]"; |
| if (Tok.hasLeadingSpace()) |
| llvm::errs() << " [LeadingSpace]"; |
| if (Tok.isExpandDisabled()) |
| llvm::errs() << " [ExpandDisabled]"; |
| if (Tok.needsCleaning()) { |
| const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); |
| llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) |
| << "']"; |
| } |
| |
| llvm::errs() << "\tLoc=<"; |
| DumpLocation(Tok.getLocation()); |
| llvm::errs() << ">"; |
| } |
| |
| void Preprocessor::DumpLocation(SourceLocation Loc) const { |
| Loc.print(llvm::errs(), SourceMgr); |
| } |
| |
| void Preprocessor::DumpMacro(const MacroInfo &MI) const { |
| llvm::errs() << "MACRO: "; |
| for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { |
| DumpToken(MI.getReplacementToken(i)); |
| llvm::errs() << " "; |
| } |
| llvm::errs() << "\n"; |
| } |
| |
| void Preprocessor::PrintStats() { |
| llvm::errs() << "\n*** Preprocessor Stats:\n"; |
| llvm::errs() << NumDirectives << " directives found:\n"; |
| llvm::errs() << " " << NumDefined << " #define.\n"; |
| llvm::errs() << " " << NumUndefined << " #undef.\n"; |
| llvm::errs() << " #include/#include_next/#import:\n"; |
| llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; |
| llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; |
| llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; |
| llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; |
| llvm::errs() << " " << NumEndif << " #endif.\n"; |
| llvm::errs() << " " << NumPragma << " #pragma.\n"; |
| llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; |
| |
| llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" |
| << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " |
| << NumFastMacroExpanded << " on the fast path.\n"; |
| llvm::errs() << (NumFastTokenPaste+NumTokenPaste) |
| << " token paste (##) operations performed, " |
| << NumFastTokenPaste << " on the fast path.\n"; |
| |
| llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; |
| |
| llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); |
| llvm::errs() << "\n Macro Expanded Tokens: " |
| << llvm::capacity_in_bytes(MacroExpandedTokens); |
| llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); |
| // FIXME: List information for all submodules. |
| llvm::errs() << "\n Macros: " |
| << llvm::capacity_in_bytes(CurSubmoduleState->Macros); |
| llvm::errs() << "\n #pragma push_macro Info: " |
| << llvm::capacity_in_bytes(PragmaPushMacroInfo); |
| llvm::errs() << "\n Poison Reasons: " |
| << llvm::capacity_in_bytes(PoisonReasons); |
| llvm::errs() << "\n Comment Handlers: " |
| << llvm::capacity_in_bytes(CommentHandlers) << "\n"; |
| } |
| |
| Preprocessor::macro_iterator |
| Preprocessor::macro_begin(bool IncludeExternalMacros) const { |
| if (IncludeExternalMacros && ExternalSource && |
| !ReadMacrosFromExternalSource) { |
| ReadMacrosFromExternalSource = true; |
| ExternalSource->ReadDefinedMacros(); |
| } |
| |
| // Make sure we cover all macros in visible modules. |
| for (const ModuleMacro &Macro : ModuleMacros) |
| CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); |
| |
| return CurSubmoduleState->Macros.begin(); |
| } |
| |
| size_t Preprocessor::getTotalMemory() const { |
| return BP.getTotalMemory() |
| + llvm::capacity_in_bytes(MacroExpandedTokens) |
| + Predefines.capacity() /* Predefines buffer. */ |
| // FIXME: Include sizes from all submodules, and include MacroInfo sizes, |
| // and ModuleMacros. |
| + llvm::capacity_in_bytes(CurSubmoduleState->Macros) |
| + llvm::capacity_in_bytes(PragmaPushMacroInfo) |
| + llvm::capacity_in_bytes(PoisonReasons) |
| + llvm::capacity_in_bytes(CommentHandlers); |
| } |
| |
| Preprocessor::macro_iterator |
| Preprocessor::macro_end(bool IncludeExternalMacros) const { |
| if (IncludeExternalMacros && ExternalSource && |
| !ReadMacrosFromExternalSource) { |
| ReadMacrosFromExternalSource = true; |
| ExternalSource->ReadDefinedMacros(); |
| } |
| |
| return CurSubmoduleState->Macros.end(); |
| } |
| |
| /// Compares macro tokens with a specified token value sequence. |
| static bool MacroDefinitionEquals(const MacroInfo *MI, |
| ArrayRef<TokenValue> Tokens) { |
| return Tokens.size() == MI->getNumTokens() && |
| std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); |
| } |
| |
| StringRef Preprocessor::getLastMacroWithSpelling( |
| SourceLocation Loc, |
| ArrayRef<TokenValue> Tokens) const { |
| SourceLocation BestLocation; |
| StringRef BestSpelling; |
| for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); |
| I != E; ++I) { |
| const MacroDirective::DefInfo |
| Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); |
| if (!Def || !Def.getMacroInfo()) |
| continue; |
| if (!Def.getMacroInfo()->isObjectLike()) |
| continue; |
| if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) |
| continue; |
| SourceLocation Location = Def.getLocation(); |
| // Choose the macro defined latest. |
| if (BestLocation.isInvalid() || |
| (Location.isValid() && |
| SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { |
| BestLocation = Location; |
| BestSpelling = I->first->getName(); |
| } |
| } |
| return BestSpelling; |
| } |
| |
| void Preprocessor::recomputeCurLexerKind() { |
| if (CurLexer) |
| CurLexerKind = CLK_Lexer; |
| else if (CurTokenLexer) |
| CurLexerKind = CLK_TokenLexer; |
| else |
| CurLexerKind = CLK_CachingLexer; |
| } |
| |
| bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File, |
| unsigned CompleteLine, |
| unsigned CompleteColumn) { |
| assert(File); |
| assert(CompleteLine && CompleteColumn && "Starts from 1:1"); |
| assert(!CodeCompletionFile && "Already set"); |
| |
| // Load the actual file's contents. |
| Optional<llvm::MemoryBufferRef> Buffer = |
| SourceMgr.getMemoryBufferForFileOrNone(File); |
| if (!Buffer) |
| return true; |
| |
| // Find the byte position of the truncation point. |
| const char *Position = Buffer->getBufferStart(); |
| for (unsigned Line = 1; Line < CompleteLine; ++Line) { |
| for (; *Position; ++Position) { |
| if (*Position != '\r' && *Position != '\n') |
| continue; |
| |
| // Eat \r\n or \n\r as a single line. |
| if ((Position[1] == '\r' || Position[1] == '\n') && |
| Position[0] != Position[1]) |
| ++Position; |
| ++Position; |
| break; |
| } |
| } |
| |
| Position += CompleteColumn - 1; |
| |
| // If pointing inside the preamble, adjust the position at the beginning of |
| // the file after the preamble. |
| if (SkipMainFilePreamble.first && |
| SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { |
| if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) |
| Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; |
| } |
| |
| if (Position > Buffer->getBufferEnd()) |
| Position = Buffer->getBufferEnd(); |
| |
| CodeCompletionFile = File; |
| CodeCompletionOffset = Position - Buffer->getBufferStart(); |
| |
| auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( |
| Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); |
| char *NewBuf = NewBuffer->getBufferStart(); |
| char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); |
| *NewPos = '\0'; |
| std::copy(Position, Buffer->getBufferEnd(), NewPos+1); |
| SourceMgr.overrideFileContents(File, std::move(NewBuffer)); |
| |
| return false; |
| } |
| |
| void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, |
| bool IsAngled) { |
| setCodeCompletionReached(); |
| if (CodeComplete) |
| CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); |
| } |
| |
| void Preprocessor::CodeCompleteNaturalLanguage() { |
| setCodeCompletionReached(); |
| if (CodeComplete) |
| CodeComplete->CodeCompleteNaturalLanguage(); |
| } |
| |
| /// getSpelling - This method is used to get the spelling of a token into a |
| /// SmallVector. Note that the returned StringRef may not point to the |
| /// supplied buffer if a copy can be avoided. |
| StringRef Preprocessor::getSpelling(const Token &Tok, |
| SmallVectorImpl<char> &Buffer, |
| bool *Invalid) const { |
| // NOTE: this has to be checked *before* testing for an IdentifierInfo. |
| if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { |
| // Try the fast path. |
| if (const IdentifierInfo *II = Tok.getIdentifierInfo()) |
| return II->getName(); |
| } |
| |
| // Resize the buffer if we need to copy into it. |
| if (Tok.needsCleaning()) |
| Buffer.resize(Tok.getLength()); |
| |
| const char *Ptr = Buffer.data(); |
| unsigned Len = getSpelling(Tok, Ptr, Invalid); |
| return StringRef(Ptr, Len); |
| } |
| |
| /// CreateString - Plop the specified string into a scratch buffer and return a |
| /// location for it. If specified, the source location provides a source |
| /// location for the token. |
| void Preprocessor::CreateString(StringRef Str, Token &Tok, |
| SourceLocation ExpansionLocStart, |
| SourceLocation ExpansionLocEnd) { |
| Tok.setLength(Str.size()); |
| |
| const char *DestPtr; |
| SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); |
| |
| if (ExpansionLocStart.isValid()) |
| Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, |
| ExpansionLocEnd, Str.size()); |
| Tok.setLocation(Loc); |
| |
| // If this is a raw identifier or a literal token, set the pointer data. |
| if (Tok.is(tok::raw_identifier)) |
| Tok.setRawIdentifierData(DestPtr); |
| else if (Tok.isLiteral()) |
| Tok.setLiteralData(DestPtr); |
| } |
| |
| SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { |
| auto &SM = getSourceManager(); |
| SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc); |
| bool Invalid = false; |
| StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
| if (Invalid) |
| return SourceLocation(); |
| |
| // FIXME: We could consider re-using spelling for tokens we see repeatedly. |
| const char *DestPtr; |
| SourceLocation Spelling = |
| ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); |
| return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); |
| } |
| |
| Module *Preprocessor::getCurrentModule() { |
| if (!getLangOpts().isCompilingModule()) |
| return nullptr; |
| |
| return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Initialization Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// EnterMainSourceFile - Enter the specified FileID as the main source file, |
| /// which implicitly adds the builtin defines etc. |
| void Preprocessor::EnterMainSourceFile() { |
| // We do not allow the preprocessor to reenter the main file. Doing so will |
| // cause FileID's to accumulate information from both runs (e.g. #line |
| // information) and predefined macros aren't guaranteed to be set properly. |
| assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); |
| FileID MainFileID = SourceMgr.getMainFileID(); |
| |
| // If MainFileID is loaded it means we loaded an AST file, no need to enter |
| // a main file. |
| if (!SourceMgr.isLoadedFileID(MainFileID)) { |
| // Enter the main file source buffer. |
| EnterSourceFile(MainFileID, nullptr, SourceLocation()); |
| |
| // If we've been asked to skip bytes in the main file (e.g., as part of a |
| // precompiled preamble), do so now. |
| if (SkipMainFilePreamble.first > 0) |
| CurLexer->SetByteOffset(SkipMainFilePreamble.first, |
| SkipMainFilePreamble.second); |
| |
| // Tell the header info that the main file was entered. If the file is later |
| // #imported, it won't be re-entered. |
| if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID)) |
| HeaderInfo.IncrementIncludeCount(FE); |
| } |
| |
| // Preprocess Predefines to populate the initial preprocessor state. |
| std::unique_ptr<llvm::MemoryBuffer> SB = |
| llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>"); |
| assert(SB && "Cannot create predefined source buffer"); |
| FileID FID = SourceMgr.createFileID(std::move(SB)); |
| assert(FID.isValid() && "Could not create FileID for predefines?"); |
| setPredefinesFileID(FID); |
| |
| // Start parsing the predefines. |
| EnterSourceFile(FID, nullptr, SourceLocation()); |
| |
| if (!PPOpts->PCHThroughHeader.empty()) { |
| // Lookup and save the FileID for the through header. If it isn't found |
| // in the search path, it's a fatal error. |
| const DirectoryLookup *CurDir; |
| Optional<FileEntryRef> File = LookupFile( |
| SourceLocation(), PPOpts->PCHThroughHeader, |
| /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, CurDir, |
| /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, |
| /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, |
| /*IsFrameworkFound=*/nullptr); |
| if (!File) { |
| Diag(SourceLocation(), diag::err_pp_through_header_not_found) |
| << PPOpts->PCHThroughHeader; |
| return; |
| } |
| setPCHThroughHeaderFileID( |
| SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); |
| } |
| |
| // Skip tokens from the Predefines and if needed the main file. |
| if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || |
| (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) |
| SkipTokensWhileUsingPCH(); |
| } |
| |
| void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { |
| assert(PCHThroughHeaderFileID.isInvalid() && |
| "PCHThroughHeaderFileID already set!"); |
| PCHThroughHeaderFileID = FID; |
| } |
| |
| bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { |
| assert(PCHThroughHeaderFileID.isValid() && |
| "Invalid PCH through header FileID"); |
| return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); |
| } |
| |
| bool Preprocessor::creatingPCHWithThroughHeader() { |
| return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && |
| PCHThroughHeaderFileID.isValid(); |
| } |
| |
| bool Preprocessor::usingPCHWithThroughHeader() { |
| return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && |
| PCHThroughHeaderFileID.isValid(); |
| } |
| |
| bool Preprocessor::creatingPCHWithPragmaHdrStop() { |
| return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; |
| } |
| |
| bool Preprocessor::usingPCHWithPragmaHdrStop() { |
| return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; |
| } |
| |
| /// Skip tokens until after the #include of the through header or |
| /// until after a #pragma hdrstop is seen. Tokens in the predefines file |
| /// and the main file may be skipped. If the end of the predefines file |
| /// is reached, skipping continues into the main file. If the end of the |
| /// main file is reached, it's a fatal error. |
| void Preprocessor::SkipTokensWhileUsingPCH() { |
| bool ReachedMainFileEOF = false; |
| bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; |
| bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; |
| Token Tok; |
| while (true) { |
| bool InPredefines = |
| (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); |
| switch (CurLexerKind) { |
| case CLK_Lexer: |
| CurLexer->Lex(Tok); |
| break; |
| case CLK_TokenLexer: |
| CurTokenLexer->Lex(Tok); |
| break; |
| case CLK_CachingLexer: |
| CachingLex(Tok); |
| break; |
| case CLK_LexAfterModuleImport: |
| LexAfterModuleImport(Tok); |
| break; |
| } |
| if (Tok.is(tok::eof) && !InPredefines) { |
| ReachedMainFileEOF = true; |
| break; |
| } |
| if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) |
| break; |
| if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) |
| break; |
| } |
| if (ReachedMainFileEOF) { |
| if (UsingPCHThroughHeader) |
| Diag(SourceLocation(), diag::err_pp_through_header_not_seen) |
| << PPOpts->PCHThroughHeader << 1; |
| else if (!PPOpts->PCHWithHdrStopCreate) |
| Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); |
| } |
| } |
| |
| void Preprocessor::replayPreambleConditionalStack() { |
| // Restore the conditional stack from the preamble, if there is one. |
| if (PreambleConditionalStack.isReplaying()) { |
| assert(CurPPLexer && |
| "CurPPLexer is null when calling replayPreambleConditionalStack."); |
| CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); |
| PreambleConditionalStack.doneReplaying(); |
| if (PreambleConditionalStack.reachedEOFWhileSkipping()) |
| SkipExcludedConditionalBlock( |
| PreambleConditionalStack.SkipInfo->HashTokenLoc, |
| PreambleConditionalStack.SkipInfo->IfTokenLoc, |
| PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, |
| PreambleConditionalStack.SkipInfo->FoundElse, |
| PreambleConditionalStack.SkipInfo->ElseLoc); |
| } |
| } |
| |
| void Preprocessor::EndSourceFile() { |
| // Notify the client that we reached the end of the source file. |
| if (Callbacks) |
| Callbacks->EndOfMainFile(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer Event Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the |
| /// identifier information for the token and install it into the token, |
| /// updating the token kind accordingly. |
| IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { |
| assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); |
| |
| // Look up this token, see if it is a macro, or if it is a language keyword. |
| IdentifierInfo *II; |
| if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { |
| // No cleaning needed, just use the characters from the lexed buffer. |
| II = getIdentifierInfo(Identifier.getRawIdentifier()); |
| } else { |
| // Cleaning needed, alloca a buffer, clean into it, then use the buffer. |
| SmallString<64> IdentifierBuffer; |
| StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); |
| |
| if (Identifier.hasUCN()) { |
| SmallString<64> UCNIdentifierBuffer; |
| expandUCNs(UCNIdentifierBuffer, CleanedStr); |
| II = getIdentifierInfo(UCNIdentifierBuffer); |
| } else { |
| II = getIdentifierInfo(CleanedStr); |
| } |
| } |
| |
| // Update the token info (identifier info and appropriate token kind). |
| // FIXME: the raw_identifier may contain leading whitespace which is removed |
| // from the cleaned identifier token. The SourceLocation should be updated to |
| // refer to the non-whitespace character. For instance, the text "\\\nB" (a |
| // line continuation before 'B') is parsed as a single tok::raw_identifier and |
| // is cleaned to tok::identifier "B". After cleaning the token's length is |
| // still 3 and the SourceLocation refers to the location of the backslash. |
| Identifier.setIdentifierInfo(II); |
| Identifier.setKind(II->getTokenID()); |
| |
| return II; |
| } |
| |
| void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { |
| PoisonReasons[II] = DiagID; |
| } |
| |
| void Preprocessor::PoisonSEHIdentifiers(bool Poison) { |
| assert(Ident__exception_code && Ident__exception_info); |
| assert(Ident___exception_code && Ident___exception_info); |
| Ident__exception_code->setIsPoisoned(Poison); |
| Ident___exception_code->setIsPoisoned(Poison); |
| Ident_GetExceptionCode->setIsPoisoned(Poison); |
| Ident__exception_info->setIsPoisoned(Poison); |
| Ident___exception_info->setIsPoisoned(Poison); |
| Ident_GetExceptionInfo->setIsPoisoned(Poison); |
| Ident__abnormal_termination->setIsPoisoned(Poison); |
| Ident___abnormal_termination->setIsPoisoned(Poison); |
| Ident_AbnormalTermination->setIsPoisoned(Poison); |
| } |
| |
| void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { |
| assert(Identifier.getIdentifierInfo() && |
| "Can't handle identifiers without identifier info!"); |
| llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it = |
| PoisonReasons.find(Identifier.getIdentifierInfo()); |
| if(it == PoisonReasons.end()) |
| Diag(Identifier, diag::err_pp_used_poisoned_id); |
| else |
| Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); |
| } |
| |
| /// Returns a diagnostic message kind for reporting a future keyword as |
| /// appropriate for the identifier and specified language. |
| static diag::kind getFutureCompatDiagKind(const IdentifierInfo &II, |
| const LangOptions &LangOpts) { |
| assert(II.isFutureCompatKeyword() && "diagnostic should not be needed"); |
| |
| if (LangOpts.CPlusPlus) |
| return llvm::StringSwitch<diag::kind>(II.getName()) |
| #define CXX11_KEYWORD(NAME, FLAGS) \ |
| .Case(#NAME, diag::warn_cxx11_keyword) |
| #define CXX20_KEYWORD(NAME, FLAGS) \ |
| .Case(#NAME, diag::warn_cxx20_keyword) |
| #include "clang/Basic/TokenKinds.def" |
| // char8_t is not modeled as a CXX20_KEYWORD because it's not |
| // unconditionally enabled in C++20 mode. (It can be disabled |
| // by -fno-char8_t.) |
| .Case("char8_t", diag::warn_cxx20_keyword) |
| ; |
| |
| llvm_unreachable( |
| "Keyword not known to come from a newer Standard or proposed Standard"); |
| } |
| |
| void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const { |
| assert(II.isOutOfDate() && "not out of date"); |
| getExternalSource()->updateOutOfDateIdentifier(II); |
| } |
| |
| /// HandleIdentifier - This callback is invoked when the lexer reads an |
| /// identifier. This callback looks up the identifier in the map and/or |
| /// potentially macro expands it or turns it into a named token (like 'for'). |
| /// |
| /// Note that callers of this method are guarded by checking the |
| /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the |
| /// IdentifierInfo methods that compute these properties will need to change to |
| /// match. |
| bool Preprocessor::HandleIdentifier(Token &Identifier) { |
| assert(Identifier.getIdentifierInfo() && |
| "Can't handle identifiers without identifier info!"); |
| |
| IdentifierInfo &II = *Identifier.getIdentifierInfo(); |
| |
| // If the information about this identifier is out of date, update it from |
| // the external source. |
| // We have to treat __VA_ARGS__ in a special way, since it gets |
| // serialized with isPoisoned = true, but our preprocessor may have |
| // unpoisoned it if we're defining a C99 macro. |
| if (II.isOutOfDate()) { |
| bool CurrentIsPoisoned = false; |
| const bool IsSpecialVariadicMacro = |
| &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; |
| if (IsSpecialVariadicMacro) |
| CurrentIsPoisoned = II.isPoisoned(); |
| |
| updateOutOfDateIdentifier(II); |
| Identifier.setKind(II.getTokenID()); |
| |
| if (IsSpecialVariadicMacro) |
| II.setIsPoisoned(CurrentIsPoisoned); |
| } |
| |
| // If this identifier was poisoned, and if it was not produced from a macro |
| // expansion, emit an error. |
| if (II.isPoisoned() && CurPPLexer) { |
| HandlePoisonedIdentifier(Identifier); |
| } |
| |
| // If this is a macro to be expanded, do it. |
| if (MacroDefinition MD = getMacroDefinition(&II)) { |
| auto *MI = MD.getMacroInfo(); |
| assert(MI && "macro definition with no macro info?"); |
| if (!DisableMacroExpansion) { |
| if (!Identifier.isExpandDisabled() && MI->isEnabled()) { |
| // C99 6.10.3p10: If the preprocessing token immediately after the |
| // macro name isn't a '(', this macro should not be expanded. |
| if (!MI->isFunctionLike() || isNextPPTokenLParen()) |
| return HandleMacroExpandedIdentifier(Identifier, MD); |
| } else { |
| // C99 6.10.3.4p2 says that a disabled macro may never again be |
| // expanded, even if it's in a context where it could be expanded in the |
| // future. |
| Identifier.setFlag(Token::DisableExpand); |
| if (MI->isObjectLike() || isNextPPTokenLParen()) |
| Diag(Identifier, diag::pp_disabled_macro_expansion); |
| } |
| } |
| } |
| |
| // If this identifier is a keyword in a newer Standard or proposed Standard, |
| // produce a warning. Don't warn if we're not considering macro expansion, |
| // since this identifier might be the name of a macro. |
| // FIXME: This warning is disabled in cases where it shouldn't be, like |
| // "#define constexpr constexpr", "int constexpr;" |
| if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { |
| Diag(Identifier, getFutureCompatDiagKind(II, getLangOpts())) |
| << II.getName(); |
| // Don't diagnose this keyword again in this translation unit. |
| II.setIsFutureCompatKeyword(false); |
| } |
| |
| // If this is an extension token, diagnose its use. |
| // We avoid diagnosing tokens that originate from macro definitions. |
| // FIXME: This warning is disabled in cases where it shouldn't be, |
| // like "#define TY typeof", "TY(1) x". |
| if (II.isExtensionToken() && !DisableMacroExpansion) |
| Diag(Identifier, diag::ext_token_used); |
| |
| // If this is the 'import' contextual keyword following an '@', note |
| // that the next token indicates a module name. |
| // |
| // Note that we do not treat 'import' as a contextual |
| // keyword when we're in a caching lexer, because caching lexers only get |
| // used in contexts where import declarations are disallowed. |
| // |
| // Likewise if this is the C++ Modules TS import keyword. |
| if (((LastTokenWasAt && II.isModulesImport()) || |
| Identifier.is(tok::kw_import)) && |
| !InMacroArgs && !DisableMacroExpansion && |
| (getLangOpts().Modules || getLangOpts().DebuggerSupport) && |
| CurLexerKind != CLK_CachingLexer) { |
| ModuleImportLoc = Identifier.getLocation(); |
| ModuleImportPath.clear(); |
| ModuleImportExpectsIdentifier = true; |
| CurLexerKind = CLK_LexAfterModuleImport; |
| } |
| return true; |
| } |
| |
| void Preprocessor::Lex(Token &Result) { |
| ++LexLevel; |
| |
| // We loop here until a lex function returns a token; this avoids recursion. |
| bool ReturnedToken; |
| do { |
| switch (CurLexerKind) { |
| case CLK_Lexer: |
| ReturnedToken = CurLexer->Lex(Result); |
| break; |
| case CLK_TokenLexer: |
| ReturnedToken = CurTokenLexer->Lex(Result); |
| break; |
| case CLK_CachingLexer: |
| CachingLex(Result); |
| ReturnedToken = true; |
| break; |
| case CLK_LexAfterModuleImport: |
| ReturnedToken = LexAfterModuleImport(Result); |
| break; |
| } |
| } while (!ReturnedToken); |
| |
| if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) |
| return; |
| |
| if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { |
| // Remember the identifier before code completion token. |
| setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); |
| setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); |
| // Set IdenfitierInfo to null to avoid confusing code that handles both |
| // identifiers and completion tokens. |
| Result.setIdentifierInfo(nullptr); |
| } |
| |
| // Update ImportSeqState to track our position within a C++20 import-seq |
| // if this token is being produced as a result of phase 4 of translation. |
| if (getLangOpts().CPlusPlusModules && LexLevel == 1 && |
| !Result.getFlag(Token::IsReinjected)) { |
| switch (Result.getKind()) { |
| case tok::l_paren: case tok::l_square: case tok::l_brace: |
| ImportSeqState.handleOpenBracket(); |
| break; |
| case tok::r_paren: case tok::r_square: |
| ImportSeqState.handleCloseBracket(); |
| break; |
| case tok::r_brace: |
| ImportSeqState.handleCloseBrace(); |
| break; |
| case tok::semi: |
| ImportSeqState.handleSemi(); |
| break; |
| case tok::header_name: |
| case tok::annot_header_unit: |
| ImportSeqState.handleHeaderName(); |
| break; |
| case tok::kw_export: |
| ImportSeqState.handleExport(); |
| break; |
| case tok::identifier: |
| if (Result.getIdentifierInfo()->isModulesImport()) { |
| ImportSeqState.handleImport(); |
| if (ImportSeqState.afterImportSeq()) { |
| ModuleImportLoc = Result.getLocation(); |
| ModuleImportPath.clear(); |
| ModuleImportExpectsIdentifier = true; |
| CurLexerKind = CLK_LexAfterModuleImport; |
| } |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| default: |
| ImportSeqState.handleMisc(); |
| break; |
| } |
| } |
| |
| LastTokenWasAt = Result.is(tok::at); |
| --LexLevel; |
| |
| if ((LexLevel == 0 || PreprocessToken) && |
| !Result.getFlag(Token::IsReinjected)) { |
| if (LexLevel == 0) |
| ++TokenCount; |
| if (OnToken) |
| OnToken(Result); |
| } |
| } |
| |
| /// Lex a header-name token (including one formed from header-name-tokens if |
| /// \p AllowConcatenation is \c true). |
| /// |
| /// \param FilenameTok Filled in with the next token. On success, this will |
| /// be either a header_name token. On failure, it will be whatever other |
| /// token was found instead. |
| /// \param AllowMacroExpansion If \c true, allow the header name to be formed |
| /// by macro expansion (concatenating tokens as necessary if the first |
| /// token is a '<'). |
| /// \return \c true if we reached EOD or EOF while looking for a > token in |
| /// a concatenated header name and diagnosed it. \c false otherwise. |
| bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { |
| // Lex using header-name tokenization rules if tokens are being lexed from |
| // a file. Just grab a token normally if we're in a macro expansion. |
| if (CurPPLexer) |
| CurPPLexer->LexIncludeFilename(FilenameTok); |
| else |
| Lex(FilenameTok); |
| |
| // This could be a <foo/bar.h> file coming from a macro expansion. In this |
| // case, glue the tokens together into an angle_string_literal token. |
| SmallString<128> FilenameBuffer; |
| if (FilenameTok.is(tok::less) && AllowMacroExpansion) { |
| bool StartOfLine = FilenameTok.isAtStartOfLine(); |
| bool LeadingSpace = FilenameTok.hasLeadingSpace(); |
| bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); |
| |
| SourceLocation Start = FilenameTok.getLocation(); |
| SourceLocation End; |
| FilenameBuffer.push_back('<'); |
| |
| // Consume tokens until we find a '>'. |
| // FIXME: A header-name could be formed starting or ending with an |
| // alternative token. It's not clear whether that's ill-formed in all |
| // cases. |
| while (FilenameTok.isNot(tok::greater)) { |
| Lex(FilenameTok); |
| if (FilenameTok.isOneOf(tok::eod, tok::eof)) { |
| Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; |
| Diag(Start, diag::note_matching) << tok::less; |
| return true; |
| } |
| |
| End = FilenameTok.getLocation(); |
| |
| // FIXME: Provide code completion for #includes. |
| if (FilenameTok.is(tok::code_completion)) { |
| setCodeCompletionReached(); |
| Lex(FilenameTok); |
| continue; |
| } |
| |
| // Append the spelling of this token to the buffer. If there was a space |
| // before it, add it now. |
| if (FilenameTok.hasLeadingSpace()) |
| FilenameBuffer.push_back(' '); |
| |
| // Get the spelling of the token, directly into FilenameBuffer if |
| // possible. |
| size_t PreAppendSize = FilenameBuffer.size(); |
| FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); |
| |
| const char *BufPtr = &FilenameBuffer[PreAppendSize]; |
| unsigned ActualLen = getSpelling(FilenameTok, BufPtr); |
| |
| // If the token was spelled somewhere else, copy it into FilenameBuffer. |
| if (BufPtr != &FilenameBuffer[PreAppendSize]) |
| memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); |
| |
| // Resize FilenameBuffer to the correct size. |
| if (FilenameTok.getLength() != ActualLen) |
| FilenameBuffer.resize(PreAppendSize + ActualLen); |
| } |
| |
| FilenameTok.startToken(); |
| FilenameTok.setKind(tok::header_name); |
| FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); |
| FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); |
| FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); |
| CreateString(FilenameBuffer, FilenameTok, Start, End); |
| } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { |
| // Convert a string-literal token of the form " h-char-sequence " |
| // (produced by macro expansion) into a header-name token. |
| // |
| // The rules for header-names don't quite match the rules for |
| // string-literals, but all the places where they differ result in |
| // undefined behavior, so we can and do treat them the same. |
| // |
| // A string-literal with a prefix or suffix is not translated into a |
| // header-name. This could theoretically be observable via the C++20 |
| // context-sensitive header-name formation rules. |
| StringRef Str = getSpelling(FilenameTok, FilenameBuffer); |
| if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') |
| FilenameTok.setKind(tok::header_name); |
| } |
| |
| return false; |
| } |
| |
| /// Collect the tokens of a C++20 pp-import-suffix. |
| void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) { |
| // FIXME: For error recovery, consider recognizing attribute syntax here |
| // and terminating / diagnosing a missing semicolon if we find anything |
| // else? (Can we leave that to the parser?) |
| unsigned BracketDepth = 0; |
| while (true) { |
| Toks.emplace_back(); |
| Lex(Toks.back()); |
| |
| switch (Toks.back().getKind()) { |
| case tok::l_paren: case tok::l_square: case tok::l_brace: |
| ++BracketDepth; |
| break; |
| |
| case tok::r_paren: case tok::r_square: case tok::r_brace: |
| if (BracketDepth == 0) |
| return; |
| --BracketDepth; |
| break; |
| |
| case tok::semi: |
| if (BracketDepth == 0) |
| return; |
| break; |
| |
| case tok::eof: |
| return; |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| |
| /// Lex a token following the 'import' contextual keyword. |
| /// |
| /// pp-import: [C++20] |
| /// import header-name pp-import-suffix[opt] ; |
| /// import header-name-tokens pp-import-suffix[opt] ; |
| /// [ObjC] @ import module-name ; |
| /// [Clang] import module-name ; |
| /// |
| /// header-name-tokens: |
| /// string-literal |
| /// < [any sequence of preprocessing-tokens other than >] > |
| /// |
| /// module-name: |
| /// module-name-qualifier[opt] identifier |
| /// |
| /// module-name-qualifier |
| /// module-name-qualifier[opt] identifier . |
| /// |
| /// We respond to a pp-import by importing macros from the named module. |
| bool Preprocessor::LexAfterModuleImport(Token &Result) { |
| // Figure out what kind of lexer we actually have. |
| recomputeCurLexerKind(); |
| |
| // Lex the next token. The header-name lexing rules are used at the start of |
| // a pp-import. |
| // |
| // For now, we only support header-name imports in C++20 mode. |
| // FIXME: Should we allow this in all language modes that support an import |
| // declaration as an extension? |
| if (ModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { |
| if (LexHeaderName(Result)) |
| return true; |
| } else { |
| Lex(Result); |
| } |
| |
| // Allocate a holding buffer for a sequence of tokens and introduce it into |
| // the token stream. |
| auto EnterTokens = [this](ArrayRef<Token> Toks) { |
| auto ToksCopy = std::make_unique<Token[]>(Toks.size()); |
| std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); |
| EnterTokenStream(std::move(ToksCopy), Toks.size(), |
| /*DisableMacroExpansion*/ true, /*IsReinject*/ false); |
| }; |
| |
| // Check for a header-name. |
| SmallVector<Token, 32> Suffix; |
| if (Result.is(tok::header_name)) { |
| // Enter the header-name token into the token stream; a Lex action cannot |
| // both return a token and cache tokens (doing so would corrupt the token |
| // cache if the call to Lex comes from CachingLex / PeekAhead). |
| Suffix.push_back(Result); |
| |
| // Consume the pp-import-suffix and expand any macros in it now. We'll add |
| // it back into the token stream later. |
| CollectPpImportSuffix(Suffix); |
| if (Suffix.back().isNot(tok::semi)) { |
| // This is not a pp-import after all. |
| EnterTokens(Suffix); |
| return false; |
| } |
| |
| // C++2a [cpp.module]p1: |
| // The ';' preprocessing-token terminating a pp-import shall not have |
| // been produced by macro replacement. |
| SourceLocation SemiLoc = Suffix.back().getLocation(); |
| if (SemiLoc.isMacroID()) |
| Diag(SemiLoc, diag::err_header_import_semi_in_macro); |
| |
| // Reconstitute the import token. |
| Token ImportTok; |
| ImportTok.startToken(); |
| ImportTok.setKind(tok::kw_import); |
| ImportTok.setLocation(ModuleImportLoc); |
| ImportTok.setIdentifierInfo(getIdentifierInfo("import")); |
| ImportTok.setLength(6); |
| |
| auto Action = HandleHeaderIncludeOrImport( |
| /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); |
| switch (Action.Kind) { |
| case ImportAction::None: |
| break; |
| |
| case ImportAction::ModuleBegin: |
| // Let the parser know we're textually entering the module. |
| Suffix.emplace_back(); |
| Suffix.back().startToken(); |
| Suffix.back().setKind(tok::annot_module_begin); |
| Suffix.back().setLocation(SemiLoc); |
| Suffix.back().setAnnotationEndLoc(SemiLoc); |
| Suffix.back().setAnnotationValue(Action.ModuleForHeader); |
| LLVM_FALLTHROUGH; |
| |
| case ImportAction::ModuleImport: |
| case ImportAction::SkippedModuleImport: |
| // We chose to import (or textually enter) the file. Convert the |
| // header-name token into a header unit annotation token. |
| Suffix[0].setKind(tok::annot_header_unit); |
| Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); |
| Suffix[0].setAnnotationValue(Action.ModuleForHeader); |
| // FIXME: Call the moduleImport callback? |
| break; |
| case ImportAction::Failure: |
| assert(TheModuleLoader.HadFatalFailure && |
| "This should be an early exit only to a fatal error"); |
| Result.setKind(tok::eof); |
| CurLexer->cutOffLexing(); |
| EnterTokens(Suffix); |
| return true; |
| } |
| |
| EnterTokens(Suffix); |
| return false; |
| } |
| |
| // The token sequence |
| // |
| // import identifier (. identifier)* |
| // |
| // indicates a module import directive. We already saw the 'import' |
| // contextual keyword, so now we're looking for the identifiers. |
| if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { |
| // We expected to see an identifier here, and we did; continue handling |
| // identifiers. |
| ModuleImportPath.push_back(std::make_pair(Result.getIdentifierInfo(), |
| Result.getLocation())); |
| ModuleImportExpectsIdentifier = false; |
| CurLexerKind = CLK_LexAfterModuleImport; |
| return true; |
| } |
| |
| // If we're expecting a '.' or a ';', and we got a '.', then wait until we |
| // see the next identifier. (We can also see a '[[' that begins an |
| // attribute-specifier-seq here under the C++ Modules TS.) |
| if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { |
| ModuleImportExpectsIdentifier = true; |
| CurLexerKind = CLK_LexAfterModuleImport; |
| return true; |
| } |
| |
| // If we didn't recognize a module name at all, this is not a (valid) import. |
| if (ModuleImportPath.empty() || Result.is(tok::eof)) |
| return true; |
| |
| // Consume the pp-import-suffix and expand any macros in it now, if we're not |
| // at the semicolon already. |
| SourceLocation SemiLoc = Result.getLocation(); |
| if (Result.isNot(tok::semi)) { |
| Suffix.push_back(Result); |
| CollectPpImportSuffix(Suffix); |
| if (Suffix.back().isNot(tok::semi)) { |
| // This is not an import after all. |
| EnterTokens(Suffix); |
| return false; |
| } |
| SemiLoc = Suffix.back().getLocation(); |
| } |
| |
| // Under the Modules TS, the dot is just part of the module name, and not |
| // a real hierarchy separator. Flatten such module names now. |
| // |
| // FIXME: Is this the right level to be performing this transformation? |
| std::string FlatModuleName; |
| if (getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) { |
| for (auto &Piece : ModuleImportPath) { |
| if (!FlatModuleName.empty()) |
| FlatModuleName += "."; |
| FlatModuleName += Piece.first->getName(); |
| } |
| SourceLocation FirstPathLoc = ModuleImportPath[0].second; |
| ModuleImportPath.clear(); |
| ModuleImportPath.push_back( |
| std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc)); |
| } |
| |
| Module *Imported = nullptr; |
| if (getLangOpts().Modules) { |
| Imported = TheModuleLoader.loadModule(ModuleImportLoc, |
| ModuleImportPath, |
| Module::Hidden, |
| /*IsInclusionDirective=*/false); |
| if (Imported) |
| makeModuleVisible(Imported, SemiLoc); |
| } |
| if (Callbacks) |
| Callbacks->moduleImport(ModuleImportLoc, ModuleImportPath, Imported); |
| |
| if (!Suffix.empty()) { |
| EnterTokens(Suffix); |
| return false; |
| } |
| return true; |
| } |
| |
| void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { |
| CurSubmoduleState->VisibleModules.setVisible( |
| M, Loc, [](Module *) {}, |
| [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) { |
| // FIXME: Include the path in the diagnostic. |
| // FIXME: Include the import location for the conflicting module. |
| Diag(ModuleImportLoc, diag::warn_module_conflict) |
| << Path[0]->getFullModuleName() |
| << Conflict->getFullModuleName() |
| << Message; |
| }); |
| |
| // Add this module to the imports list of the currently-built submodule. |
| if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) |
| BuildingSubmoduleStack.back().M->Imports.insert(M); |
| } |
| |
| bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, |
| const char *DiagnosticTag, |
| bool AllowMacroExpansion) { |
| // We need at least one string literal. |
| if (Result.isNot(tok::string_literal)) { |
| Diag(Result, diag::err_expected_string_literal) |
| << /*Source='in...'*/0 << DiagnosticTag; |
| return false; |
| } |
| |
| // Lex string literal tokens, optionally with macro expansion. |
| SmallVector<Token, 4> StrToks; |
| do { |
| StrToks.push_back(Result); |
| |
| if (Result.hasUDSuffix()) |
| Diag(Result, diag::err_invalid_string_udl); |
| |
| if (AllowMacroExpansion) |
| Lex(Result); |
| else |
| LexUnexpandedToken(Result); |
| } while (Result.is(tok::string_literal)); |
| |
| // Concatenate and parse the strings. |
| StringLiteralParser Literal(StrToks, *this); |
| assert(Literal.isAscii() && "Didn't allow wide strings in"); |
| |
| if (Literal.hadError) |
| return false; |
| |
| if (Literal.Pascal) { |
| Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) |
| << /*Source='in...'*/0 << DiagnosticTag; |
| return false; |
| } |
| |
| String = std::string(Literal.GetString()); |
| return true; |
| } |
| |
| bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { |
| assert(Tok.is(tok::numeric_constant)); |
| SmallString<8> IntegerBuffer; |
| bool NumberInvalid = false; |
| StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); |
| if (NumberInvalid) |
| return false; |
| NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), |
| getLangOpts(), getTargetInfo(), |
| getDiagnostics()); |
| if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) |
| return false; |
| llvm::APInt APVal(64, 0); |
| if (Literal.GetIntegerValue(APVal)) |
| return false; |
| Lex(Tok); |
| Value = APVal.getLimitedValue(); |
| return true; |
| } |
| |
| void Preprocessor::addCommentHandler(CommentHandler *Handler) { |
| assert(Handler && "NULL comment handler"); |
| assert(!llvm::is_contained(CommentHandlers, Handler) && |
| "Comment handler already registered"); |
| CommentHandlers.push_back(Handler); |
| } |
| |
| void Preprocessor::removeCommentHandler(CommentHandler *Handler) { |
| std::vector<CommentHandler *>::iterator Pos = |
| llvm::find(CommentHandlers, Handler); |
| assert(Pos != CommentHandlers.end() && "Comment handler not registered"); |
| CommentHandlers.erase(Pos); |
| } |
| |
| bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { |
| bool AnyPendingTokens = false; |
| for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(), |
| HEnd = CommentHandlers.end(); |
| H != HEnd; ++H) { |
| if ((*H)->HandleComment(*this, Comment)) |
| AnyPendingTokens = true; |
| } |
| if (!AnyPendingTokens || getCommentRetentionState()) |
| return false; |
| Lex(result); |
| return true; |
| } |
| |
| void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const { |
| const MacroAnnotations &A = |
| getMacroAnnotations(Identifier.getIdentifierInfo()); |
| assert(A.DeprecationInfo && |
| "Macro deprecation warning without recorded annotation!"); |
| const MacroAnnotationInfo &Info = *A.DeprecationInfo; |
| if (Info.Message.empty()) |
| Diag(Identifier, diag::warn_pragma_deprecated_macro_use) |
| << Identifier.getIdentifierInfo() << 0; |
| else |
| Diag(Identifier, diag::warn_pragma_deprecated_macro_use) |
| << Identifier.getIdentifierInfo() << 1 << Info.Message; |
| Diag(Info.Location, diag::note_pp_macro_annotation) << 0; |
| } |
| |
| void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const { |
| const MacroAnnotations &A = |
| getMacroAnnotations(Identifier.getIdentifierInfo()); |
| assert(A.RestrictExpansionInfo && |
| "Macro restricted expansion warning without recorded annotation!"); |
| const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo; |
| if (Info.Message.empty()) |
| Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) |
| << Identifier.getIdentifierInfo() << 0; |
| else |
| Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) |
| << Identifier.getIdentifierInfo() << 1 << Info.Message; |
| Diag(Info.Location, diag::note_pp_macro_annotation) << 1; |
| } |
| |
| void Preprocessor::emitFinalMacroWarning(const Token &Identifier, |
| bool IsUndef) const { |
| const MacroAnnotations &A = |
| getMacroAnnotations(Identifier.getIdentifierInfo()); |
| assert(A.FinalAnnotationLoc && |
| "Final macro warning without recorded annotation!"); |
| |
| Diag(Identifier, diag::warn_pragma_final_macro) |
| << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1); |
| Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2; |
| } |
| |
| ModuleLoader::~ModuleLoader() = default; |
| |
| CommentHandler::~CommentHandler() = default; |
| |
| EmptylineHandler::~EmptylineHandler() = default; |
| |
| CodeCompletionHandler::~CodeCompletionHandler() = default; |
| |
| void Preprocessor::createPreprocessingRecord() { |
| if (Record) |
| return; |
| |
| Record = new PreprocessingRecord(getSourceManager()); |
| addPPCallbacks(std::unique_ptr<PPCallbacks>(Record)); |
| } |