blob: 67daa5841983b99759bbb4c6d3e9e8143ad2840b [file] [log] [blame]
//===- Pragma.cpp - Pragma registration and handling ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the PragmaHandler/PragmaTable interfaces and implements
// pragma related methods of the Preprocessor class.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Pragma.h"
#include "clang/Basic/CLWarnings.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticLex.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/ModuleLoader.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorLexer.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/Token.h"
#include "clang/Lex/TokenLexer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Timer.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <string>
#include <utility>
#include <vector>
using namespace clang;
// Out-of-line destructor to provide a home for the class.
PragmaHandler::~PragmaHandler() = default;
//===----------------------------------------------------------------------===//
// EmptyPragmaHandler Implementation.
//===----------------------------------------------------------------------===//
EmptyPragmaHandler::EmptyPragmaHandler(StringRef Name) : PragmaHandler(Name) {}
void EmptyPragmaHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &FirstToken) {}
//===----------------------------------------------------------------------===//
// PragmaNamespace Implementation.
//===----------------------------------------------------------------------===//
/// FindHandler - Check to see if there is already a handler for the
/// specified name. If not, return the handler for the null identifier if it
/// exists, otherwise return null. If IgnoreNull is true (the default) then
/// the null handler isn't returned on failure to match.
PragmaHandler *PragmaNamespace::FindHandler(StringRef Name,
bool IgnoreNull) const {
auto I = Handlers.find(Name);
if (I != Handlers.end())
return I->getValue().get();
if (IgnoreNull)
return nullptr;
I = Handlers.find(StringRef());
if (I != Handlers.end())
return I->getValue().get();
return nullptr;
}
void PragmaNamespace::AddPragma(PragmaHandler *Handler) {
assert(!Handlers.count(Handler->getName()) &&
"A handler with this name is already registered in this namespace");
Handlers[Handler->getName()].reset(Handler);
}
void PragmaNamespace::RemovePragmaHandler(PragmaHandler *Handler) {
auto I = Handlers.find(Handler->getName());
assert(I != Handlers.end() &&
"Handler not registered in this namespace");
// Release ownership back to the caller.
I->getValue().release();
Handlers.erase(I);
}
void PragmaNamespace::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer, Token &Tok) {
// Read the 'namespace' that the directive is in, e.g. STDC. Do not macro
// expand it, the user can have a STDC #define, that should not affect this.
PP.LexUnexpandedToken(Tok);
// Get the handler for this token. If there is no handler, ignore the pragma.
PragmaHandler *Handler
= FindHandler(Tok.getIdentifierInfo() ? Tok.getIdentifierInfo()->getName()
: StringRef(),
/*IgnoreNull=*/false);
if (!Handler) {
PP.Diag(Tok, diag::warn_pragma_ignored);
return;
}
// Otherwise, pass it down.
Handler->HandlePragma(PP, Introducer, Tok);
}
//===----------------------------------------------------------------------===//
// Preprocessor Pragma Directive Handling.
//===----------------------------------------------------------------------===//
namespace {
// TokenCollector provides the option to collect tokens that were "read"
// and return them to the stream to be read later.
// Currently used when reading _Pragma/__pragma directives.
struct TokenCollector {
Preprocessor &Self;
bool Collect;
SmallVector<Token, 3> Tokens;
Token &Tok;
void lex() {
if (Collect)
Tokens.push_back(Tok);
Self.Lex(Tok);
}
void revert() {
assert(Collect && "did not collect tokens");
assert(!Tokens.empty() && "collected unexpected number of tokens");
// Push the ( "string" ) tokens into the token stream.
auto Toks = std::make_unique<Token[]>(Tokens.size());
std::copy(Tokens.begin() + 1, Tokens.end(), Toks.get());
Toks[Tokens.size() - 1] = Tok;
Self.EnterTokenStream(std::move(Toks), Tokens.size(),
/*DisableMacroExpansion*/ true,
/*IsReinject*/ true);
// ... and return the pragma token unchanged.
Tok = *Tokens.begin();
}
};
} // namespace
/// HandlePragmaDirective - The "\#pragma" directive has been parsed. Lex the
/// rest of the pragma, passing it to the registered pragma handlers.
void Preprocessor::HandlePragmaDirective(PragmaIntroducer Introducer) {
if (Callbacks)
Callbacks->PragmaDirective(Introducer.Loc, Introducer.Kind);
if (!PragmasEnabled)
return;
++NumPragma;
// Invoke the first level of pragma handlers which reads the namespace id.
Token Tok;
PragmaHandlers->HandlePragma(*this, Introducer, Tok);
// If the pragma handler didn't read the rest of the line, consume it now.
if ((CurTokenLexer && CurTokenLexer->isParsingPreprocessorDirective())
|| (CurPPLexer && CurPPLexer->ParsingPreprocessorDirective))
DiscardUntilEndOfDirective();
}
/// Handle_Pragma - Read a _Pragma directive, slice it up, process it, then
/// return the first token after the directive. The _Pragma token has just
/// been read into 'Tok'.
void Preprocessor::Handle_Pragma(Token &Tok) {
// C11 6.10.3.4/3:
// all pragma unary operator expressions within [a completely
// macro-replaced preprocessing token sequence] are [...] processed [after
// rescanning is complete]
//
// This means that we execute _Pragma operators in two cases:
//
// 1) on token sequences that would otherwise be produced as the output of
// phase 4 of preprocessing, and
// 2) on token sequences formed as the macro-replaced token sequence of a
// macro argument
//
// Case #2 appears to be a wording bug: only _Pragmas that would survive to
// the end of phase 4 should actually be executed. Discussion on the WG14
// mailing list suggests that a _Pragma operator is notionally checked early,
// but only pragmas that survive to the end of phase 4 should be executed.
//
// In Case #2, we check the syntax now, but then put the tokens back into the
// token stream for later consumption.
TokenCollector Toks = {*this, InMacroArgPreExpansion, {}, Tok};
// Remember the pragma token location.
SourceLocation PragmaLoc = Tok.getLocation();
// Read the '('.
Toks.lex();
if (Tok.isNot(tok::l_paren)) {
Diag(PragmaLoc, diag::err__Pragma_malformed);
return;
}
// Read the '"..."'.
Toks.lex();
if (!tok::isStringLiteral(Tok.getKind())) {
Diag(PragmaLoc, diag::err__Pragma_malformed);
// Skip bad tokens, and the ')', if present.
if (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eof))
Lex(Tok);
while (Tok.isNot(tok::r_paren) &&
!Tok.isAtStartOfLine() &&
Tok.isNot(tok::eof))
Lex(Tok);
if (Tok.is(tok::r_paren))
Lex(Tok);
return;
}
if (Tok.hasUDSuffix()) {
Diag(Tok, diag::err_invalid_string_udl);
// Skip this token, and the ')', if present.
Lex(Tok);
if (Tok.is(tok::r_paren))
Lex(Tok);
return;
}
// Remember the string.
Token StrTok = Tok;
// Read the ')'.
Toks.lex();
if (Tok.isNot(tok::r_paren)) {
Diag(PragmaLoc, diag::err__Pragma_malformed);
return;
}
// If we're expanding a macro argument, put the tokens back.
if (InMacroArgPreExpansion) {
Toks.revert();
return;
}
SourceLocation RParenLoc = Tok.getLocation();
std::string StrVal = getSpelling(StrTok);
// The _Pragma is lexically sound. Destringize according to C11 6.10.9.1:
// "The string literal is destringized by deleting any encoding prefix,
// deleting the leading and trailing double-quotes, replacing each escape
// sequence \" by a double-quote, and replacing each escape sequence \\ by a
// single backslash."
if (StrVal[0] == 'L' || StrVal[0] == 'U' ||
(StrVal[0] == 'u' && StrVal[1] != '8'))
StrVal.erase(StrVal.begin());
else if (StrVal[0] == 'u')
StrVal.erase(StrVal.begin(), StrVal.begin() + 2);
if (StrVal[0] == 'R') {
// FIXME: C++11 does not specify how to handle raw-string-literals here.
// We strip off the 'R', the quotes, the d-char-sequences, and the parens.
assert(StrVal[1] == '"' && StrVal[StrVal.size() - 1] == '"' &&
"Invalid raw string token!");
// Measure the length of the d-char-sequence.
unsigned NumDChars = 0;
while (StrVal[2 + NumDChars] != '(') {
assert(NumDChars < (StrVal.size() - 5) / 2 &&
"Invalid raw string token!");
++NumDChars;
}
assert(StrVal[StrVal.size() - 2 - NumDChars] == ')');
// Remove 'R " d-char-sequence' and 'd-char-sequence "'. We'll replace the
// parens below.
StrVal.erase(0, 2 + NumDChars);
StrVal.erase(StrVal.size() - 1 - NumDChars);
} else {
assert(StrVal[0] == '"' && StrVal[StrVal.size()-1] == '"' &&
"Invalid string token!");
// Remove escaped quotes and escapes.
unsigned ResultPos = 1;
for (size_t i = 1, e = StrVal.size() - 1; i != e; ++i) {
// Skip escapes. \\ -> '\' and \" -> '"'.
if (StrVal[i] == '\\' && i + 1 < e &&
(StrVal[i + 1] == '\\' || StrVal[i + 1] == '"'))
++i;
StrVal[ResultPos++] = StrVal[i];
}
StrVal.erase(StrVal.begin() + ResultPos, StrVal.end() - 1);
}
// Remove the front quote, replacing it with a space, so that the pragma
// contents appear to have a space before them.
StrVal[0] = ' ';
// Replace the terminating quote with a \n.
StrVal[StrVal.size()-1] = '\n';
// Plop the string (including the newline and trailing null) into a buffer
// where we can lex it.
Token TmpTok;
TmpTok.startToken();
CreateString(StrVal, TmpTok);
SourceLocation TokLoc = TmpTok.getLocation();
// Make and enter a lexer object so that we lex and expand the tokens just
// like any others.
Lexer *TL = Lexer::Create_PragmaLexer(TokLoc, PragmaLoc, RParenLoc,
StrVal.size(), *this);
EnterSourceFileWithLexer(TL, nullptr);
// With everything set up, lex this as a #pragma directive.
HandlePragmaDirective({PIK__Pragma, PragmaLoc});
// Finally, return whatever came after the pragma directive.
return Lex(Tok);
}
/// HandleMicrosoft__pragma - Like Handle_Pragma except the pragma text
/// is not enclosed within a string literal.
void Preprocessor::HandleMicrosoft__pragma(Token &Tok) {
// During macro pre-expansion, check the syntax now but put the tokens back
// into the token stream for later consumption. Same as Handle_Pragma.
TokenCollector Toks = {*this, InMacroArgPreExpansion, {}, Tok};
// Remember the pragma token location.
SourceLocation PragmaLoc = Tok.getLocation();
// Read the '('.
Toks.lex();
if (Tok.isNot(tok::l_paren)) {
Diag(PragmaLoc, diag::err__Pragma_malformed);
return;
}
// Get the tokens enclosed within the __pragma(), as well as the final ')'.
SmallVector<Token, 32> PragmaToks;
int NumParens = 0;
Toks.lex();
while (Tok.isNot(tok::eof)) {
PragmaToks.push_back(Tok);
if (Tok.is(tok::l_paren))
NumParens++;
else if (Tok.is(tok::r_paren) && NumParens-- == 0)
break;
Toks.lex();
}
if (Tok.is(tok::eof)) {
Diag(PragmaLoc, diag::err_unterminated___pragma);
return;
}
// If we're expanding a macro argument, put the tokens back.
if (InMacroArgPreExpansion) {
Toks.revert();
return;
}
PragmaToks.front().setFlag(Token::LeadingSpace);
// Replace the ')' with an EOD to mark the end of the pragma.
PragmaToks.back().setKind(tok::eod);
Token *TokArray = new Token[PragmaToks.size()];
std::copy(PragmaToks.begin(), PragmaToks.end(), TokArray);
// Push the tokens onto the stack.
EnterTokenStream(TokArray, PragmaToks.size(), true, true,
/*IsReinject*/ false);
// With everything set up, lex this as a #pragma directive.
HandlePragmaDirective({PIK___pragma, PragmaLoc});
// Finally, return whatever came after the pragma directive.
return Lex(Tok);
}
/// HandlePragmaOnce - Handle \#pragma once. OnceTok is the 'once'.
void Preprocessor::HandlePragmaOnce(Token &OnceTok) {
// Don't honor the 'once' when handling the primary source file, unless
// this is a prefix to a TU, which indicates we're generating a PCH file, or
// when the main file is a header (e.g. when -xc-header is provided on the
// commandline).
if (isInPrimaryFile() && TUKind != TU_Prefix && !getLangOpts().IsHeaderFile) {
Diag(OnceTok, diag::pp_pragma_once_in_main_file);
return;
}
// Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
// Mark the file as a once-only file now.
HeaderInfo.MarkFileIncludeOnce(getCurrentFileLexer()->getFileEntry());
}
void Preprocessor::HandlePragmaMark(Token &MarkTok) {
assert(CurPPLexer && "No current lexer?");
SmallString<64> Buffer;
CurLexer->ReadToEndOfLine(&Buffer);
if (Callbacks)
Callbacks->PragmaMark(MarkTok.getLocation(), Buffer);
}
/// HandlePragmaPoison - Handle \#pragma GCC poison. PoisonTok is the 'poison'.
void Preprocessor::HandlePragmaPoison() {
Token Tok;
while (true) {
// Read the next token to poison. While doing this, pretend that we are
// skipping while reading the identifier to poison.
// This avoids errors on code like:
// #pragma GCC poison X
// #pragma GCC poison X
if (CurPPLexer) CurPPLexer->LexingRawMode = true;
LexUnexpandedToken(Tok);
if (CurPPLexer) CurPPLexer->LexingRawMode = false;
// If we reached the end of line, we're done.
if (Tok.is(tok::eod)) return;
// Can only poison identifiers.
if (Tok.isNot(tok::raw_identifier)) {
Diag(Tok, diag::err_pp_invalid_poison);
return;
}
// Look up the identifier info for the token. We disabled identifier lookup
// by saying we're skipping contents, so we need to do this manually.
IdentifierInfo *II = LookUpIdentifierInfo(Tok);
// Already poisoned.
if (II->isPoisoned()) continue;
// If this is a macro identifier, emit a warning.
if (isMacroDefined(II))
Diag(Tok, diag::pp_poisoning_existing_macro);
// Finally, poison it!
II->setIsPoisoned();
if (II->isFromAST())
II->setChangedSinceDeserialization();
}
}
/// HandlePragmaSystemHeader - Implement \#pragma GCC system_header. We know
/// that the whole directive has been parsed.
void Preprocessor::HandlePragmaSystemHeader(Token &SysHeaderTok) {
if (isInPrimaryFile()) {
Diag(SysHeaderTok, diag::pp_pragma_sysheader_in_main_file);
return;
}
// Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
PreprocessorLexer *TheLexer = getCurrentFileLexer();
// Mark the file as a system header.
HeaderInfo.MarkFileSystemHeader(TheLexer->getFileEntry());
PresumedLoc PLoc = SourceMgr.getPresumedLoc(SysHeaderTok.getLocation());
if (PLoc.isInvalid())
return;
unsigned FilenameID = SourceMgr.getLineTableFilenameID(PLoc.getFilename());
// Notify the client, if desired, that we are in a new source file.
if (Callbacks)
Callbacks->FileChanged(SysHeaderTok.getLocation(),
PPCallbacks::SystemHeaderPragma, SrcMgr::C_System);
// Emit a line marker. This will change any source locations from this point
// forward to realize they are in a system header.
// Create a line note with this information.
SourceMgr.AddLineNote(SysHeaderTok.getLocation(), PLoc.getLine() + 1,
FilenameID, /*IsEntry=*/false, /*IsExit=*/false,
SrcMgr::C_System);
}
static llvm::Optional<Token> LexHeader(Preprocessor &PP,
Optional<FileEntryRef> &File,
bool SuppressIncludeNotFoundError) {
Token FilenameTok;
if (PP.LexHeaderName(FilenameTok, /*AllowConcatenation*/ false))
return llvm::None;
// If the next token wasn't a header-name, diagnose the error.
if (FilenameTok.isNot(tok::header_name)) {
PP.Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename);
return llvm::None;
}
// Reserve a buffer to get the spelling.
SmallString<128> FilenameBuffer;
bool Invalid = false;
StringRef Filename = PP.getSpelling(FilenameTok, FilenameBuffer, &Invalid);
if (Invalid)
return llvm::None;
bool isAngled =
PP.GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename);
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
// error.
if (Filename.empty())
return llvm::None;
// Search include directories for this file.
const DirectoryLookup *CurDir;
File = PP.LookupFile(FilenameTok.getLocation(), Filename, isAngled, nullptr,
nullptr, CurDir, nullptr, nullptr, nullptr, nullptr,
nullptr);
if (!File) {
if (!SuppressIncludeNotFoundError)
PP.Diag(FilenameTok, diag::err_pp_file_not_found) << Filename;
return llvm::None;
}
return FilenameTok;
}
/// HandlePragmaIncludeInstead - Handle \#pragma clang include_instead(header).
void Preprocessor::HandlePragmaIncludeInstead(Token &Tok) {
// Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
PreprocessorLexer *TheLexer = getCurrentFileLexer();
if (!SourceMgr.isInSystemHeader(Tok.getLocation())) {
Diag(Tok, diag::err_pragma_include_instead_not_sysheader);
return;
}
Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected) << "(";
return;
}
Optional<FileEntryRef> File;
llvm::Optional<Token> FilenameTok =
LexHeader(*this, File, SuppressIncludeNotFoundError);
if (!FilenameTok)
return;
Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << ")";
return;
}
SmallString<128> FilenameBuffer;
StringRef Filename = getSpelling(*FilenameTok, FilenameBuffer);
HeaderInfo.AddFileAlias(TheLexer->getFileEntry(), Filename);
}
/// HandlePragmaDependency - Handle \#pragma GCC dependency "foo" blah.
void Preprocessor::HandlePragmaDependency(Token &DependencyTok) {
Optional<FileEntryRef> File;
llvm::Optional<Token> FilenameTok =
LexHeader(*this, File, SuppressIncludeNotFoundError);
if (!FilenameTok)
return;
const FileEntry *CurFile = getCurrentFileLexer()->getFileEntry();
// If this file is older than the file it depends on, emit a diagnostic.
if (CurFile && CurFile->getModificationTime() < File->getModificationTime()) {
// Lex tokens at the end of the message and include them in the message.
std::string Message;
Lex(DependencyTok);
while (DependencyTok.isNot(tok::eod)) {
Message += getSpelling(DependencyTok) + " ";
Lex(DependencyTok);
}
// Remove the trailing ' ' if present.
if (!Message.empty())
Message.erase(Message.end()-1);
Diag(*FilenameTok, diag::pp_out_of_date_dependency) << Message;
}
}
/// ParsePragmaPushOrPopMacro - Handle parsing of pragma push_macro/pop_macro.
/// Return the IdentifierInfo* associated with the macro to push or pop.
IdentifierInfo *Preprocessor::ParsePragmaPushOrPopMacro(Token &Tok) {
// Remember the pragma token location.
Token PragmaTok = Tok;
// Read the '('.
Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
Diag(PragmaTok.getLocation(), diag::err_pragma_push_pop_macro_malformed)
<< getSpelling(PragmaTok);
return nullptr;
}
// Read the macro name string.
Lex(Tok);
if (Tok.isNot(tok::string_literal)) {
Diag(PragmaTok.getLocation(), diag::err_pragma_push_pop_macro_malformed)
<< getSpelling(PragmaTok);
return nullptr;
}
if (Tok.hasUDSuffix()) {
Diag(Tok, diag::err_invalid_string_udl);
return nullptr;
}
// Remember the macro string.
std::string StrVal = getSpelling(Tok);
// Read the ')'.
Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
Diag(PragmaTok.getLocation(), diag::err_pragma_push_pop_macro_malformed)
<< getSpelling(PragmaTok);
return nullptr;
}
assert(StrVal[0] == '"' && StrVal[StrVal.size()-1] == '"' &&
"Invalid string token!");
// Create a Token from the string.
Token MacroTok;
MacroTok.startToken();
MacroTok.setKind(tok::raw_identifier);
CreateString(StringRef(&StrVal[1], StrVal.size() - 2), MacroTok);
// Get the IdentifierInfo of MacroToPushTok.
return LookUpIdentifierInfo(MacroTok);
}
/// Handle \#pragma push_macro.
///
/// The syntax is:
/// \code
/// #pragma push_macro("macro")
/// \endcode
void Preprocessor::HandlePragmaPushMacro(Token &PushMacroTok) {
// Parse the pragma directive and get the macro IdentifierInfo*.
IdentifierInfo *IdentInfo = ParsePragmaPushOrPopMacro(PushMacroTok);
if (!IdentInfo) return;
// Get the MacroInfo associated with IdentInfo.
MacroInfo *MI = getMacroInfo(IdentInfo);
if (MI) {
// Allow the original MacroInfo to be redefined later.
MI->setIsAllowRedefinitionsWithoutWarning(true);
}
// Push the cloned MacroInfo so we can retrieve it later.
PragmaPushMacroInfo[IdentInfo].push_back(MI);
}
/// Handle \#pragma pop_macro.
///
/// The syntax is:
/// \code
/// #pragma pop_macro("macro")
/// \endcode
void Preprocessor::HandlePragmaPopMacro(Token &PopMacroTok) {
SourceLocation MessageLoc = PopMacroTok.getLocation();
// Parse the pragma directive and get the macro IdentifierInfo*.
IdentifierInfo *IdentInfo = ParsePragmaPushOrPopMacro(PopMacroTok);
if (!IdentInfo) return;
// Find the vector<MacroInfo*> associated with the macro.
llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>>::iterator iter =
PragmaPushMacroInfo.find(IdentInfo);
if (iter != PragmaPushMacroInfo.end()) {
// Forget the MacroInfo currently associated with IdentInfo.
if (MacroInfo *MI = getMacroInfo(IdentInfo)) {
if (MI->isWarnIfUnused())
WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
appendMacroDirective(IdentInfo, AllocateUndefMacroDirective(MessageLoc));
}
// Get the MacroInfo we want to reinstall.
MacroInfo *MacroToReInstall = iter->second.back();
if (MacroToReInstall)
// Reinstall the previously pushed macro.
appendDefMacroDirective(IdentInfo, MacroToReInstall, MessageLoc);
// Pop PragmaPushMacroInfo stack.
iter->second.pop_back();
if (iter->second.empty())
PragmaPushMacroInfo.erase(iter);
} else {
Diag(MessageLoc, diag::warn_pragma_pop_macro_no_push)
<< IdentInfo->getName();
}
}
void Preprocessor::HandlePragmaIncludeAlias(Token &Tok) {
// We will either get a quoted filename or a bracketed filename, and we
// have to track which we got. The first filename is the source name,
// and the second name is the mapped filename. If the first is quoted,
// the second must be as well (cannot mix and match quotes and brackets).
// Get the open paren
Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::warn_pragma_include_alias_expected) << "(";
return;
}
// We expect either a quoted string literal, or a bracketed name
Token SourceFilenameTok;
if (LexHeaderName(SourceFilenameTok))
return;
StringRef SourceFileName;
SmallString<128> FileNameBuffer;
if (SourceFilenameTok.is(tok::header_name)) {
SourceFileName = getSpelling(SourceFilenameTok, FileNameBuffer);
} else {
Diag(Tok, diag::warn_pragma_include_alias_expected_filename);
return;
}
FileNameBuffer.clear();
// Now we expect a comma, followed by another include name
Lex(Tok);
if (Tok.isNot(tok::comma)) {
Diag(Tok, diag::warn_pragma_include_alias_expected) << ",";
return;
}
Token ReplaceFilenameTok;
if (LexHeaderName(ReplaceFilenameTok))
return;
StringRef ReplaceFileName;
if (ReplaceFilenameTok.is(tok::header_name)) {
ReplaceFileName = getSpelling(ReplaceFilenameTok, FileNameBuffer);
} else {
Diag(Tok, diag::warn_pragma_include_alias_expected_filename);
return;
}
// Finally, we expect the closing paren
Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::warn_pragma_include_alias_expected) << ")";
return;
}
// Now that we have the source and target filenames, we need to make sure
// they're both of the same type (angled vs non-angled)
StringRef OriginalSource = SourceFileName;
bool SourceIsAngled =
GetIncludeFilenameSpelling(SourceFilenameTok.getLocation(),
SourceFileName);
bool ReplaceIsAngled =
GetIncludeFilenameSpelling(ReplaceFilenameTok.getLocation(),
ReplaceFileName);
if (!SourceFileName.empty() && !ReplaceFileName.empty() &&
(SourceIsAngled != ReplaceIsAngled)) {
unsigned int DiagID;
if (SourceIsAngled)
DiagID = diag::warn_pragma_include_alias_mismatch_angle;
else
DiagID = diag::warn_pragma_include_alias_mismatch_quote;
Diag(SourceFilenameTok.getLocation(), DiagID)
<< SourceFileName
<< ReplaceFileName;
return;
}
// Now we can let the include handler know about this mapping
getHeaderSearchInfo().AddIncludeAlias(OriginalSource, ReplaceFileName);
}
// Lex a component of a module name: either an identifier or a string literal;
// for components that can be expressed both ways, the two forms are equivalent.
static bool LexModuleNameComponent(
Preprocessor &PP, Token &Tok,
std::pair<IdentifierInfo *, SourceLocation> &ModuleNameComponent,
bool First) {
PP.LexUnexpandedToken(Tok);
if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
StringLiteralParser Literal(Tok, PP);
if (Literal.hadError)
return true;
ModuleNameComponent = std::make_pair(
PP.getIdentifierInfo(Literal.GetString()), Tok.getLocation());
} else if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) {
ModuleNameComponent =
std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation());
} else {
PP.Diag(Tok.getLocation(), diag::err_pp_expected_module_name) << First;
return true;
}
return false;
}
static bool LexModuleName(
Preprocessor &PP, Token &Tok,
llvm::SmallVectorImpl<std::pair<IdentifierInfo *, SourceLocation>>
&ModuleName) {
while (true) {
std::pair<IdentifierInfo*, SourceLocation> NameComponent;
if (LexModuleNameComponent(PP, Tok, NameComponent, ModuleName.empty()))
return true;
ModuleName.push_back(NameComponent);
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::period))
return false;
}
}
void Preprocessor::HandlePragmaModuleBuild(Token &Tok) {
SourceLocation Loc = Tok.getLocation();
std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
if (LexModuleNameComponent(*this, Tok, ModuleNameLoc, true))
return;
IdentifierInfo *ModuleName = ModuleNameLoc.first;
LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod)) {
Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
DiscardUntilEndOfDirective();
}
CurLexer->LexingRawMode = true;
auto TryConsumeIdentifier = [&](StringRef Ident) -> bool {
if (Tok.getKind() != tok::raw_identifier ||
Tok.getRawIdentifier() != Ident)
return false;
CurLexer->Lex(Tok);
return true;
};
// Scan forward looking for the end of the module.
const char *Start = CurLexer->getBufferLocation();
const char *End = nullptr;
unsigned NestingLevel = 1;
while (true) {
End = CurLexer->getBufferLocation();
CurLexer->Lex(Tok);
if (Tok.is(tok::eof)) {
Diag(Loc, diag::err_pp_module_build_missing_end);
break;
}
if (Tok.isNot(tok::hash) || !Tok.isAtStartOfLine()) {
// Token was part of module; keep going.
continue;
}
// We hit something directive-shaped; check to see if this is the end
// of the module build.
CurLexer->ParsingPreprocessorDirective = true;
CurLexer->Lex(Tok);
if (TryConsumeIdentifier("pragma") && TryConsumeIdentifier("clang") &&
TryConsumeIdentifier("module")) {
if (TryConsumeIdentifier("build"))
// #pragma clang module build -> entering a nested module build.
++NestingLevel;
else if (TryConsumeIdentifier("endbuild")) {
// #pragma clang module endbuild -> leaving a module build.
if (--NestingLevel == 0)
break;
}
// We should either be looking at the EOD or more of the current directive
// preceding the EOD. Either way we can ignore this token and keep going.
assert(Tok.getKind() != tok::eof && "missing EOD before EOF");
}
}
CurLexer->LexingRawMode = false;
// Load the extracted text as a preprocessed module.
assert(CurLexer->getBuffer().begin() <= Start &&
Start <= CurLexer->getBuffer().end() &&
CurLexer->getBuffer().begin() <= End &&
End <= CurLexer->getBuffer().end() &&
"module source range not contained within same file buffer");
TheModuleLoader.createModuleFromSource(Loc, ModuleName->getName(),
StringRef(Start, End - Start));
}
void Preprocessor::HandlePragmaHdrstop(Token &Tok) {
Lex(Tok);
if (Tok.is(tok::l_paren)) {
Diag(Tok.getLocation(), diag::warn_pp_hdrstop_filename_ignored);
std::string FileName;
if (!LexStringLiteral(Tok, FileName, "pragma hdrstop", false))
return;
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
return;
}
Lex(Tok);
}
if (Tok.isNot(tok::eod))
Diag(Tok.getLocation(), diag::ext_pp_extra_tokens_at_eol)
<< "pragma hdrstop";
if (creatingPCHWithPragmaHdrStop() &&
SourceMgr.isInMainFile(Tok.getLocation())) {
assert(CurLexer && "no lexer for #pragma hdrstop processing");
Token &Result = Tok;
Result.startToken();
CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd, tok::eof);
CurLexer->cutOffLexing();
}
if (usingPCHWithPragmaHdrStop())
SkippingUntilPragmaHdrStop = false;
}
/// AddPragmaHandler - Add the specified pragma handler to the preprocessor.
/// If 'Namespace' is non-null, then it is a token required to exist on the
/// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
void Preprocessor::AddPragmaHandler(StringRef Namespace,
PragmaHandler *Handler) {
PragmaNamespace *InsertNS = PragmaHandlers.get();
// If this is specified to be in a namespace, step down into it.
if (!Namespace.empty()) {
// If there is already a pragma handler with the name of this namespace,
// we either have an error (directive with the same name as a namespace) or
// we already have the namespace to insert into.
if (PragmaHandler *Existing = PragmaHandlers->FindHandler(Namespace)) {
InsertNS = Existing->getIfNamespace();
assert(InsertNS != nullptr && "Cannot have a pragma namespace and pragma"
" handler with the same name!");
} else {
// Otherwise, this namespace doesn't exist yet, create and insert the
// handler for it.
InsertNS = new PragmaNamespace(Namespace);
PragmaHandlers->AddPragma(InsertNS);
}
}
// Check to make sure we don't already have a pragma for this identifier.
assert(!InsertNS->FindHandler(Handler->getName()) &&
"Pragma handler already exists for this identifier!");
InsertNS->AddPragma(Handler);
}
/// RemovePragmaHandler - Remove the specific pragma handler from the
/// preprocessor. If \arg Namespace is non-null, then it should be the
/// namespace that \arg Handler was added to. It is an error to remove
/// a handler that has not been registered.
void Preprocessor::RemovePragmaHandler(StringRef Namespace,
PragmaHandler *Handler) {
PragmaNamespace *NS = PragmaHandlers.get();
// If this is specified to be in a namespace, step down into it.
if (!Namespace.empty()) {
PragmaHandler *Existing = PragmaHandlers->FindHandler(Namespace);
assert(Existing && "Namespace containing handler does not exist!");
NS = Existing->getIfNamespace();
assert(NS && "Invalid namespace, registered as a regular pragma handler!");
}
NS->RemovePragmaHandler(Handler);
// If this is a non-default namespace and it is now empty, remove it.
if (NS != PragmaHandlers.get() && NS->IsEmpty()) {
PragmaHandlers->RemovePragmaHandler(NS);
delete NS;
}
}
bool Preprocessor::LexOnOffSwitch(tok::OnOffSwitch &Result) {
Token Tok;
LexUnexpandedToken(Tok);
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::ext_on_off_switch_syntax);
return true;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
if (II->isStr("ON"))
Result = tok::OOS_ON;
else if (II->isStr("OFF"))
Result = tok::OOS_OFF;
else if (II->isStr("DEFAULT"))
Result = tok::OOS_DEFAULT;
else {
Diag(Tok, diag::ext_on_off_switch_syntax);
return true;
}
// Verify that this is followed by EOD.
LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod))
Diag(Tok, diag::ext_pragma_syntax_eod);
return false;
}
namespace {
/// PragmaOnceHandler - "\#pragma once" marks the file as atomically included.
struct PragmaOnceHandler : public PragmaHandler {
PragmaOnceHandler() : PragmaHandler("once") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &OnceTok) override {
PP.CheckEndOfDirective("pragma once");
PP.HandlePragmaOnce(OnceTok);
}
};
/// PragmaMarkHandler - "\#pragma mark ..." is ignored by the compiler, and the
/// rest of the line is not lexed.
struct PragmaMarkHandler : public PragmaHandler {
PragmaMarkHandler() : PragmaHandler("mark") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &MarkTok) override {
PP.HandlePragmaMark(MarkTok);
}
};
/// PragmaPoisonHandler - "\#pragma poison x" marks x as not usable.
struct PragmaPoisonHandler : public PragmaHandler {
PragmaPoisonHandler() : PragmaHandler("poison") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &PoisonTok) override {
PP.HandlePragmaPoison();
}
};
/// PragmaSystemHeaderHandler - "\#pragma system_header" marks the current file
/// as a system header, which silences warnings in it.
struct PragmaSystemHeaderHandler : public PragmaHandler {
PragmaSystemHeaderHandler() : PragmaHandler("system_header") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &SHToken) override {
PP.HandlePragmaSystemHeader(SHToken);
PP.CheckEndOfDirective("pragma");
}
};
/// PragmaIncludeInsteadHandler - "\#pragma clang include_instead(header)" marks
/// the current file as non-includable if the including header is not a system
/// header.
struct PragmaIncludeInsteadHandler : public PragmaHandler {
PragmaIncludeInsteadHandler() : PragmaHandler("include_instead") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &IIToken) override {
PP.HandlePragmaIncludeInstead(IIToken);
}
};
struct PragmaDependencyHandler : public PragmaHandler {
PragmaDependencyHandler() : PragmaHandler("dependency") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &DepToken) override {
PP.HandlePragmaDependency(DepToken);
}
};
struct PragmaDebugHandler : public PragmaHandler {
PragmaDebugHandler() : PragmaHandler("__debug") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &DebugToken) override {
Token Tok;
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok, diag::warn_pragma_diagnostic_invalid);
return;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
if (II->isStr("assert")) {
if (!PP.getPreprocessorOpts().DisablePragmaDebugCrash)
llvm_unreachable("This is an assertion!");
} else if (II->isStr("crash")) {
llvm::Timer T("crash", "pragma crash");
llvm::TimeRegion R(&T);
if (!PP.getPreprocessorOpts().DisablePragmaDebugCrash)
LLVM_BUILTIN_TRAP;
} else if (II->isStr("parser_crash")) {
if (!PP.getPreprocessorOpts().DisablePragmaDebugCrash) {
Token Crasher;
Crasher.startToken();
Crasher.setKind(tok::annot_pragma_parser_crash);
Crasher.setAnnotationRange(SourceRange(Tok.getLocation()));
PP.EnterToken(Crasher, /*IsReinject*/ false);
}
} else if (II->isStr("dump")) {
Token Identifier;
PP.LexUnexpandedToken(Identifier);
if (auto *DumpII = Identifier.getIdentifierInfo()) {
Token DumpAnnot;
DumpAnnot.startToken();
DumpAnnot.setKind(tok::annot_pragma_dump);
DumpAnnot.setAnnotationRange(
SourceRange(Tok.getLocation(), Identifier.getLocation()));
DumpAnnot.setAnnotationValue(DumpII);
PP.DiscardUntilEndOfDirective();
PP.EnterToken(DumpAnnot, /*IsReinject*/false);
} else {
PP.Diag(Identifier, diag::warn_pragma_debug_missing_argument)
<< II->getName();
}
} else if (II->isStr("diag_mapping")) {
Token DiagName;
PP.LexUnexpandedToken(DiagName);
if (DiagName.is(tok::eod))
PP.getDiagnostics().dump();
else if (DiagName.is(tok::string_literal) && !DiagName.hasUDSuffix()) {
StringLiteralParser Literal(DiagName, PP);
if (Literal.hadError)
return;
PP.getDiagnostics().dump(Literal.GetString());
} else {
PP.Diag(DiagName, diag::warn_pragma_debug_missing_argument)
<< II->getName();
}
} else if (II->isStr("llvm_fatal_error")) {
if (!PP.getPreprocessorOpts().DisablePragmaDebugCrash)
llvm::report_fatal_error("#pragma clang __debug llvm_fatal_error");
} else if (II->isStr("llvm_unreachable")) {
if (!PP.getPreprocessorOpts().DisablePragmaDebugCrash)
llvm_unreachable("#pragma clang __debug llvm_unreachable");
} else if (II->isStr("macro")) {
Token MacroName;
PP.LexUnexpandedToken(MacroName);
auto *MacroII = MacroName.getIdentifierInfo();
if (MacroII)
PP.dumpMacroInfo(MacroII);
else
PP.Diag(MacroName, diag::warn_pragma_debug_missing_argument)
<< II->getName();
} else if (II->isStr("module_map")) {
llvm::SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 8>
ModuleName;
if (LexModuleName(PP, Tok, ModuleName))
return;
ModuleMap &MM = PP.getHeaderSearchInfo().getModuleMap();
Module *M = nullptr;
for (auto IIAndLoc : ModuleName) {
M = MM.lookupModuleQualified(IIAndLoc.first->getName(), M);
if (!M) {
PP.Diag(IIAndLoc.second, diag::warn_pragma_debug_unknown_module)
<< IIAndLoc.first;
return;
}
}
M->dump();
} else if (II->isStr("overflow_stack")) {
if (!PP.getPreprocessorOpts().DisablePragmaDebugCrash)
DebugOverflowStack();
} else if (II->isStr("captured")) {
HandleCaptured(PP);
} else if (II->isStr("modules")) {
struct ModuleVisitor {
Preprocessor &PP;
void visit(Module *M, bool VisibleOnly) {
SourceLocation ImportLoc = PP.getModuleImportLoc(M);
if (!VisibleOnly || ImportLoc.isValid()) {
llvm::errs() << M->getFullModuleName() << " ";
if (ImportLoc.isValid()) {
llvm::errs() << M << " visible ";
ImportLoc.print(llvm::errs(), PP.getSourceManager());
}
llvm::errs() << "\n";
}
for (Module *Sub : M->submodules()) {
if (!VisibleOnly || ImportLoc.isInvalid() || Sub->IsExplicit)
visit(Sub, VisibleOnly);
}
}
void visitAll(bool VisibleOnly) {
for (auto &NameAndMod :
PP.getHeaderSearchInfo().getModuleMap().modules())
visit(NameAndMod.second, VisibleOnly);
}
} Visitor{PP};
Token Kind;
PP.LexUnexpandedToken(Kind);
auto *DumpII = Kind.getIdentifierInfo();
if (!DumpII) {
PP.Diag(Kind, diag::warn_pragma_debug_missing_argument)
<< II->getName();
} else if (DumpII->isStr("all")) {
Visitor.visitAll(false);
} else if (DumpII->isStr("visible")) {
Visitor.visitAll(true);
} else if (DumpII->isStr("building")) {
for (auto &Building : PP.getBuildingSubmodules()) {
llvm::errs() << "in " << Building.M->getFullModuleName();
if (Building.ImportLoc.isValid()) {
llvm::errs() << " imported ";
if (Building.IsPragma)
llvm::errs() << "via pragma ";
llvm::errs() << "at ";
Building.ImportLoc.print(llvm::errs(), PP.getSourceManager());
llvm::errs() << "\n";
}
}
} else {
PP.Diag(Tok, diag::warn_pragma_debug_unexpected_command)
<< DumpII->getName();
}
} else {
PP.Diag(Tok, diag::warn_pragma_debug_unexpected_command)
<< II->getName();
}
PPCallbacks *Callbacks = PP.getPPCallbacks();
if (Callbacks)
Callbacks->PragmaDebug(Tok.getLocation(), II->getName());
}
void HandleCaptured(Preprocessor &PP) {
Token Tok;
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol)
<< "pragma clang __debug captured";
return;
}
SourceLocation NameLoc = Tok.getLocation();
MutableArrayRef<Token> Toks(
PP.getPreprocessorAllocator().Allocate<Token>(1), 1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_captured);
Toks[0].setLocation(NameLoc);
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
// Disable MSVC warning about runtime stack overflow.
#ifdef _MSC_VER
#pragma warning(disable : 4717)
#endif
static void DebugOverflowStack(void (*P)() = nullptr) {
void (*volatile Self)(void(*P)()) = DebugOverflowStack;
Self(reinterpret_cast<void(*)()>(Self));
}
#ifdef _MSC_VER
#pragma warning(default : 4717)
#endif
};
/// PragmaDiagnosticHandler - e.g. '\#pragma GCC diagnostic ignored "-Wformat"'
struct PragmaDiagnosticHandler : public PragmaHandler {
private:
const char *Namespace;
public:
explicit PragmaDiagnosticHandler(const char *NS)
: PragmaHandler("diagnostic"), Namespace(NS) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &DiagToken) override {
SourceLocation DiagLoc = DiagToken.getLocation();
Token Tok;
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok, diag::warn_pragma_diagnostic_invalid);
return;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
PPCallbacks *Callbacks = PP.getPPCallbacks();
if (II->isStr("pop")) {
if (!PP.getDiagnostics().popMappings(DiagLoc))
PP.Diag(Tok, diag::warn_pragma_diagnostic_cannot_pop);
else if (Callbacks)
Callbacks->PragmaDiagnosticPop(DiagLoc, Namespace);
return;
} else if (II->isStr("push")) {
PP.getDiagnostics().pushMappings(DiagLoc);
if (Callbacks)
Callbacks->PragmaDiagnosticPush(DiagLoc, Namespace);
return;
}
diag::Severity SV = llvm::StringSwitch<diag::Severity>(II->getName())
.Case("ignored", diag::Severity::Ignored)
.Case("warning", diag::Severity::Warning)
.Case("error", diag::Severity::Error)
.Case("fatal", diag::Severity::Fatal)
.Default(diag::Severity());
if (SV == diag::Severity()) {
PP.Diag(Tok, diag::warn_pragma_diagnostic_invalid);
return;
}
PP.LexUnexpandedToken(Tok);
SourceLocation StringLoc = Tok.getLocation();
std::string WarningName;
if (!PP.FinishLexStringLiteral(Tok, WarningName, "pragma diagnostic",
/*AllowMacroExpansion=*/false))
return;
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_diagnostic_invalid_token);
return;
}
if (WarningName.size() < 3 || WarningName[0] != '-' ||
(WarningName[1] != 'W' && WarningName[1] != 'R')) {
PP.Diag(StringLoc, diag::warn_pragma_diagnostic_invalid_option);
return;
}
diag::Flavor Flavor = WarningName[1] == 'W' ? diag::Flavor::WarningOrError
: diag::Flavor::Remark;
StringRef Group = StringRef(WarningName).substr(2);
bool unknownDiag = false;
if (Group == "everything") {
// Special handling for pragma clang diagnostic ... "-Weverything".
// There is no formal group named "everything", so there has to be a
// special case for it.
PP.getDiagnostics().setSeverityForAll(Flavor, SV, DiagLoc);
} else
unknownDiag = PP.getDiagnostics().setSeverityForGroup(Flavor, Group, SV,
DiagLoc);
if (unknownDiag)
PP.Diag(StringLoc, diag::warn_pragma_diagnostic_unknown_warning)
<< WarningName;
else if (Callbacks)
Callbacks->PragmaDiagnostic(DiagLoc, Namespace, SV, WarningName);
}
};
/// "\#pragma hdrstop [<header-name-string>]"
struct PragmaHdrstopHandler : public PragmaHandler {
PragmaHdrstopHandler() : PragmaHandler("hdrstop") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &DepToken) override {
PP.HandlePragmaHdrstop(DepToken);
}
};
/// "\#pragma warning(...)". MSVC's diagnostics do not map cleanly to clang's
/// diagnostics, so we don't really implement this pragma. We parse it and
/// ignore it to avoid -Wunknown-pragma warnings.
struct PragmaWarningHandler : public PragmaHandler {
PragmaWarningHandler() : PragmaHandler("warning") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
// Parse things like:
// warning(push, 1)
// warning(pop)
// warning(disable : 1 2 3 ; error : 4 5 6 ; suppress : 7 8 9)
SourceLocation DiagLoc = Tok.getLocation();
PPCallbacks *Callbacks = PP.getPPCallbacks();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok, diag::warn_pragma_warning_expected) << "(";
return;
}
PP.Lex(Tok);
IdentifierInfo *II = Tok.getIdentifierInfo();
if (II && II->isStr("push")) {
// #pragma warning( push[ ,n ] )
int Level = -1;
PP.Lex(Tok);
if (Tok.is(tok::comma)) {
PP.Lex(Tok);
uint64_t Value;
if (Tok.is(tok::numeric_constant) &&
PP.parseSimpleIntegerLiteral(Tok, Value))
Level = int(Value);
if (Level < 0 || Level > 4) {
PP.Diag(Tok, diag::warn_pragma_warning_push_level);
return;
}
}
PP.getDiagnostics().pushMappings(DiagLoc);
if (Callbacks)
Callbacks->PragmaWarningPush(DiagLoc, Level);
} else if (II && II->isStr("pop")) {
// #pragma warning( pop )
PP.Lex(Tok);
if (!PP.getDiagnostics().popMappings(DiagLoc))
PP.Diag(Tok, diag::warn_pragma_diagnostic_cannot_pop);
else if (Callbacks)
Callbacks->PragmaWarningPop(DiagLoc);
} else {
// #pragma warning( warning-specifier : warning-number-list
// [; warning-specifier : warning-number-list...] )
while (true) {
II = Tok.getIdentifierInfo();
if (!II && !Tok.is(tok::numeric_constant)) {
PP.Diag(Tok, diag::warn_pragma_warning_spec_invalid);
return;
}
// Figure out which warning specifier this is.
bool SpecifierValid;
PPCallbacks::PragmaWarningSpecifier Specifier;
if (II) {
int SpecifierInt = llvm::StringSwitch<int>(II->getName())
.Case("default", PPCallbacks::PWS_Default)
.Case("disable", PPCallbacks::PWS_Disable)
.Case("error", PPCallbacks::PWS_Error)
.Case("once", PPCallbacks::PWS_Once)
.Case("suppress", PPCallbacks::PWS_Suppress)
.Default(-1);
if ((SpecifierValid = SpecifierInt != -1))
Specifier =
static_cast<PPCallbacks::PragmaWarningSpecifier>(SpecifierInt);
// If we read a correct specifier, snatch next token (that should be
// ":", checked later).
if (SpecifierValid)
PP.Lex(Tok);
} else {
// Token is a numeric constant. It should be either 1, 2, 3 or 4.
uint64_t Value;
if (PP.parseSimpleIntegerLiteral(Tok, Value)) {
if ((SpecifierValid = (Value >= 1) && (Value <= 4)))
Specifier = static_cast<PPCallbacks::PragmaWarningSpecifier>(
PPCallbacks::PWS_Level1 + Value - 1);
} else
SpecifierValid = false;
// Next token already snatched by parseSimpleIntegerLiteral.
}
if (!SpecifierValid) {
PP.Diag(Tok, diag::warn_pragma_warning_spec_invalid);
return;
}
if (Tok.isNot(tok::colon)) {
PP.Diag(Tok, diag::warn_pragma_warning_expected) << ":";
return;
}
// Collect the warning ids.
SmallVector<int, 4> Ids;
PP.Lex(Tok);
while (Tok.is(tok::numeric_constant)) {
uint64_t Value;
if (!PP.parseSimpleIntegerLiteral(Tok, Value) || Value == 0 ||
Value > INT_MAX) {
PP.Diag(Tok, diag::warn_pragma_warning_expected_number);
return;
}
Ids.push_back(int(Value));
}
// Only act on disable for now.
diag::Severity SV = diag::Severity();
if (Specifier == PPCallbacks::PWS_Disable)
SV = diag::Severity::Ignored;
if (SV != diag::Severity())
for (int Id : Ids) {
if (auto Group = diagGroupFromCLWarningID(Id)) {
bool unknownDiag = PP.getDiagnostics().setSeverityForGroup(
diag::Flavor::WarningOrError, *Group, SV, DiagLoc);
assert(!unknownDiag &&
"wd table should only contain known diags");
(void)unknownDiag;
}
}
if (Callbacks)
Callbacks->PragmaWarning(DiagLoc, Specifier, Ids);
// Parse the next specifier if there is a semicolon.
if (Tok.isNot(tok::semi))
break;
PP.Lex(Tok);
}
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok, diag::warn_pragma_warning_expected) << ")";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma warning";
}
};
/// "\#pragma execution_character_set(...)". MSVC supports this pragma only
/// for "UTF-8". We parse it and ignore it if UTF-8 is provided and warn
/// otherwise to avoid -Wunknown-pragma warnings.
struct PragmaExecCharsetHandler : public PragmaHandler {
PragmaExecCharsetHandler() : PragmaHandler("execution_character_set") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
// Parse things like:
// execution_character_set(push, "UTF-8")
// execution_character_set(pop)
SourceLocation DiagLoc = Tok.getLocation();
PPCallbacks *Callbacks = PP.getPPCallbacks();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok, diag::warn_pragma_exec_charset_expected) << "(";
return;
}
PP.Lex(Tok);
IdentifierInfo *II = Tok.getIdentifierInfo();
if (II && II->isStr("push")) {
// #pragma execution_character_set( push[ , string ] )
PP.Lex(Tok);
if (Tok.is(tok::comma)) {
PP.Lex(Tok);
std::string ExecCharset;
if (!PP.FinishLexStringLiteral(Tok, ExecCharset,
"pragma execution_character_set",
/*AllowMacroExpansion=*/false))
return;
// MSVC supports either of these, but nothing else.
if (ExecCharset != "UTF-8" && ExecCharset != "utf-8") {
PP.Diag(Tok, diag::warn_pragma_exec_charset_push_invalid) << ExecCharset;
return;
}
}
if (Callbacks)
Callbacks->PragmaExecCharsetPush(DiagLoc, "UTF-8");
} else if (II && II->isStr("pop")) {
// #pragma execution_character_set( pop )
PP.Lex(Tok);
if (Callbacks)
Callbacks->PragmaExecCharsetPop(DiagLoc);
} else {
PP.Diag(Tok, diag::warn_pragma_exec_charset_spec_invalid);
return;
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok, diag::warn_pragma_exec_charset_expected) << ")";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma execution_character_set";
}
};
/// PragmaIncludeAliasHandler - "\#pragma include_alias("...")".
struct PragmaIncludeAliasHandler : public PragmaHandler {
PragmaIncludeAliasHandler() : PragmaHandler("include_alias") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &IncludeAliasTok) override {
PP.HandlePragmaIncludeAlias(IncludeAliasTok);
}
};
/// PragmaMessageHandler - Handle the microsoft and gcc \#pragma message
/// extension. The syntax is:
/// \code
/// #pragma message(string)
/// \endcode
/// OR, in GCC mode:
/// \code
/// #pragma message string
/// \endcode
/// string is a string, which is fully macro expanded, and permits string
/// concatenation, embedded escape characters, etc... See MSDN for more details.
/// Also handles \#pragma GCC warning and \#pragma GCC error which take the same
/// form as \#pragma message.
struct PragmaMessageHandler : public PragmaHandler {
private:
const PPCallbacks::PragmaMessageKind Kind;
const StringRef Namespace;
static const char* PragmaKind(PPCallbacks::PragmaMessageKind Kind,
bool PragmaNameOnly = false) {
switch (Kind) {
case PPCallbacks::PMK_Message:
return PragmaNameOnly ? "message" : "pragma message";
case PPCallbacks::PMK_Warning:
return PragmaNameOnly ? "warning" : "pragma warning";
case PPCallbacks::PMK_Error:
return PragmaNameOnly ? "error" : "pragma error";
}
llvm_unreachable("Unknown PragmaMessageKind!");
}
public:
PragmaMessageHandler(PPCallbacks::PragmaMessageKind Kind,
StringRef Namespace = StringRef())
: PragmaHandler(PragmaKind(Kind, true)), Kind(Kind),
Namespace(Namespace) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
SourceLocation MessageLoc = Tok.getLocation();
PP.Lex(Tok);
bool ExpectClosingParen = false;
switch (Tok.getKind()) {
case tok::l_paren:
// We have a MSVC style pragma message.
ExpectClosingParen = true;
// Read the string.
PP.Lex(Tok);
break;
case tok::string_literal:
// We have a GCC style pragma message, and we just read the string.
break;
default:
PP.Diag(MessageLoc, diag::err_pragma_message_malformed) << Kind;
return;
}
std::string MessageString;
if (!PP.FinishLexStringLiteral(Tok, MessageString, PragmaKind(Kind),
/*AllowMacroExpansion=*/true))
return;
if (ExpectClosingParen) {
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_message_malformed) << Kind;
return;
}
PP.Lex(Tok); // eat the r_paren.
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_message_malformed) << Kind;
return;
}
// Output the message.
PP.Diag(MessageLoc, (Kind == PPCallbacks::PMK_Error)
? diag::err_pragma_message
: diag::warn_pragma_message) << MessageString;
// If the pragma is lexically sound, notify any interested PPCallbacks.
if (PPCallbacks *Callbacks = PP.getPPCallbacks())
Callbacks->PragmaMessage(MessageLoc, Namespace, Kind, MessageString);
}
};
/// Handle the clang \#pragma module import extension. The syntax is:
/// \code
/// #pragma clang module import some.module.name
/// \endcode
struct PragmaModuleImportHandler : public PragmaHandler {
PragmaModuleImportHandler() : PragmaHandler("import") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
SourceLocation ImportLoc = Tok.getLocation();
// Read the module name.
llvm::SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 8>
ModuleName;
if (LexModuleName(PP, Tok, ModuleName))
return;
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
// If we have a non-empty module path, load the named module.
Module *Imported =
PP.getModuleLoader().loadModule(ImportLoc, ModuleName, Module::Hidden,
/*IsInclusionDirective=*/false);
if (!Imported)
return;
PP.makeModuleVisible(Imported, ImportLoc);
PP.EnterAnnotationToken(SourceRange(ImportLoc, ModuleName.back().second),
tok::annot_module_include, Imported);
if (auto *CB = PP.getPPCallbacks())
CB->moduleImport(ImportLoc, ModuleName, Imported);
}
};
/// Handle the clang \#pragma module begin extension. The syntax is:
/// \code
/// #pragma clang module begin some.module.name
/// ...
/// #pragma clang module end
/// \endcode
struct PragmaModuleBeginHandler : public PragmaHandler {
PragmaModuleBeginHandler() : PragmaHandler("begin") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
SourceLocation BeginLoc = Tok.getLocation();
// Read the module name.
llvm::SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 8>
ModuleName;
if (LexModuleName(PP, Tok, ModuleName))
return;
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
// We can only enter submodules of the current module.
StringRef Current = PP.getLangOpts().CurrentModule;
if (ModuleName.front().first->getName() != Current) {
PP.Diag(ModuleName.front().second, diag::err_pp_module_begin_wrong_module)
<< ModuleName.front().first << (ModuleName.size() > 1)
<< Current.empty() << Current;
return;
}
// Find the module we're entering. We require that a module map for it
// be loaded or implicitly loadable.
auto &HSI = PP.getHeaderSearchInfo();
Module *M = HSI.lookupModule(Current, ModuleName.front().second);
if (!M) {
PP.Diag(ModuleName.front().second,
diag::err_pp_module_begin_no_module_map) << Current;
return;
}
for (unsigned I = 1; I != ModuleName.size(); ++I) {
auto *NewM = M->findOrInferSubmodule(ModuleName[I].first->getName());
if (!NewM) {
PP.Diag(ModuleName[I].second, diag::err_pp_module_begin_no_submodule)
<< M->getFullModuleName() << ModuleName[I].first;
return;
}
M = NewM;
}
// If the module isn't available, it doesn't make sense to enter it.
if (Preprocessor::checkModuleIsAvailable(
PP.getLangOpts(), PP.getTargetInfo(), PP.getDiagnostics(), M)) {
PP.Diag(BeginLoc, diag::note_pp_module_begin_here)
<< M->getTopLevelModuleName();
return;
}
// Enter the scope of the submodule.
PP.EnterSubmodule(M, BeginLoc, /*ForPragma*/true);
PP.EnterAnnotationToken(SourceRange(BeginLoc, ModuleName.back().second),
tok::annot_module_begin, M);
}
};
/// Handle the clang \#pragma module end extension.
struct PragmaModuleEndHandler : public PragmaHandler {
PragmaModuleEndHandler() : PragmaHandler("end") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
SourceLocation Loc = Tok.getLocation();
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
Module *M = PP.LeaveSubmodule(/*ForPragma*/true);
if (M)
PP.EnterAnnotationToken(SourceRange(Loc), tok::annot_module_end, M);
else
PP.Diag(Loc, diag::err_pp_module_end_without_module_begin);
}
};
/// Handle the clang \#pragma module build extension.
struct PragmaModuleBuildHandler : public PragmaHandler {
PragmaModuleBuildHandler() : PragmaHandler("build") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
PP.HandlePragmaModuleBuild(Tok);
}
};
/// Handle the clang \#pragma module load extension.
struct PragmaModuleLoadHandler : public PragmaHandler {
PragmaModuleLoadHandler() : PragmaHandler("load") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
SourceLocation Loc = Tok.getLocation();
// Read the module name.
llvm::SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 8>
ModuleName;
if (LexModuleName(PP, Tok, ModuleName))
return;
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
// Load the module, don't make it visible.
PP.getModuleLoader().loadModule(Loc, ModuleName, Module::Hidden,
/*IsInclusionDirective=*/false);
}
};
/// PragmaPushMacroHandler - "\#pragma push_macro" saves the value of the
/// macro on the top of the stack.
struct PragmaPushMacroHandler : public PragmaHandler {
PragmaPushMacroHandler() : PragmaHandler("push_macro") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &PushMacroTok) override {
PP.HandlePragmaPushMacro(PushMacroTok);
}
};
/// PragmaPopMacroHandler - "\#pragma pop_macro" sets the value of the
/// macro to the value on the top of the stack.
struct PragmaPopMacroHandler : public PragmaHandler {
PragmaPopMacroHandler() : PragmaHandler("pop_macro") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &PopMacroTok) override {
PP.HandlePragmaPopMacro(PopMacroTok);
}
};
/// PragmaARCCFCodeAuditedHandler -
/// \#pragma clang arc_cf_code_audited begin/end
struct PragmaARCCFCodeAuditedHandler : public PragmaHandler {
PragmaARCCFCodeAuditedHandler() : PragmaHandler("arc_cf_code_audited") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &NameTok) override {
SourceLocation Loc = NameTok.getLocation();
bool IsBegin;
Token Tok;
// Lex the 'begin' or 'end'.
PP.LexUnexpandedToken(Tok);
const IdentifierInfo *BeginEnd = Tok.getIdentifierInfo();
if (BeginEnd && BeginEnd->isStr("begin")) {
IsBegin = true;
} else if (BeginEnd && BeginEnd->isStr("end")) {
IsBegin = false;
} else {
PP.Diag(Tok.getLocation(), diag::err_pp_arc_cf_code_audited_syntax);
return;
}
// Verify that this is followed by EOD.
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
// The start location of the active audit.
SourceLocation BeginLoc = PP.getPragmaARCCFCodeAuditedInfo().second;
// The start location we want after processing this.
SourceLocation NewLoc;
if (IsBegin) {
// Complain about attempts to re-enter an audit.
if (BeginLoc.isValid()) {
PP.Diag(Loc, diag::err_pp_double_begin_of_arc_cf_code_audited);
PP.Diag(BeginLoc, diag::note_pragma_entered_here);
}
NewLoc = Loc;
} else {
// Complain about attempts to leave an audit that doesn't exist.
if (!BeginLoc.isValid()) {
PP.Diag(Loc, diag::err_pp_unmatched_end_of_arc_cf_code_audited);
return;
}
NewLoc = SourceLocation();
}
PP.setPragmaARCCFCodeAuditedInfo(NameTok.getIdentifierInfo(), NewLoc);
}
};
/// PragmaAssumeNonNullHandler -
/// \#pragma clang assume_nonnull begin/end
struct PragmaAssumeNonNullHandler : public PragmaHandler {
PragmaAssumeNonNullHandler() : PragmaHandler("assume_nonnull") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &NameTok) override {
SourceLocation Loc = NameTok.getLocation();
bool IsBegin;
Token Tok;
// Lex the 'begin' or 'end'.
PP.LexUnexpandedToken(Tok);
const IdentifierInfo *BeginEnd = Tok.getIdentifierInfo();
if (BeginEnd && BeginEnd->isStr("begin")) {
IsBegin = true;
} else if (BeginEnd && BeginEnd->isStr("end")) {
IsBegin = false;
} else {
PP.Diag(Tok.getLocation(), diag::err_pp_assume_nonnull_syntax);
return;
}
// Verify that this is followed by EOD.
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod))
PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
// The start location of the active audit.
SourceLocation BeginLoc = PP.getPragmaAssumeNonNullLoc();
// The start location we want after processing this.
SourceLocation NewLoc;
PPCallbacks *Callbacks = PP.getPPCallbacks();
if (IsBegin) {
// Complain about attempts to re-enter an audit.
if (BeginLoc.isValid()) {
PP.Diag(Loc, diag::err_pp_double_begin_of_assume_nonnull);
PP.Diag(BeginLoc, diag::note_pragma_entered_here);
}
NewLoc = Loc;
if (Callbacks)
Callbacks->PragmaAssumeNonNullBegin(NewLoc);
} else {
// Complain about attempts to leave an audit that doesn't exist.
if (!BeginLoc.isValid()) {
PP.Diag(Loc, diag::err_pp_unmatched_end_of_assume_nonnull);
return;
}
NewLoc = SourceLocation();
if (Callbacks)
Callbacks->PragmaAssumeNonNullEnd(NewLoc);
}
PP.setPragmaAssumeNonNullLoc(NewLoc);
}
};
/// Handle "\#pragma region [...]"
///
/// The syntax is
/// \code
/// #pragma region [optional name]
/// #pragma endregion [optional comment]
/// \endcode
///
/// \note This is
/// <a href="http://msdn.microsoft.com/en-us/library/b6xkz944(v=vs.80).aspx">editor-only</a>
/// pragma, just skipped by compiler.
struct PragmaRegionHandler : public PragmaHandler {
PragmaRegionHandler(const char *pragma) : PragmaHandler(pragma) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &NameTok) override {
// #pragma region: endregion matches can be verified
// __pragma(region): no sense, but ignored by msvc
// _Pragma is not valid for MSVC, but there isn't any point
// to handle a _Pragma differently.
}
};
/// This handles parsing pragmas that take a macro name and optional message
static IdentifierInfo *HandleMacroAnnotationPragma(Preprocessor &PP, Token &Tok,
const char *Pragma,
std::string &MessageString) {
std::string Macro;
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok, diag::err_expected) << "(";
return nullptr;
}
PP.LexUnexpandedToken(Tok);
if (!Tok.is(tok::identifier)) {
PP.Diag(Tok, diag::err_expected) << tok::identifier;
return nullptr;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
if (!II->hasMacroDefinition()) {
PP.Diag(Tok, diag::err_pp_visibility_non_macro) << II;
return nullptr;
}
PP.Lex(Tok);
if (Tok.is(tok::comma)) {
PP.Lex(Tok);
if (!PP.FinishLexStringLiteral(Tok, MessageString, Pragma,
/*AllowMacroExpansion=*/true))
return nullptr;
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok, diag::err_expected) << ")";
return nullptr;
}
return II;
}
/// "\#pragma clang deprecated(...)"
///
/// The syntax is
/// \code
/// #pragma clang deprecate(MACRO_NAME [, Message])
/// \endcode
struct PragmaDeprecatedHandler : public PragmaHandler {
PragmaDeprecatedHandler() : PragmaHandler("deprecated") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
std::string MessageString;
if (IdentifierInfo *II = HandleMacroAnnotationPragma(
PP, Tok, "#pragma clang deprecated", MessageString)) {
II->setIsDeprecatedMacro(true);
PP.addMacroDeprecationMsg(II, std::move(MessageString),
Tok.getLocation());
}
}
};
/// "\#pragma clang restrict_expansion(...)"
///
/// The syntax is
/// \code
/// #pragma clang restrict_expansion(MACRO_NAME [, Message])
/// \endcode
struct PragmaRestrictExpansionHandler : public PragmaHandler {
PragmaRestrictExpansionHandler() : PragmaHandler("restrict_expansion") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
std::string MessageString;
if (IdentifierInfo *II = HandleMacroAnnotationPragma(
PP, Tok, "#pragma clang restrict_expansion", MessageString)) {
II->setIsRestrictExpansion(true);
PP.addRestrictExpansionMsg(II, std::move(MessageString),
Tok.getLocation());
}
}
};
/// "\#pragma clang final(...)"
///
/// The syntax is
/// \code
/// #pragma clang final(MACRO_NAME)
/// \endcode
struct PragmaFinalHandler : public PragmaHandler {
PragmaFinalHandler() : PragmaHandler("final") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
std::string Macro;
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok, diag::err_expected) << "(";
return;
}
PP.LexUnexpandedToken(Tok);
if (!Tok.is(tok::identifier)) {
PP.Diag(Tok, diag::err_expected) << tok::identifier;
return;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
if (!II->hasMacroDefinition()) {
PP.Diag(Tok, diag::err_pp_visibility_non_macro) << II;
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok, diag::err_expected) << ")";
return;
}
II->setIsFinal(true);
PP.addFinalLoc(II, Tok.getLocation());
}
};
} // namespace
/// RegisterBuiltinPragmas - Install the standard preprocessor pragmas:
/// \#pragma GCC poison/system_header/dependency and \#pragma once.
void Preprocessor::RegisterBuiltinPragmas() {
AddPragmaHandler(new PragmaOnceHandler());
AddPragmaHandler(new PragmaMarkHandler());
AddPragmaHandler(new PragmaPushMacroHandler());
AddPragmaHandler(new PragmaPopMacroHandler());
AddPragmaHandler(new PragmaMessageHandler(PPCallbacks::PMK_Message));
// #pragma GCC ...
AddPragmaHandler("GCC", new PragmaPoisonHandler());
AddPragmaHandler("GCC", new PragmaSystemHeaderHandler());
AddPragmaHandler("GCC", new PragmaDependencyHandler());
AddPragmaHandler("GCC", new PragmaDiagnosticHandler("GCC"));
AddPragmaHandler("GCC", new PragmaMessageHandler(PPCallbacks::PMK_Warning,
"GCC"));
AddPragmaHandler("GCC", new PragmaMessageHandler(PPCallbacks::PMK_Error,
"GCC"));
// #pragma clang ...
AddPragmaHandler("clang", new PragmaPoisonHandler());
AddPragmaHandler("clang", new PragmaSystemHeaderHandler());
AddPragmaHandler("clang", new PragmaIncludeInsteadHandler());
AddPragmaHandler("clang", new PragmaDebugHandler());
AddPragmaHandler("clang", new PragmaDependencyHandler());
AddPragmaHandler("clang", new PragmaDiagnosticHandler("clang"));
AddPragmaHandler("clang", new PragmaARCCFCodeAuditedHandler());
AddPragmaHandler("clang", new PragmaAssumeNonNullHandler());
AddPragmaHandler("clang", new PragmaDeprecatedHandler());
AddPragmaHandler("clang", new PragmaRestrictExpansionHandler());
AddPragmaHandler("clang", new PragmaFinalHandler());
// #pragma clang module ...
auto *ModuleHandler = new PragmaNamespace("module");
AddPragmaHandler("clang", ModuleHandler);
ModuleHandler->AddPragma(new PragmaModuleImportHandler());
ModuleHandler->AddPragma(new PragmaModuleBeginHandler());
ModuleHandler->AddPragma(new PragmaModuleEndHandler());
ModuleHandler->AddPragma(new PragmaModuleBuildHandler());
ModuleHandler->AddPragma(new PragmaModuleLoadHandler());
// Add region pragmas.
AddPragmaHandler(new PragmaRegionHandler("region"));
AddPragmaHandler(new PragmaRegionHandler("endregion"));
// MS extensions.
if (LangOpts.MicrosoftExt) {
AddPragmaHandler(new PragmaWarningHandler());
AddPragmaHandler(new PragmaExecCharsetHandler());
AddPragmaHandler(new PragmaIncludeAliasHandler());
AddPragmaHandler(new PragmaHdrstopHandler());
AddPragmaHandler(new PragmaSystemHeaderHandler());
}
// Pragmas added by plugins
for (const PragmaHandlerRegistry::entry &handler :
PragmaHandlerRegistry::entries()) {
AddPragmaHandler(handler.instantiate().release());
}
}
/// Ignore all pragmas, useful for modes such as -Eonly which would otherwise
/// warn about those pragmas being unknown.
void Preprocessor::IgnorePragmas() {
AddPragmaHandler(new EmptyPragmaHandler());
// Also ignore all pragmas in all namespaces created
// in Preprocessor::RegisterBuiltinPragmas().
AddPragmaHandler("GCC", new EmptyPragmaHandler());
AddPragmaHandler("clang", new EmptyPragmaHandler());
}