| //===- ParentMapContext.cpp - Map of parents using DynTypedNode -*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Similar to ParentMap.cpp, but generalizes to non-Stmt nodes, which can have |
| // multiple parents. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ParentMapContext.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/TemplateBase.h" |
| |
| using namespace clang; |
| |
| ParentMapContext::ParentMapContext(ASTContext &Ctx) : ASTCtx(Ctx) {} |
| |
| ParentMapContext::~ParentMapContext() = default; |
| |
| void ParentMapContext::clear() { Parents.reset(); } |
| |
| const Expr *ParentMapContext::traverseIgnored(const Expr *E) const { |
| return traverseIgnored(const_cast<Expr *>(E)); |
| } |
| |
| Expr *ParentMapContext::traverseIgnored(Expr *E) const { |
| if (!E) |
| return nullptr; |
| |
| switch (Traversal) { |
| case TK_AsIs: |
| return E; |
| case TK_IgnoreUnlessSpelledInSource: |
| return E->IgnoreUnlessSpelledInSource(); |
| } |
| llvm_unreachable("Invalid Traversal type!"); |
| } |
| |
| DynTypedNode ParentMapContext::traverseIgnored(const DynTypedNode &N) const { |
| if (const auto *E = N.get<Expr>()) { |
| return DynTypedNode::create(*traverseIgnored(E)); |
| } |
| return N; |
| } |
| |
| template <typename T, typename... U> |
| std::tuple<bool, DynTypedNodeList, const T *, const U *...> |
| matchParents(const DynTypedNodeList &NodeList, |
| ParentMapContext::ParentMap *ParentMap); |
| |
| template <typename, typename...> struct MatchParents; |
| |
| class ParentMapContext::ParentMap { |
| |
| template <typename, typename...> friend struct ::MatchParents; |
| |
| /// Contains parents of a node. |
| using ParentVector = llvm::SmallVector<DynTypedNode, 2>; |
| |
| /// Maps from a node to its parents. This is used for nodes that have |
| /// pointer identity only, which are more common and we can save space by |
| /// only storing a unique pointer to them. |
| using ParentMapPointers = |
| llvm::DenseMap<const void *, |
| llvm::PointerUnion<const Decl *, const Stmt *, |
| DynTypedNode *, ParentVector *>>; |
| |
| /// Parent map for nodes without pointer identity. We store a full |
| /// DynTypedNode for all keys. |
| using ParentMapOtherNodes = |
| llvm::DenseMap<DynTypedNode, |
| llvm::PointerUnion<const Decl *, const Stmt *, |
| DynTypedNode *, ParentVector *>>; |
| |
| ParentMapPointers PointerParents; |
| ParentMapOtherNodes OtherParents; |
| class ASTVisitor; |
| |
| static DynTypedNode |
| getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) { |
| if (const auto *D = U.dyn_cast<const Decl *>()) |
| return DynTypedNode::create(*D); |
| if (const auto *S = U.dyn_cast<const Stmt *>()) |
| return DynTypedNode::create(*S); |
| return *U.get<DynTypedNode *>(); |
| } |
| |
| template <typename NodeTy, typename MapTy> |
| static DynTypedNodeList getDynNodeFromMap(const NodeTy &Node, |
| const MapTy &Map) { |
| auto I = Map.find(Node); |
| if (I == Map.end()) { |
| return llvm::ArrayRef<DynTypedNode>(); |
| } |
| if (const auto *V = I->second.template dyn_cast<ParentVector *>()) { |
| return llvm::makeArrayRef(*V); |
| } |
| return getSingleDynTypedNodeFromParentMap(I->second); |
| } |
| |
| public: |
| ParentMap(ASTContext &Ctx); |
| ~ParentMap() { |
| for (const auto &Entry : PointerParents) { |
| if (Entry.second.is<DynTypedNode *>()) { |
| delete Entry.second.get<DynTypedNode *>(); |
| } else if (Entry.second.is<ParentVector *>()) { |
| delete Entry.second.get<ParentVector *>(); |
| } |
| } |
| for (const auto &Entry : OtherParents) { |
| if (Entry.second.is<DynTypedNode *>()) { |
| delete Entry.second.get<DynTypedNode *>(); |
| } else if (Entry.second.is<ParentVector *>()) { |
| delete Entry.second.get<ParentVector *>(); |
| } |
| } |
| } |
| |
| DynTypedNodeList getParents(TraversalKind TK, const DynTypedNode &Node) { |
| if (Node.getNodeKind().hasPointerIdentity()) { |
| auto ParentList = |
| getDynNodeFromMap(Node.getMemoizationData(), PointerParents); |
| if (ParentList.size() > 0 && TK == TK_IgnoreUnlessSpelledInSource) { |
| |
| const auto *ChildExpr = Node.get<Expr>(); |
| |
| { |
| // Don't match explicit node types because different stdlib |
| // implementations implement this in different ways and have |
| // different intermediate nodes. |
| // Look up 4 levels for a cxxRewrittenBinaryOperator as that is |
| // enough for the major stdlib implementations. |
| auto RewrittenBinOpParentsList = ParentList; |
| int I = 0; |
| while (ChildExpr && RewrittenBinOpParentsList.size() == 1 && |
| I++ < 4) { |
| const auto *S = RewrittenBinOpParentsList[0].get<Stmt>(); |
| if (!S) |
| break; |
| |
| const auto *RWBO = dyn_cast<CXXRewrittenBinaryOperator>(S); |
| if (!RWBO) { |
| RewrittenBinOpParentsList = getDynNodeFromMap(S, PointerParents); |
| continue; |
| } |
| if (RWBO->getLHS()->IgnoreUnlessSpelledInSource() != ChildExpr && |
| RWBO->getRHS()->IgnoreUnlessSpelledInSource() != ChildExpr) |
| break; |
| return DynTypedNode::create(*RWBO); |
| } |
| } |
| |
| const auto *ParentExpr = ParentList[0].get<Expr>(); |
| if (ParentExpr && ChildExpr) |
| return AscendIgnoreUnlessSpelledInSource(ParentExpr, ChildExpr); |
| |
| { |
| auto AncestorNodes = |
| matchParents<DeclStmt, CXXForRangeStmt>(ParentList, this); |
| if (std::get<bool>(AncestorNodes) && |
| std::get<const CXXForRangeStmt *>(AncestorNodes) |
| ->getLoopVarStmt() == |
| std::get<const DeclStmt *>(AncestorNodes)) |
| return std::get<DynTypedNodeList>(AncestorNodes); |
| } |
| { |
| auto AncestorNodes = matchParents<VarDecl, DeclStmt, CXXForRangeStmt>( |
| ParentList, this); |
| if (std::get<bool>(AncestorNodes) && |
| std::get<const CXXForRangeStmt *>(AncestorNodes) |
| ->getRangeStmt() == |
| std::get<const DeclStmt *>(AncestorNodes)) |
| return std::get<DynTypedNodeList>(AncestorNodes); |
| } |
| { |
| auto AncestorNodes = |
| matchParents<CXXMethodDecl, CXXRecordDecl, LambdaExpr>(ParentList, |
| this); |
| if (std::get<bool>(AncestorNodes)) |
| return std::get<DynTypedNodeList>(AncestorNodes); |
| } |
| { |
| auto AncestorNodes = |
| matchParents<FunctionTemplateDecl, CXXRecordDecl, LambdaExpr>( |
| ParentList, this); |
| if (std::get<bool>(AncestorNodes)) |
| return std::get<DynTypedNodeList>(AncestorNodes); |
| } |
| } |
| return ParentList; |
| } |
| return getDynNodeFromMap(Node, OtherParents); |
| } |
| |
| DynTypedNodeList AscendIgnoreUnlessSpelledInSource(const Expr *E, |
| const Expr *Child) { |
| |
| auto ShouldSkip = [](const Expr *E, const Expr *Child) { |
| if (isa<ImplicitCastExpr>(E)) |
| return true; |
| |
| if (isa<FullExpr>(E)) |
| return true; |
| |
| if (isa<MaterializeTemporaryExpr>(E)) |
| return true; |
| |
| if (isa<CXXBindTemporaryExpr>(E)) |
| return true; |
| |
| if (isa<ParenExpr>(E)) |
| return true; |
| |
| if (isa<ExprWithCleanups>(E)) |
| return true; |
| |
| auto SR = Child->getSourceRange(); |
| |
| if (const auto *C = dyn_cast<CXXFunctionalCastExpr>(E)) { |
| if (C->getSourceRange() == SR) |
| return true; |
| } |
| |
| if (const auto *C = dyn_cast<CXXConstructExpr>(E)) { |
| if (C->getSourceRange() == SR || C->isElidable()) |
| return true; |
| } |
| |
| if (const auto *C = dyn_cast<CXXMemberCallExpr>(E)) { |
| if (C->getSourceRange() == SR) |
| return true; |
| } |
| |
| if (const auto *C = dyn_cast<MemberExpr>(E)) { |
| if (C->getSourceRange() == SR) |
| return true; |
| } |
| return false; |
| }; |
| |
| while (ShouldSkip(E, Child)) { |
| auto It = PointerParents.find(E); |
| if (It == PointerParents.end()) |
| break; |
| const auto *S = It->second.dyn_cast<const Stmt *>(); |
| if (!S) { |
| if (auto *Vec = It->second.dyn_cast<ParentVector *>()) |
| return llvm::makeArrayRef(*Vec); |
| return getSingleDynTypedNodeFromParentMap(It->second); |
| } |
| const auto *P = dyn_cast<Expr>(S); |
| if (!P) |
| return DynTypedNode::create(*S); |
| Child = E; |
| E = P; |
| } |
| return DynTypedNode::create(*E); |
| } |
| }; |
| |
| template <typename Tuple, std::size_t... Is> |
| auto tuple_pop_front_impl(const Tuple &tuple, std::index_sequence<Is...>) { |
| return std::make_tuple(std::get<1 + Is>(tuple)...); |
| } |
| |
| template <typename Tuple> auto tuple_pop_front(const Tuple &tuple) { |
| return tuple_pop_front_impl( |
| tuple, std::make_index_sequence<std::tuple_size<Tuple>::value - 1>()); |
| } |
| |
| template <typename T, typename... U> struct MatchParents { |
| static std::tuple<bool, DynTypedNodeList, const T *, const U *...> |
| match(const DynTypedNodeList &NodeList, |
| ParentMapContext::ParentMap *ParentMap) { |
| if (const auto *TypedNode = NodeList[0].get<T>()) { |
| auto NextParentList = |
| ParentMap->getDynNodeFromMap(TypedNode, ParentMap->PointerParents); |
| if (NextParentList.size() == 1) { |
| auto TailTuple = MatchParents<U...>::match(NextParentList, ParentMap); |
| if (std::get<bool>(TailTuple)) { |
| return std::tuple_cat( |
| std::make_tuple(true, std::get<DynTypedNodeList>(TailTuple), |
| TypedNode), |
| tuple_pop_front(tuple_pop_front(TailTuple))); |
| } |
| } |
| } |
| return std::tuple_cat(std::make_tuple(false, NodeList), |
| std::tuple<const T *, const U *...>()); |
| } |
| }; |
| |
| template <typename T> struct MatchParents<T> { |
| static std::tuple<bool, DynTypedNodeList, const T *> |
| match(const DynTypedNodeList &NodeList, |
| ParentMapContext::ParentMap *ParentMap) { |
| if (const auto *TypedNode = NodeList[0].get<T>()) { |
| auto NextParentList = |
| ParentMap->getDynNodeFromMap(TypedNode, ParentMap->PointerParents); |
| if (NextParentList.size() == 1) |
| return std::make_tuple(true, NodeList, TypedNode); |
| } |
| return std::make_tuple(false, NodeList, nullptr); |
| } |
| }; |
| |
| template <typename T, typename... U> |
| std::tuple<bool, DynTypedNodeList, const T *, const U *...> |
| matchParents(const DynTypedNodeList &NodeList, |
| ParentMapContext::ParentMap *ParentMap) { |
| return MatchParents<T, U...>::match(NodeList, ParentMap); |
| } |
| |
| /// Template specializations to abstract away from pointers and TypeLocs. |
| /// @{ |
| template <typename T> static DynTypedNode createDynTypedNode(const T &Node) { |
| return DynTypedNode::create(*Node); |
| } |
| template <> DynTypedNode createDynTypedNode(const TypeLoc &Node) { |
| return DynTypedNode::create(Node); |
| } |
| template <> |
| DynTypedNode createDynTypedNode(const NestedNameSpecifierLoc &Node) { |
| return DynTypedNode::create(Node); |
| } |
| /// @} |
| |
| /// A \c RecursiveASTVisitor that builds a map from nodes to their |
| /// parents as defined by the \c RecursiveASTVisitor. |
| /// |
| /// Note that the relationship described here is purely in terms of AST |
| /// traversal - there are other relationships (for example declaration context) |
| /// in the AST that are better modeled by special matchers. |
| class ParentMapContext::ParentMap::ASTVisitor |
| : public RecursiveASTVisitor<ASTVisitor> { |
| public: |
| ASTVisitor(ParentMap &Map) : Map(Map) {} |
| |
| private: |
| friend class RecursiveASTVisitor<ASTVisitor>; |
| |
| using VisitorBase = RecursiveASTVisitor<ASTVisitor>; |
| |
| bool shouldVisitTemplateInstantiations() const { return true; } |
| |
| bool shouldVisitImplicitCode() const { return true; } |
| |
| /// Record the parent of the node we're visiting. |
| /// MapNode is the child, the parent is on top of ParentStack. |
| /// Parents is the parent storage (either PointerParents or OtherParents). |
| template <typename MapNodeTy, typename MapTy> |
| void addParent(MapNodeTy MapNode, MapTy *Parents) { |
| if (ParentStack.empty()) |
| return; |
| |
| // FIXME: Currently we add the same parent multiple times, but only |
| // when no memoization data is available for the type. |
| // For example when we visit all subexpressions of template |
| // instantiations; this is suboptimal, but benign: the only way to |
| // visit those is with hasAncestor / hasParent, and those do not create |
| // new matches. |
| // The plan is to enable DynTypedNode to be storable in a map or hash |
| // map. The main problem there is to implement hash functions / |
| // comparison operators for all types that DynTypedNode supports that |
| // do not have pointer identity. |
| auto &NodeOrVector = (*Parents)[MapNode]; |
| if (NodeOrVector.isNull()) { |
| if (const auto *D = ParentStack.back().get<Decl>()) |
| NodeOrVector = D; |
| else if (const auto *S = ParentStack.back().get<Stmt>()) |
| NodeOrVector = S; |
| else |
| NodeOrVector = new DynTypedNode(ParentStack.back()); |
| } else { |
| if (!NodeOrVector.template is<ParentVector *>()) { |
| auto *Vector = new ParentVector( |
| 1, getSingleDynTypedNodeFromParentMap(NodeOrVector)); |
| delete NodeOrVector.template dyn_cast<DynTypedNode *>(); |
| NodeOrVector = Vector; |
| } |
| |
| auto *Vector = NodeOrVector.template get<ParentVector *>(); |
| // Skip duplicates for types that have memoization data. |
| // We must check that the type has memoization data before calling |
| // llvm::is_contained() because DynTypedNode::operator== can't compare all |
| // types. |
| bool Found = ParentStack.back().getMemoizationData() && |
| llvm::is_contained(*Vector, ParentStack.back()); |
| if (!Found) |
| Vector->push_back(ParentStack.back()); |
| } |
| } |
| |
| template <typename T, typename MapNodeTy, typename BaseTraverseFn, |
| typename MapTy> |
| bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse, |
| MapTy *Parents) { |
| if (!Node) |
| return true; |
| addParent(MapNode, Parents); |
| ParentStack.push_back(createDynTypedNode(Node)); |
| bool Result = BaseTraverse(); |
| ParentStack.pop_back(); |
| return Result; |
| } |
| |
| bool TraverseDecl(Decl *DeclNode) { |
| return TraverseNode( |
| DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); }, |
| &Map.PointerParents); |
| } |
| bool TraverseTypeLoc(TypeLoc TypeLocNode) { |
| return TraverseNode( |
| TypeLocNode, DynTypedNode::create(TypeLocNode), |
| [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); }, |
| &Map.OtherParents); |
| } |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) { |
| return TraverseNode( |
| NNSLocNode, DynTypedNode::create(NNSLocNode), |
| [&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); }, |
| &Map.OtherParents); |
| } |
| bool TraverseAttr(Attr *AttrNode) { |
| return TraverseNode( |
| AttrNode, AttrNode, [&] { return VisitorBase::TraverseAttr(AttrNode); }, |
| &Map.PointerParents); |
| } |
| |
| // Using generic TraverseNode for Stmt would prevent data-recursion. |
| bool dataTraverseStmtPre(Stmt *StmtNode) { |
| addParent(StmtNode, &Map.PointerParents); |
| ParentStack.push_back(DynTypedNode::create(*StmtNode)); |
| return true; |
| } |
| bool dataTraverseStmtPost(Stmt *StmtNode) { |
| ParentStack.pop_back(); |
| return true; |
| } |
| |
| ParentMap ⤅ |
| llvm::SmallVector<DynTypedNode, 16> ParentStack; |
| }; |
| |
| ParentMapContext::ParentMap::ParentMap(ASTContext &Ctx) { |
| ASTVisitor(*this).TraverseAST(Ctx); |
| } |
| |
| DynTypedNodeList ParentMapContext::getParents(const DynTypedNode &Node) { |
| if (!Parents) |
| // We build the parent map for the traversal scope (usually whole TU), as |
| // hasAncestor can escape any subtree. |
| Parents = std::make_unique<ParentMap>(ASTCtx); |
| return Parents->getParents(getTraversalKind(), Node); |
| } |