| //===- ASTStructuralEquivalence.cpp ---------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implement StructuralEquivalenceContext class and helper functions |
| // for layout matching. |
| // |
| // The structural equivalence check could have been implemented as a parallel |
| // BFS on a pair of graphs. That must have been the original approach at the |
| // beginning. |
| // Let's consider this simple BFS algorithm from the `s` source: |
| // ``` |
| // void bfs(Graph G, int s) |
| // { |
| // Queue<Integer> queue = new Queue<Integer>(); |
| // marked[s] = true; // Mark the source |
| // queue.enqueue(s); // and put it on the queue. |
| // while (!q.isEmpty()) { |
| // int v = queue.dequeue(); // Remove next vertex from the queue. |
| // for (int w : G.adj(v)) |
| // if (!marked[w]) // For every unmarked adjacent vertex, |
| // { |
| // marked[w] = true; |
| // queue.enqueue(w); |
| // } |
| // } |
| // } |
| // ``` |
| // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, |
| // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the |
| // marking (`marked`) functionality above, we use it to check whether we've |
| // already seen a pair of nodes. |
| // |
| // We put in the elements into the queue only in the toplevel decl check |
| // function: |
| // ``` |
| // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| // Decl *D1, Decl *D2); |
| // ``` |
| // The `while` loop where we iterate over the children is implemented in |
| // `Finish()`. And `Finish` is called only from the two **member** functions |
| // which check the equivalency of two Decls or two Types. ASTImporter (and |
| // other clients) call only these functions. |
| // |
| // The `static` implementation functions are called from `Finish`, these push |
| // the children nodes to the queue via `static bool |
| // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, |
| // Decl *D2)`. So far so good, this is almost like the BFS. However, if we |
| // let a static implementation function to call `Finish` via another **member** |
| // function that means we end up with two nested while loops each of them |
| // working on the same queue. This is wrong and nobody can reason about it's |
| // doing. Thus, static implementation functions must not call the **member** |
| // functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTStructuralEquivalence.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclFriend.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprConcepts.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/NestedNameSpecifier.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/TemplateName.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/ExceptionSpecificationType.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <cassert> |
| #include <utility> |
| |
| using namespace clang; |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| QualType T1, QualType T2); |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| Decl *D1, Decl *D2); |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const TemplateArgument &Arg1, |
| const TemplateArgument &Arg2); |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| NestedNameSpecifier *NNS1, |
| NestedNameSpecifier *NNS2); |
| static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
| const IdentifierInfo *Name2); |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const DeclarationName Name1, |
| const DeclarationName Name2) { |
| if (Name1.getNameKind() != Name2.getNameKind()) |
| return false; |
| |
| switch (Name1.getNameKind()) { |
| |
| case DeclarationName::Identifier: |
| return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(), |
| Name2.getAsIdentifierInfo()); |
| |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXConversionFunctionName: |
| return IsStructurallyEquivalent(Context, Name1.getCXXNameType(), |
| Name2.getCXXNameType()); |
| |
| case DeclarationName::CXXDeductionGuideName: { |
| if (!IsStructurallyEquivalent( |
| Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(), |
| Name2.getCXXDeductionGuideTemplate()->getDeclName())) |
| return false; |
| return IsStructurallyEquivalent(Context, |
| Name1.getCXXDeductionGuideTemplate(), |
| Name2.getCXXDeductionGuideTemplate()); |
| } |
| |
| case DeclarationName::CXXOperatorName: |
| return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); |
| |
| case DeclarationName::CXXLiteralOperatorName: |
| return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(), |
| Name2.getCXXLiteralIdentifier()); |
| |
| case DeclarationName::CXXUsingDirective: |
| return true; // FIXME When do we consider two using directives equal? |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| return true; // FIXME |
| } |
| |
| llvm_unreachable("Unhandled kind of DeclarationName"); |
| return true; |
| } |
| |
| namespace { |
| /// Encapsulates Stmt comparison logic. |
| class StmtComparer { |
| StructuralEquivalenceContext &Context; |
| |
| // IsStmtEquivalent overloads. Each overload compares a specific statement |
| // and only has to compare the data that is specific to the specific statement |
| // class. Should only be called from TraverseStmt. |
| |
| bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) { |
| return IsStructurallyEquivalent(Context, E1->getLabel(), E2->getLabel()); |
| } |
| |
| bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) { |
| return E1->getOp() == E2->getOp(); |
| } |
| |
| bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) { |
| return E1->getOpcode() == E2->getOpcode(); |
| } |
| |
| bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) { |
| // FIXME: IsStructurallyEquivalent requires non-const Decls. |
| Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl()); |
| Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl()); |
| |
| // Compare whether both calls know their callee. |
| if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2)) |
| return false; |
| |
| // Both calls have no callee, so nothing to do. |
| if (!static_cast<bool>(Callee1)) |
| return true; |
| |
| assert(Callee2); |
| return IsStructurallyEquivalent(Context, Callee1, Callee2); |
| } |
| |
| bool IsStmtEquivalent(const CharacterLiteral *E1, |
| const CharacterLiteral *E2) { |
| return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind(); |
| } |
| |
| bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) { |
| return true; // Semantics only depend on children. |
| } |
| |
| bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) { |
| // Number of children is actually checked by the generic children comparison |
| // code, but a CompoundStmt is one of the few statements where the number of |
| // children frequently differs and the number of statements is also always |
| // precomputed. Directly comparing the number of children here is thus |
| // just an optimization. |
| return E1->size() == E2->size(); |
| } |
| |
| bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1, |
| const DependentScopeDeclRefExpr *DE2) { |
| if (!IsStructurallyEquivalent(Context, DE1->getDeclName(), |
| DE2->getDeclName())) |
| return false; |
| return IsStructurallyEquivalent(Context, DE1->getQualifier(), |
| DE2->getQualifier()); |
| } |
| |
| bool IsStmtEquivalent(const Expr *E1, const Expr *E2) { |
| return IsStructurallyEquivalent(Context, E1->getType(), E2->getType()); |
| } |
| |
| bool IsStmtEquivalent(const ExpressionTraitExpr *E1, |
| const ExpressionTraitExpr *E2) { |
| return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue(); |
| } |
| |
| bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) { |
| return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue(); |
| } |
| |
| bool IsStmtEquivalent(const GenericSelectionExpr *E1, |
| const GenericSelectionExpr *E2) { |
| for (auto Pair : zip_longest(E1->getAssocTypeSourceInfos(), |
| E2->getAssocTypeSourceInfos())) { |
| Optional<TypeSourceInfo *> Child1 = std::get<0>(Pair); |
| Optional<TypeSourceInfo *> Child2 = std::get<1>(Pair); |
| // Skip this case if there are a different number of associated types. |
| if (!Child1 || !Child2) |
| return false; |
| |
| if (!IsStructurallyEquivalent(Context, (*Child1)->getType(), |
| (*Child2)->getType())) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool IsStmtEquivalent(const ImplicitCastExpr *CastE1, |
| const ImplicitCastExpr *CastE2) { |
| return IsStructurallyEquivalent(Context, CastE1->getType(), |
| CastE2->getType()); |
| } |
| |
| bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) { |
| return E1->getValue() == E2->getValue(); |
| } |
| |
| bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) { |
| return IsStructurallyEquivalent(Context, E1->getFoundDecl(), |
| E2->getFoundDecl()); |
| } |
| |
| bool IsStmtEquivalent(const ObjCStringLiteral *E1, |
| const ObjCStringLiteral *E2) { |
| // Just wraps a StringLiteral child. |
| return true; |
| } |
| |
| bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; } |
| |
| bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) { |
| return E1->getIdentKind() == E2->getIdentKind(); |
| } |
| |
| bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) { |
| return E1->getTemplateDepth() == E2->getTemplateDepth(); |
| } |
| |
| bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) { |
| return E1->getBytes() == E2->getBytes(); |
| } |
| |
| bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1, |
| const SubstNonTypeTemplateParmExpr *E2) { |
| return IsStructurallyEquivalent(Context, E1->getParameter(), |
| E2->getParameter()); |
| } |
| |
| bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1, |
| const SubstNonTypeTemplateParmPackExpr *E2) { |
| return IsStructurallyEquivalent(Context, E1->getArgumentPack(), |
| E2->getArgumentPack()); |
| } |
| |
| bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) { |
| if (E1->getTrait() != E2->getTrait()) |
| return false; |
| |
| for (auto Pair : zip_longest(E1->getArgs(), E2->getArgs())) { |
| Optional<TypeSourceInfo *> Child1 = std::get<0>(Pair); |
| Optional<TypeSourceInfo *> Child2 = std::get<1>(Pair); |
| // Different number of args. |
| if (!Child1 || !Child2) |
| return false; |
| |
| if (!IsStructurallyEquivalent(Context, (*Child1)->getType(), |
| (*Child2)->getType())) |
| return false; |
| } |
| return true; |
| } |
| |
| bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1, |
| const UnaryExprOrTypeTraitExpr *E2) { |
| if (E1->getKind() != E2->getKind()) |
| return false; |
| return IsStructurallyEquivalent(Context, E1->getTypeOfArgument(), |
| E2->getTypeOfArgument()); |
| } |
| |
| bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) { |
| return E1->getOpcode() == E2->getOpcode(); |
| } |
| |
| bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) { |
| // Semantics only depend on children. |
| return true; |
| } |
| |
| /// End point of the traversal chain. |
| bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; } |
| |
| // Create traversal methods that traverse the class hierarchy and return |
| // the accumulated result of the comparison. Each TraverseStmt overload |
| // calls the TraverseStmt overload of the parent class. For example, |
| // the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt |
| // overload of 'Expr' which then calls the overload for 'Stmt'. |
| #define STMT(CLASS, PARENT) \ |
| bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \ |
| if (!TraverseStmt(static_cast<const PARENT *>(S1), \ |
| static_cast<const PARENT *>(S2))) \ |
| return false; \ |
| return IsStmtEquivalent(S1, S2); \ |
| } |
| #include "clang/AST/StmtNodes.inc" |
| |
| public: |
| StmtComparer(StructuralEquivalenceContext &C) : Context(C) {} |
| |
| /// Determine whether two statements are equivalent. The statements have to |
| /// be of the same kind. The children of the statements and their properties |
| /// are not compared by this function. |
| bool IsEquivalent(const Stmt *S1, const Stmt *S2) { |
| if (S1->getStmtClass() != S2->getStmtClass()) |
| return false; |
| |
| // Each TraverseStmt walks the class hierarchy from the leaf class to |
| // the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast |
| // the Stmt we have here to its specific subclass so that we call the |
| // overload that walks the whole class hierarchy from leaf to root (e.g., |
| // cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed). |
| switch (S1->getStmtClass()) { |
| case Stmt::NoStmtClass: |
| llvm_unreachable("Can't traverse NoStmtClass"); |
| #define STMT(CLASS, PARENT) \ |
| case Stmt::StmtClass::CLASS##Class: \ |
| return TraverseStmt(static_cast<const CLASS *>(S1), \ |
| static_cast<const CLASS *>(S2)); |
| #define ABSTRACT_STMT(S) |
| #include "clang/AST/StmtNodes.inc" |
| } |
| llvm_unreachable("Invalid statement kind"); |
| } |
| }; |
| } // namespace |
| |
| /// Determine structural equivalence of two statements. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const Stmt *S1, const Stmt *S2) { |
| if (!S1 || !S2) |
| return S1 == S2; |
| |
| // Compare the statements itself. |
| StmtComparer Comparer(Context); |
| if (!Comparer.IsEquivalent(S1, S2)) |
| return false; |
| |
| // Iterate over the children of both statements and also compare them. |
| for (auto Pair : zip_longest(S1->children(), S2->children())) { |
| Optional<const Stmt *> Child1 = std::get<0>(Pair); |
| Optional<const Stmt *> Child2 = std::get<1>(Pair); |
| // One of the statements has a different amount of children than the other, |
| // so the statements can't be equivalent. |
| if (!Child1 || !Child2) |
| return false; |
| if (!IsStructurallyEquivalent(Context, *Child1, *Child2)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Determine whether two identifiers are equivalent. |
| static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
| const IdentifierInfo *Name2) { |
| if (!Name1 || !Name2) |
| return Name1 == Name2; |
| |
| return Name1->getName() == Name2->getName(); |
| } |
| |
| /// Determine whether two nested-name-specifiers are equivalent. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| NestedNameSpecifier *NNS1, |
| NestedNameSpecifier *NNS2) { |
| if (NNS1->getKind() != NNS2->getKind()) |
| return false; |
| |
| NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), |
| *Prefix2 = NNS2->getPrefix(); |
| if ((bool)Prefix1 != (bool)Prefix2) |
| return false; |
| |
| if (Prefix1) |
| if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2)) |
| return false; |
| |
| switch (NNS1->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| return IsStructurallyEquivalent(NNS1->getAsIdentifier(), |
| NNS2->getAsIdentifier()); |
| case NestedNameSpecifier::Namespace: |
| return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(), |
| NNS2->getAsNamespace()); |
| case NestedNameSpecifier::NamespaceAlias: |
| return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(), |
| NNS2->getAsNamespaceAlias()); |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0), |
| QualType(NNS2->getAsType(), 0)); |
| case NestedNameSpecifier::Global: |
| return true; |
| case NestedNameSpecifier::Super: |
| return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(), |
| NNS2->getAsRecordDecl()); |
| } |
| return false; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const TemplateName &N1, |
| const TemplateName &N2) { |
| TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); |
| TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); |
| if (TemplateDeclN1 && TemplateDeclN2) { |
| if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2)) |
| return false; |
| // If the kind is different we compare only the template decl. |
| if (N1.getKind() != N2.getKind()) |
| return true; |
| } else if (TemplateDeclN1 || TemplateDeclN2) |
| return false; |
| else if (N1.getKind() != N2.getKind()) |
| return false; |
| |
| // Check for special case incompatibilities. |
| switch (N1.getKind()) { |
| |
| case TemplateName::OverloadedTemplate: { |
| OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), |
| *OS2 = N2.getAsOverloadedTemplate(); |
| OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), |
| E1 = OS1->end(), E2 = OS2->end(); |
| for (; I1 != E1 && I2 != E2; ++I1, ++I2) |
| if (!IsStructurallyEquivalent(Context, *I1, *I2)) |
| return false; |
| return I1 == E1 && I2 == E2; |
| } |
| |
| case TemplateName::AssumedTemplate: { |
| AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), |
| *TN2 = N1.getAsAssumedTemplateName(); |
| return TN1->getDeclName() == TN2->getDeclName(); |
| } |
| |
| case TemplateName::DependentTemplate: { |
| DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), |
| *DN2 = N2.getAsDependentTemplateName(); |
| if (!IsStructurallyEquivalent(Context, DN1->getQualifier(), |
| DN2->getQualifier())) |
| return false; |
| if (DN1->isIdentifier() && DN2->isIdentifier()) |
| return IsStructurallyEquivalent(DN1->getIdentifier(), |
| DN2->getIdentifier()); |
| else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) |
| return DN1->getOperator() == DN2->getOperator(); |
| return false; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| SubstTemplateTemplateParmPackStorage |
| *P1 = N1.getAsSubstTemplateTemplateParmPack(), |
| *P2 = N2.getAsSubstTemplateTemplateParmPack(); |
| return IsStructurallyEquivalent(Context, P1->getArgumentPack(), |
| P2->getArgumentPack()) && |
| IsStructurallyEquivalent(Context, P1->getParameterPack(), |
| P2->getParameterPack()); |
| } |
| |
| case TemplateName::Template: |
| case TemplateName::QualifiedTemplate: |
| case TemplateName::SubstTemplateTemplateParm: |
| // It is sufficient to check value of getAsTemplateDecl. |
| break; |
| |
| } |
| |
| return true; |
| } |
| |
| /// Determine whether two template arguments are equivalent. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const TemplateArgument &Arg1, |
| const TemplateArgument &Arg2) { |
| if (Arg1.getKind() != Arg2.getKind()) |
| return false; |
| |
| switch (Arg1.getKind()) { |
| case TemplateArgument::Null: |
| return true; |
| |
| case TemplateArgument::Type: |
| return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType()); |
| |
| case TemplateArgument::Integral: |
| if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(), |
| Arg2.getIntegralType())) |
| return false; |
| |
| return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), |
| Arg2.getAsIntegral()); |
| |
| case TemplateArgument::Declaration: |
| return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl()); |
| |
| case TemplateArgument::NullPtr: |
| return true; // FIXME: Is this correct? |
| |
| case TemplateArgument::Template: |
| return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), |
| Arg2.getAsTemplate()); |
| |
| case TemplateArgument::TemplateExpansion: |
| return IsStructurallyEquivalent(Context, |
| Arg1.getAsTemplateOrTemplatePattern(), |
| Arg2.getAsTemplateOrTemplatePattern()); |
| |
| case TemplateArgument::Expression: |
| return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), |
| Arg2.getAsExpr()); |
| |
| case TemplateArgument::Pack: |
| if (Arg1.pack_size() != Arg2.pack_size()) |
| return false; |
| |
| for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I) |
| if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I], |
| Arg2.pack_begin()[I])) |
| return false; |
| |
| return true; |
| } |
| |
| llvm_unreachable("Invalid template argument kind"); |
| } |
| |
| /// Determine structural equivalence for the common part of array |
| /// types. |
| static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const ArrayType *Array1, |
| const ArrayType *Array2) { |
| if (!IsStructurallyEquivalent(Context, Array1->getElementType(), |
| Array2->getElementType())) |
| return false; |
| if (Array1->getSizeModifier() != Array2->getSizeModifier()) |
| return false; |
| if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence based on the ExtInfo of functions. This |
| /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling |
| /// conventions bits but must not compare some other bits. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| FunctionType::ExtInfo EI1, |
| FunctionType::ExtInfo EI2) { |
| // Compatible functions must have compatible calling conventions. |
| if (EI1.getCC() != EI2.getCC()) |
| return false; |
| |
| // Regparm is part of the calling convention. |
| if (EI1.getHasRegParm() != EI2.getHasRegParm()) |
| return false; |
| if (EI1.getRegParm() != EI2.getRegParm()) |
| return false; |
| |
| if (EI1.getProducesResult() != EI2.getProducesResult()) |
| return false; |
| if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) |
| return false; |
| if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Check the equivalence of exception specifications. |
| static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, |
| const FunctionProtoType *Proto1, |
| const FunctionProtoType *Proto2) { |
| |
| auto Spec1 = Proto1->getExceptionSpecType(); |
| auto Spec2 = Proto2->getExceptionSpecType(); |
| |
| if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2)) |
| return true; |
| |
| if (Spec1 != Spec2) |
| return false; |
| if (Spec1 == EST_Dynamic) { |
| if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) |
| return false; |
| for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), |
| Proto2->getExceptionType(I))) |
| return false; |
| } |
| } else if (isComputedNoexcept(Spec1)) { |
| if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), |
| Proto2->getNoexceptExpr())) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence of two types. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| QualType T1, QualType T2) { |
| if (T1.isNull() || T2.isNull()) |
| return T1.isNull() && T2.isNull(); |
| |
| QualType OrigT1 = T1; |
| QualType OrigT2 = T2; |
| |
| if (!Context.StrictTypeSpelling) { |
| // We aren't being strict about token-to-token equivalence of types, |
| // so map down to the canonical type. |
| T1 = Context.FromCtx.getCanonicalType(T1); |
| T2 = Context.ToCtx.getCanonicalType(T2); |
| } |
| |
| if (T1.getQualifiers() != T2.getQualifiers()) |
| return false; |
| |
| Type::TypeClass TC = T1->getTypeClass(); |
| |
| if (T1->getTypeClass() != T2->getTypeClass()) { |
| // Compare function types with prototypes vs. without prototypes as if |
| // both did not have prototypes. |
| if (T1->getTypeClass() == Type::FunctionProto && |
| T2->getTypeClass() == Type::FunctionNoProto) |
| TC = Type::FunctionNoProto; |
| else if (T1->getTypeClass() == Type::FunctionNoProto && |
| T2->getTypeClass() == Type::FunctionProto) |
| TC = Type::FunctionNoProto; |
| else |
| return false; |
| } |
| |
| switch (TC) { |
| case Type::Builtin: |
| // FIXME: Deal with Char_S/Char_U. |
| if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) |
| return false; |
| break; |
| |
| case Type::Complex: |
| if (!IsStructurallyEquivalent(Context, |
| cast<ComplexType>(T1)->getElementType(), |
| cast<ComplexType>(T2)->getElementType())) |
| return false; |
| break; |
| |
| case Type::Adjusted: |
| case Type::Decayed: |
| if (!IsStructurallyEquivalent(Context, |
| cast<AdjustedType>(T1)->getOriginalType(), |
| cast<AdjustedType>(T2)->getOriginalType())) |
| return false; |
| break; |
| |
| case Type::Pointer: |
| if (!IsStructurallyEquivalent(Context, |
| cast<PointerType>(T1)->getPointeeType(), |
| cast<PointerType>(T2)->getPointeeType())) |
| return false; |
| break; |
| |
| case Type::BlockPointer: |
| if (!IsStructurallyEquivalent(Context, |
| cast<BlockPointerType>(T1)->getPointeeType(), |
| cast<BlockPointerType>(T2)->getPointeeType())) |
| return false; |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: { |
| const auto *Ref1 = cast<ReferenceType>(T1); |
| const auto *Ref2 = cast<ReferenceType>(T2); |
| if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) |
| return false; |
| if (Ref1->isInnerRef() != Ref2->isInnerRef()) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), |
| Ref2->getPointeeTypeAsWritten())) |
| return false; |
| break; |
| } |
| |
| case Type::MemberPointer: { |
| const auto *MemPtr1 = cast<MemberPointerType>(T1); |
| const auto *MemPtr2 = cast<MemberPointerType>(T2); |
| if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), |
| MemPtr2->getPointeeType())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), |
| QualType(MemPtr2->getClass(), 0))) |
| return false; |
| break; |
| } |
| |
| case Type::ConstantArray: { |
| const auto *Array1 = cast<ConstantArrayType>(T1); |
| const auto *Array2 = cast<ConstantArrayType>(T2); |
| if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) |
| return false; |
| |
| if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| return false; |
| break; |
| } |
| |
| case Type::IncompleteArray: |
| if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1), |
| cast<ArrayType>(T2))) |
| return false; |
| break; |
| |
| case Type::VariableArray: { |
| const auto *Array1 = cast<VariableArrayType>(T1); |
| const auto *Array2 = cast<VariableArrayType>(T2); |
| if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), |
| Array2->getSizeExpr())) |
| return false; |
| |
| if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| return false; |
| |
| break; |
| } |
| |
| case Type::DependentSizedArray: { |
| const auto *Array1 = cast<DependentSizedArrayType>(T1); |
| const auto *Array2 = cast<DependentSizedArrayType>(T2); |
| if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), |
| Array2->getSizeExpr())) |
| return false; |
| |
| if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| return false; |
| |
| break; |
| } |
| |
| case Type::DependentAddressSpace: { |
| const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1); |
| const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2); |
| if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(), |
| DepAddressSpace2->getAddrSpaceExpr())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(), |
| DepAddressSpace2->getPointeeType())) |
| return false; |
| |
| break; |
| } |
| |
| case Type::DependentSizedExtVector: { |
| const auto *Vec1 = cast<DependentSizedExtVectorType>(T1); |
| const auto *Vec2 = cast<DependentSizedExtVectorType>(T2); |
| if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), |
| Vec2->getSizeExpr())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), |
| Vec2->getElementType())) |
| return false; |
| break; |
| } |
| |
| case Type::DependentVector: { |
| const auto *Vec1 = cast<DependentVectorType>(T1); |
| const auto *Vec2 = cast<DependentVectorType>(T2); |
| if (Vec1->getVectorKind() != Vec2->getVectorKind()) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), |
| Vec2->getSizeExpr())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), |
| Vec2->getElementType())) |
| return false; |
| break; |
| } |
| |
| case Type::Vector: |
| case Type::ExtVector: { |
| const auto *Vec1 = cast<VectorType>(T1); |
| const auto *Vec2 = cast<VectorType>(T2); |
| if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), |
| Vec2->getElementType())) |
| return false; |
| if (Vec1->getNumElements() != Vec2->getNumElements()) |
| return false; |
| if (Vec1->getVectorKind() != Vec2->getVectorKind()) |
| return false; |
| break; |
| } |
| |
| case Type::DependentSizedMatrix: { |
| const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(T1); |
| const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(T2); |
| // The element types, row and column expressions must be structurally |
| // equivalent. |
| if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(), |
| Mat2->getRowExpr()) || |
| !IsStructurallyEquivalent(Context, Mat1->getColumnExpr(), |
| Mat2->getColumnExpr()) || |
| !IsStructurallyEquivalent(Context, Mat1->getElementType(), |
| Mat2->getElementType())) |
| return false; |
| break; |
| } |
| |
| case Type::ConstantMatrix: { |
| const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(T1); |
| const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(T2); |
| // The element types must be structurally equivalent and the number of rows |
| // and columns must match. |
| if (!IsStructurallyEquivalent(Context, Mat1->getElementType(), |
| Mat2->getElementType()) || |
| Mat1->getNumRows() != Mat2->getNumRows() || |
| Mat1->getNumColumns() != Mat2->getNumColumns()) |
| return false; |
| break; |
| } |
| |
| case Type::FunctionProto: { |
| const auto *Proto1 = cast<FunctionProtoType>(T1); |
| const auto *Proto2 = cast<FunctionProtoType>(T2); |
| |
| if (Proto1->getNumParams() != Proto2->getNumParams()) |
| return false; |
| for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), |
| Proto2->getParamType(I))) |
| return false; |
| } |
| if (Proto1->isVariadic() != Proto2->isVariadic()) |
| return false; |
| |
| if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) |
| return false; |
| |
| // Check exceptions, this information is lost in canonical type. |
| const auto *OrigProto1 = |
| cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx)); |
| const auto *OrigProto2 = |
| cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx)); |
| if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2)) |
| return false; |
| |
| // Fall through to check the bits common with FunctionNoProtoType. |
| LLVM_FALLTHROUGH; |
| } |
| |
| case Type::FunctionNoProto: { |
| const auto *Function1 = cast<FunctionType>(T1); |
| const auto *Function2 = cast<FunctionType>(T2); |
| if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), |
| Function2->getReturnType())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(), |
| Function2->getExtInfo())) |
| return false; |
| break; |
| } |
| |
| case Type::UnresolvedUsing: |
| if (!IsStructurallyEquivalent(Context, |
| cast<UnresolvedUsingType>(T1)->getDecl(), |
| cast<UnresolvedUsingType>(T2)->getDecl())) |
| return false; |
| break; |
| |
| case Type::Attributed: |
| if (!IsStructurallyEquivalent(Context, |
| cast<AttributedType>(T1)->getModifiedType(), |
| cast<AttributedType>(T2)->getModifiedType())) |
| return false; |
| if (!IsStructurallyEquivalent( |
| Context, cast<AttributedType>(T1)->getEquivalentType(), |
| cast<AttributedType>(T2)->getEquivalentType())) |
| return false; |
| break; |
| |
| case Type::Paren: |
| if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(), |
| cast<ParenType>(T2)->getInnerType())) |
| return false; |
| break; |
| |
| case Type::MacroQualified: |
| if (!IsStructurallyEquivalent( |
| Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(), |
| cast<MacroQualifiedType>(T2)->getUnderlyingType())) |
| return false; |
| break; |
| |
| case Type::Typedef: |
| if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(), |
| cast<TypedefType>(T2)->getDecl())) |
| return false; |
| break; |
| |
| case Type::TypeOfExpr: |
| if (!IsStructurallyEquivalent( |
| Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(), |
| cast<TypeOfExprType>(T2)->getUnderlyingExpr())) |
| return false; |
| break; |
| |
| case Type::TypeOf: |
| if (!IsStructurallyEquivalent(Context, |
| cast<TypeOfType>(T1)->getUnderlyingType(), |
| cast<TypeOfType>(T2)->getUnderlyingType())) |
| return false; |
| break; |
| |
| case Type::UnaryTransform: |
| if (!IsStructurallyEquivalent( |
| Context, cast<UnaryTransformType>(T1)->getUnderlyingType(), |
| cast<UnaryTransformType>(T2)->getUnderlyingType())) |
| return false; |
| break; |
| |
| case Type::Decltype: |
| if (!IsStructurallyEquivalent(Context, |
| cast<DecltypeType>(T1)->getUnderlyingExpr(), |
| cast<DecltypeType>(T2)->getUnderlyingExpr())) |
| return false; |
| break; |
| |
| case Type::Auto: { |
| auto *Auto1 = cast<AutoType>(T1); |
| auto *Auto2 = cast<AutoType>(T2); |
| if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(), |
| Auto2->getDeducedType())) |
| return false; |
| if (Auto1->isConstrained() != Auto2->isConstrained()) |
| return false; |
| if (Auto1->isConstrained()) { |
| if (Auto1->getTypeConstraintConcept() != |
| Auto2->getTypeConstraintConcept()) |
| return false; |
| ArrayRef<TemplateArgument> Auto1Args = |
| Auto1->getTypeConstraintArguments(); |
| ArrayRef<TemplateArgument> Auto2Args = |
| Auto2->getTypeConstraintArguments(); |
| if (Auto1Args.size() != Auto2Args.size()) |
| return false; |
| for (unsigned I = 0, N = Auto1Args.size(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Auto1Args[I], Auto2Args[I])) |
| return false; |
| } |
| } |
| break; |
| } |
| |
| case Type::DeducedTemplateSpecialization: { |
| const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1); |
| const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2); |
| if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(), |
| DT2->getTemplateName())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(), |
| DT2->getDeducedType())) |
| return false; |
| break; |
| } |
| |
| case Type::Record: |
| case Type::Enum: |
| if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(), |
| cast<TagType>(T2)->getDecl())) |
| return false; |
| break; |
| |
| case Type::TemplateTypeParm: { |
| const auto *Parm1 = cast<TemplateTypeParmType>(T1); |
| const auto *Parm2 = cast<TemplateTypeParmType>(T2); |
| if (Parm1->getDepth() != Parm2->getDepth()) |
| return false; |
| if (Parm1->getIndex() != Parm2->getIndex()) |
| return false; |
| if (Parm1->isParameterPack() != Parm2->isParameterPack()) |
| return false; |
| |
| // Names of template type parameters are never significant. |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParm: { |
| const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1); |
| const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| QualType(Subst1->getReplacedParameter(), 0), |
| QualType(Subst2->getReplacedParameter(), 0))) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), |
| Subst2->getReplacementType())) |
| return false; |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParmPack: { |
| const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1); |
| const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| QualType(Subst1->getReplacedParameter(), 0), |
| QualType(Subst2->getReplacedParameter(), 0))) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), |
| Subst2->getArgumentPack())) |
| return false; |
| break; |
| } |
| |
| case Type::TemplateSpecialization: { |
| const auto *Spec1 = cast<TemplateSpecializationType>(T1); |
| const auto *Spec2 = cast<TemplateSpecializationType>(T2); |
| if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), |
| Spec2->getTemplateName())) |
| return false; |
| if (Spec1->getNumArgs() != Spec2->getNumArgs()) |
| return false; |
| for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), |
| Spec2->getArg(I))) |
| return false; |
| } |
| break; |
| } |
| |
| case Type::Elaborated: { |
| const auto *Elab1 = cast<ElaboratedType>(T1); |
| const auto *Elab2 = cast<ElaboratedType>(T2); |
| // CHECKME: what if a keyword is ETK_None or ETK_typename ? |
| if (Elab1->getKeyword() != Elab2->getKeyword()) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), |
| Elab2->getQualifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), |
| Elab2->getNamedType())) |
| return false; |
| break; |
| } |
| |
| case Type::InjectedClassName: { |
| const auto *Inj1 = cast<InjectedClassNameType>(T1); |
| const auto *Inj2 = cast<InjectedClassNameType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Inj1->getInjectedSpecializationType(), |
| Inj2->getInjectedSpecializationType())) |
| return false; |
| break; |
| } |
| |
| case Type::DependentName: { |
| const auto *Typename1 = cast<DependentNameType>(T1); |
| const auto *Typename2 = cast<DependentNameType>(T2); |
| if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), |
| Typename2->getQualifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Typename1->getIdentifier(), |
| Typename2->getIdentifier())) |
| return false; |
| |
| break; |
| } |
| |
| case Type::DependentTemplateSpecialization: { |
| const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1); |
| const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2); |
| if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), |
| Spec2->getQualifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Spec1->getIdentifier(), |
| Spec2->getIdentifier())) |
| return false; |
| if (Spec1->getNumArgs() != Spec2->getNumArgs()) |
| return false; |
| for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), |
| Spec2->getArg(I))) |
| return false; |
| } |
| break; |
| } |
| |
| case Type::PackExpansion: |
| if (!IsStructurallyEquivalent(Context, |
| cast<PackExpansionType>(T1)->getPattern(), |
| cast<PackExpansionType>(T2)->getPattern())) |
| return false; |
| break; |
| |
| case Type::ObjCInterface: { |
| const auto *Iface1 = cast<ObjCInterfaceType>(T1); |
| const auto *Iface2 = cast<ObjCInterfaceType>(T2); |
| if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), |
| Iface2->getDecl())) |
| return false; |
| break; |
| } |
| |
| case Type::ObjCTypeParam: { |
| const auto *Obj1 = cast<ObjCTypeParamType>(T1); |
| const auto *Obj2 = cast<ObjCTypeParamType>(T2); |
| if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl())) |
| return false; |
| |
| if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) |
| return false; |
| for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), |
| Obj2->getProtocol(I))) |
| return false; |
| } |
| break; |
| } |
| |
| case Type::ObjCObject: { |
| const auto *Obj1 = cast<ObjCObjectType>(T1); |
| const auto *Obj2 = cast<ObjCObjectType>(T2); |
| if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), |
| Obj2->getBaseType())) |
| return false; |
| if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) |
| return false; |
| for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), |
| Obj2->getProtocol(I))) |
| return false; |
| } |
| break; |
| } |
| |
| case Type::ObjCObjectPointer: { |
| const auto *Ptr1 = cast<ObjCObjectPointerType>(T1); |
| const auto *Ptr2 = cast<ObjCObjectPointerType>(T2); |
| if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), |
| Ptr2->getPointeeType())) |
| return false; |
| break; |
| } |
| |
| case Type::Atomic: |
| if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(), |
| cast<AtomicType>(T2)->getValueType())) |
| return false; |
| break; |
| |
| case Type::Pipe: |
| if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(), |
| cast<PipeType>(T2)->getElementType())) |
| return false; |
| break; |
| case Type::ExtInt: { |
| const auto *Int1 = cast<ExtIntType>(T1); |
| const auto *Int2 = cast<ExtIntType>(T2); |
| |
| if (Int1->isUnsigned() != Int2->isUnsigned() || |
| Int1->getNumBits() != Int2->getNumBits()) |
| return false; |
| break; |
| } |
| case Type::DependentExtInt: { |
| const auto *Int1 = cast<DependentExtIntType>(T1); |
| const auto *Int2 = cast<DependentExtIntType>(T2); |
| |
| if (Int1->isUnsigned() != Int2->isUnsigned() || |
| !IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(), |
| Int2->getNumBitsExpr())) |
| return false; |
| } |
| } // end switch |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence of two fields. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| FieldDecl *Field1, FieldDecl *Field2) { |
| const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext()); |
| |
| // For anonymous structs/unions, match up the anonymous struct/union type |
| // declarations directly, so that we don't go off searching for anonymous |
| // types |
| if (Field1->isAnonymousStructOrUnion() && |
| Field2->isAnonymousStructOrUnion()) { |
| RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); |
| RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); |
| return IsStructurallyEquivalent(Context, D1, D2); |
| } |
| |
| // Check for equivalent field names. |
| IdentifierInfo *Name1 = Field1->getIdentifier(); |
| IdentifierInfo *Name2 = Field2->getIdentifier(); |
| if (!::IsStructurallyEquivalent(Name1, Name2)) { |
| if (Context.Complain) { |
| Context.Diag2( |
| Owner2->getLocation(), |
| Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(Owner2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_field_name) |
| << Field2->getDeclName(); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_field_name) |
| << Field1->getDeclName(); |
| } |
| return false; |
| } |
| |
| if (!IsStructurallyEquivalent(Context, Field1->getType(), |
| Field2->getType())) { |
| if (Context.Complain) { |
| Context.Diag2( |
| Owner2->getLocation(), |
| Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(Owner2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_field) |
| << Field2->getDeclName() << Field2->getType(); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_field) |
| << Field1->getDeclName() << Field1->getType(); |
| } |
| return false; |
| } |
| |
| if (Field1->isBitField()) |
| return IsStructurallyEquivalent(Context, Field1->getBitWidth(), |
| Field2->getBitWidth()); |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence of two methods. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| CXXMethodDecl *Method1, |
| CXXMethodDecl *Method2) { |
| bool PropertiesEqual = |
| Method1->getDeclKind() == Method2->getDeclKind() && |
| Method1->getRefQualifier() == Method2->getRefQualifier() && |
| Method1->getAccess() == Method2->getAccess() && |
| Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && |
| Method1->isStatic() == Method2->isStatic() && |
| Method1->isConst() == Method2->isConst() && |
| Method1->isVolatile() == Method2->isVolatile() && |
| Method1->isVirtual() == Method2->isVirtual() && |
| Method1->isPure() == Method2->isPure() && |
| Method1->isDefaulted() == Method2->isDefaulted() && |
| Method1->isDeleted() == Method2->isDeleted(); |
| if (!PropertiesEqual) |
| return false; |
| // FIXME: Check for 'final'. |
| |
| if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) { |
| auto *Constructor2 = cast<CXXConstructorDecl>(Method2); |
| if (!Constructor1->getExplicitSpecifier().isEquivalent( |
| Constructor2->getExplicitSpecifier())) |
| return false; |
| } |
| |
| if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) { |
| auto *Conversion2 = cast<CXXConversionDecl>(Method2); |
| if (!Conversion1->getExplicitSpecifier().isEquivalent( |
| Conversion2->getExplicitSpecifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(), |
| Conversion2->getConversionType())) |
| return false; |
| } |
| |
| const IdentifierInfo *Name1 = Method1->getIdentifier(); |
| const IdentifierInfo *Name2 = Method2->getIdentifier(); |
| if (!::IsStructurallyEquivalent(Name1, Name2)) { |
| return false; |
| // TODO: Names do not match, add warning like at check for FieldDecl. |
| } |
| |
| // Check the prototypes. |
| if (!::IsStructurallyEquivalent(Context, |
| Method1->getType(), Method2->getType())) |
| return false; |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence of two lambda classes. |
| static bool |
| IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, |
| CXXRecordDecl *D1, CXXRecordDecl *D2) { |
| assert(D1->isLambda() && D2->isLambda() && |
| "Must be called on lambda classes"); |
| if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(), |
| D2->getLambdaCallOperator())) |
| return false; |
| |
| return true; |
| } |
| |
| /// Determine if context of a class is equivalent. |
| static bool IsRecordContextStructurallyEquivalent(RecordDecl *D1, |
| RecordDecl *D2) { |
| // The context should be completely equal, including anonymous and inline |
| // namespaces. |
| // We compare objects as part of full translation units, not subtrees of |
| // translation units. |
| DeclContext *DC1 = D1->getDeclContext()->getNonTransparentContext(); |
| DeclContext *DC2 = D2->getDeclContext()->getNonTransparentContext(); |
| while (true) { |
| // Special case: We allow a struct defined in a function to be equivalent |
| // with a similar struct defined outside of a function. |
| if ((DC1->isFunctionOrMethod() && DC2->isTranslationUnit()) || |
| (DC2->isFunctionOrMethod() && DC1->isTranslationUnit())) |
| return true; |
| |
| if (DC1->getDeclKind() != DC2->getDeclKind()) |
| return false; |
| if (DC1->isTranslationUnit()) |
| break; |
| if (DC1->isInlineNamespace() != DC2->isInlineNamespace()) |
| return false; |
| if (const auto *ND1 = dyn_cast<NamedDecl>(DC1)) { |
| const auto *ND2 = cast<NamedDecl>(DC2); |
| if (!DC1->isInlineNamespace() && |
| !IsStructurallyEquivalent(ND1->getIdentifier(), ND2->getIdentifier())) |
| return false; |
| } |
| |
| DC1 = DC1->getParent()->getNonTransparentContext(); |
| DC2 = DC2->getParent()->getNonTransparentContext(); |
| } |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence of two records. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| RecordDecl *D1, RecordDecl *D2) { |
| |
| // Check for equivalent structure names. |
| IdentifierInfo *Name1 = D1->getIdentifier(); |
| if (!Name1 && D1->getTypedefNameForAnonDecl()) |
| Name1 = D1->getTypedefNameForAnonDecl()->getIdentifier(); |
| IdentifierInfo *Name2 = D2->getIdentifier(); |
| if (!Name2 && D2->getTypedefNameForAnonDecl()) |
| Name2 = D2->getTypedefNameForAnonDecl()->getIdentifier(); |
| if (!IsStructurallyEquivalent(Name1, Name2)) |
| return false; |
| |
| if (D1->isUnion() != D2->isUnion()) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) |
| << D1->getDeclName() << (unsigned)D1->getTagKind(); |
| } |
| return false; |
| } |
| |
| if (!D1->getDeclName() && !D2->getDeclName()) { |
| // If both anonymous structs/unions are in a record context, make sure |
| // they occur in the same location in the context records. |
| if (Optional<unsigned> Index1 = |
| StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) { |
| if (Optional<unsigned> Index2 = |
| StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( |
| D2)) { |
| if (*Index1 != *Index2) |
| return false; |
| } |
| } |
| } |
| |
| // If the records occur in different context (namespace), these should be |
| // different. This is specially important if the definition of one or both |
| // records is missing. |
| if (!IsRecordContextStructurallyEquivalent(D1, D2)) |
| return false; |
| |
| // If both declarations are class template specializations, we know |
| // the ODR applies, so check the template and template arguments. |
| const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1); |
| const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2); |
| if (Spec1 && Spec2) { |
| // Check that the specialized templates are the same. |
| if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), |
| Spec2->getSpecializedTemplate())) |
| return false; |
| |
| // Check that the template arguments are the same. |
| if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) |
| return false; |
| |
| for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) |
| if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), |
| Spec2->getTemplateArgs().get(I))) |
| return false; |
| } |
| // If one is a class template specialization and the other is not, these |
| // structures are different. |
| else if (Spec1 || Spec2) |
| return false; |
| |
| // Compare the definitions of these two records. If either or both are |
| // incomplete (i.e. it is a forward decl), we assume that they are |
| // equivalent. |
| D1 = D1->getDefinition(); |
| D2 = D2->getDefinition(); |
| if (!D1 || !D2) |
| return true; |
| |
| // If any of the records has external storage and we do a minimal check (or |
| // AST import) we assume they are equivalent. (If we didn't have this |
| // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger |
| // another AST import which in turn would call the structural equivalency |
| // check again and finally we'd have an improper result.) |
| if (Context.EqKind == StructuralEquivalenceKind::Minimal) |
| if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) |
| return true; |
| |
| // If one definition is currently being defined, we do not compare for |
| // equality and we assume that the decls are equal. |
| if (D1->isBeingDefined() || D2->isBeingDefined()) |
| return true; |
| |
| if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { |
| if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { |
| if (D1CXX->hasExternalLexicalStorage() && |
| !D1CXX->isCompleteDefinition()) { |
| D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX); |
| } |
| |
| if (D1CXX->isLambda() != D2CXX->isLambda()) |
| return false; |
| if (D1CXX->isLambda()) { |
| if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX)) |
| return false; |
| } |
| |
| if (D1CXX->getNumBases() != D2CXX->getNumBases()) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) |
| << D2CXX->getNumBases(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) |
| << D1CXX->getNumBases(); |
| } |
| return false; |
| } |
| |
| // Check the base classes. |
| for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), |
| BaseEnd1 = D1CXX->bases_end(), |
| Base2 = D2CXX->bases_begin(); |
| Base1 != BaseEnd1; ++Base1, ++Base2) { |
| if (!IsStructurallyEquivalent(Context, Base1->getType(), |
| Base2->getType())) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base) |
| << Base2->getType() << Base2->getSourceRange(); |
| Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) |
| << Base1->getType() << Base1->getSourceRange(); |
| } |
| return false; |
| } |
| |
| // Check virtual vs. non-virtual inheritance mismatch. |
| if (Base1->isVirtual() != Base2->isVirtual()) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base) |
| << Base2->isVirtual() << Base2->getSourceRange(); |
| Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) |
| << Base1->isVirtual() << Base1->getSourceRange(); |
| } |
| return false; |
| } |
| } |
| |
| // Check the friends for consistency. |
| CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), |
| Friend2End = D2CXX->friend_end(); |
| for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), |
| Friend1End = D1CXX->friend_end(); |
| Friend1 != Friend1End; ++Friend1, ++Friend2) { |
| if (Friend2 == Friend2End) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2CXX); |
| Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend); |
| } |
| return false; |
| } |
| |
| if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2CXX); |
| Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); |
| Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); |
| } |
| return false; |
| } |
| } |
| |
| if (Friend2 != Friend2End) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); |
| Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend); |
| } |
| return false; |
| } |
| } else if (D1CXX->getNumBases() > 0) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); |
| Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) |
| << Base1->getType() << Base1->getSourceRange(); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); |
| } |
| return false; |
| } |
| } |
| |
| // Check the fields for consistency. |
| RecordDecl::field_iterator Field2 = D2->field_begin(), |
| Field2End = D2->field_end(); |
| for (RecordDecl::field_iterator Field1 = D1->field_begin(), |
| Field1End = D1->field_end(); |
| Field1 != Field1End; ++Field1, ++Field2) { |
| if (Field2 == Field2End) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_field) |
| << Field1->getDeclName() << Field1->getType(); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); |
| } |
| return false; |
| } |
| |
| if (!IsStructurallyEquivalent(Context, *Field1, *Field2)) |
| return false; |
| } |
| |
| if (Field2 != Field2End) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_field) |
| << Field2->getDeclName() << Field2->getType(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| EnumConstantDecl *D1, |
| EnumConstantDecl *D2) { |
| const llvm::APSInt &FromVal = D1->getInitVal(); |
| const llvm::APSInt &ToVal = D2->getInitVal(); |
| if (FromVal.isSigned() != ToVal.isSigned()) |
| return false; |
| if (FromVal.getBitWidth() != ToVal.getBitWidth()) |
| return false; |
| if (FromVal != ToVal) |
| return false; |
| |
| if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) |
| return false; |
| |
| // Init expressions are the most expensive check, so do them last. |
| return IsStructurallyEquivalent(Context, D1->getInitExpr(), |
| D2->getInitExpr()); |
| } |
| |
| /// Determine structural equivalence of two enums. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| EnumDecl *D1, EnumDecl *D2) { |
| |
| // Check for equivalent enum names. |
| IdentifierInfo *Name1 = D1->getIdentifier(); |
| if (!Name1 && D1->getTypedefNameForAnonDecl()) |
| Name1 = D1->getTypedefNameForAnonDecl()->getIdentifier(); |
| IdentifierInfo *Name2 = D2->getIdentifier(); |
| if (!Name2 && D2->getTypedefNameForAnonDecl()) |
| Name2 = D2->getTypedefNameForAnonDecl()->getIdentifier(); |
| if (!IsStructurallyEquivalent(Name1, Name2)) |
| return false; |
| |
| // Compare the definitions of these two enums. If either or both are |
| // incomplete (i.e. forward declared), we assume that they are equivalent. |
| D1 = D1->getDefinition(); |
| D2 = D2->getDefinition(); |
| if (!D1 || !D2) |
| return true; |
| |
| EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), |
| EC2End = D2->enumerator_end(); |
| for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), |
| EC1End = D1->enumerator_end(); |
| EC1 != EC1End; ++EC1, ++EC2) { |
| if (EC2 == EC2End) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) |
| << EC1->getDeclName() << toString(EC1->getInitVal(), 10); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); |
| } |
| return false; |
| } |
| |
| llvm::APSInt Val1 = EC1->getInitVal(); |
| llvm::APSInt Val2 = EC2->getInitVal(); |
| if (!llvm::APSInt::isSameValue(Val1, Val2) || |
| !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) |
| << EC2->getDeclName() << toString(EC2->getInitVal(), 10); |
| Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) |
| << EC1->getDeclName() << toString(EC1->getInitVal(), 10); |
| } |
| return false; |
| } |
| } |
| |
| if (EC2 != EC2End) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( |
| diag::err_odr_tag_type_inconsistent)) |
| << Context.ToCtx.getTypeDeclType(D2); |
| Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) |
| << EC2->getDeclName() << toString(EC2->getInitVal(), 10); |
| Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| TemplateParameterList *Params1, |
| TemplateParameterList *Params2) { |
| if (Params1->size() != Params2->size()) { |
| if (Context.Complain) { |
| Context.Diag2(Params2->getTemplateLoc(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_different_num_template_parameters)) |
| << Params1->size() << Params2->size(); |
| Context.Diag1(Params1->getTemplateLoc(), |
| diag::note_odr_template_parameter_list); |
| } |
| return false; |
| } |
| |
| for (unsigned I = 0, N = Params1->size(); I != N; ++I) { |
| if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { |
| if (Context.Complain) { |
| Context.Diag2(Params2->getParam(I)->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_different_template_parameter_kind)); |
| Context.Diag1(Params1->getParam(I)->getLocation(), |
| diag::note_odr_template_parameter_here); |
| } |
| return false; |
| } |
| |
| if (!IsStructurallyEquivalent(Context, Params1->getParam(I), |
| Params2->getParam(I))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| TemplateTypeParmDecl *D1, |
| TemplateTypeParmDecl *D2) { |
| if (D1->isParameterPack() != D2->isParameterPack()) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_parameter_pack_non_pack)) |
| << D2->isParameterPack(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) |
| << D1->isParameterPack(); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| NonTypeTemplateParmDecl *D1, |
| NonTypeTemplateParmDecl *D2) { |
| if (D1->isParameterPack() != D2->isParameterPack()) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_parameter_pack_non_pack)) |
| << D2->isParameterPack(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) |
| << D1->isParameterPack(); |
| } |
| return false; |
| } |
| |
| // Check types. |
| if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_non_type_parameter_type_inconsistent)) |
| << D2->getType() << D1->getType(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_value_here) |
| << D1->getType(); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| TemplateTemplateParmDecl *D1, |
| TemplateTemplateParmDecl *D2) { |
| if (D1->isParameterPack() != D2->isParameterPack()) { |
| if (Context.Complain) { |
| Context.Diag2(D2->getLocation(), |
| Context.getApplicableDiagnostic( |
| diag::err_odr_parameter_pack_non_pack)) |
| << D2->isParameterPack(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) |
| << D1->isParameterPack(); |
| } |
| return false; |
| } |
| |
| // Check template parameter lists. |
| return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), |
| D2->getTemplateParameters()); |
| } |
| |
| static bool IsTemplateDeclCommonStructurallyEquivalent( |
| StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { |
| if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) |
| return false; |
| if (!D1->getIdentifier()) // Special name |
| if (D1->getNameAsString() != D2->getNameAsString()) |
| return false; |
| return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(), |
| D2->getTemplateParameters()); |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| ClassTemplateDecl *D1, |
| ClassTemplateDecl *D2) { |
| // Check template parameters. |
| if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) |
| return false; |
| |
| // Check the templated declaration. |
| return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), |
| D2->getTemplatedDecl()); |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| FunctionTemplateDecl *D1, |
| FunctionTemplateDecl *D2) { |
| // Check template parameters. |
| if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) |
| return false; |
| |
| // Check the templated declaration. |
| return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(), |
| D2->getTemplatedDecl()->getType()); |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| ConceptDecl *D1, |
| ConceptDecl *D2) { |
| // Check template parameters. |
| if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) |
| return false; |
| |
| // Check the constraint expression. |
| return IsStructurallyEquivalent(Context, D1->getConstraintExpr(), |
| D2->getConstraintExpr()); |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| FriendDecl *D1, FriendDecl *D2) { |
| if ((D1->getFriendType() && D2->getFriendDecl()) || |
| (D1->getFriendDecl() && D2->getFriendType())) { |
| return false; |
| } |
| if (D1->getFriendType() && D2->getFriendType()) |
| return IsStructurallyEquivalent(Context, |
| D1->getFriendType()->getType(), |
| D2->getFriendType()->getType()); |
| if (D1->getFriendDecl() && D2->getFriendDecl()) |
| return IsStructurallyEquivalent(Context, D1->getFriendDecl(), |
| D2->getFriendDecl()); |
| return false; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| TypedefNameDecl *D1, TypedefNameDecl *D2) { |
| if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) |
| return false; |
| |
| return IsStructurallyEquivalent(Context, D1->getUnderlyingType(), |
| D2->getUnderlyingType()); |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| FunctionDecl *D1, FunctionDecl *D2) { |
| if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) |
| return false; |
| |
| if (D1->isOverloadedOperator()) { |
| if (!D2->isOverloadedOperator()) |
| return false; |
| if (D1->getOverloadedOperator() != D2->getOverloadedOperator()) |
| return false; |
| } |
| |
| // FIXME: Consider checking for function attributes as well. |
| if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) |
| return false; |
| |
| return true; |
| } |
| |
| /// Determine structural equivalence of two declarations. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| Decl *D1, Decl *D2) { |
| // FIXME: Check for known structural equivalences via a callback of some sort. |
| |
| D1 = D1->getCanonicalDecl(); |
| D2 = D2->getCanonicalDecl(); |
| std::pair<Decl *, Decl *> P{D1, D2}; |
| |
| // Check whether we already know that these two declarations are not |
| // structurally equivalent. |
| if (Context.NonEquivalentDecls.count(P)) |
| return false; |
| |
| // Check if a check for these declarations is already pending. |
| // If yes D1 and D2 will be checked later (from DeclsToCheck), |
| // or these are already checked (and equivalent). |
| bool Inserted = Context.VisitedDecls.insert(P).second; |
| if (!Inserted) |
| return true; |
| |
| Context.DeclsToCheck.push(P); |
| |
| return true; |
| } |
| |
| DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, |
| unsigned DiagID) { |
| assert(Complain && "Not allowed to complain"); |
| if (LastDiagFromC2) |
| FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics()); |
| LastDiagFromC2 = false; |
| return FromCtx.getDiagnostics().Report(Loc, DiagID); |
| } |
| |
| DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, |
| unsigned DiagID) { |
| assert(Complain && "Not allowed to complain"); |
| if (!LastDiagFromC2) |
| ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics()); |
| LastDiagFromC2 = true; |
| return ToCtx.getDiagnostics().Report(Loc, DiagID); |
| } |
| |
| Optional<unsigned> |
| StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { |
| ASTContext &Context = Anon->getASTContext(); |
| QualType AnonTy = Context.getRecordType(Anon); |
| |
| const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext()); |
| if (!Owner) |
| return None; |
| |
| unsigned Index = 0; |
| for (const auto *D : Owner->noload_decls()) { |
| const auto *F = dyn_cast<FieldDecl>(D); |
| if (!F) |
| continue; |
| |
| if (F->isAnonymousStructOrUnion()) { |
| if (Context.hasSameType(F->getType(), AnonTy)) |
| break; |
| ++Index; |
| continue; |
| } |
| |
| // If the field looks like this: |
| // struct { ... } A; |
| QualType FieldType = F->getType(); |
| // In case of nested structs. |
| while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType)) |
| FieldType = ElabType->getNamedType(); |
| |
| if (const auto *RecType = dyn_cast<RecordType>(FieldType)) { |
| const RecordDecl *RecDecl = RecType->getDecl(); |
| if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { |
| if (Context.hasSameType(FieldType, AnonTy)) |
| break; |
| ++Index; |
| continue; |
| } |
| } |
| } |
| |
| return Index; |
| } |
| |
| unsigned StructuralEquivalenceContext::getApplicableDiagnostic( |
| unsigned ErrorDiagnostic) { |
| if (ErrorOnTagTypeMismatch) |
| return ErrorDiagnostic; |
| |
| switch (ErrorDiagnostic) { |
| case diag::err_odr_variable_type_inconsistent: |
| return diag::warn_odr_variable_type_inconsistent; |
| case diag::err_odr_variable_multiple_def: |
| return diag::warn_odr_variable_multiple_def; |
| case diag::err_odr_function_type_inconsistent: |
| return diag::warn_odr_function_type_inconsistent; |
| case diag::err_odr_tag_type_inconsistent: |
| return diag::warn_odr_tag_type_inconsistent; |
| case diag::err_odr_field_type_inconsistent: |
| return diag::warn_odr_field_type_inconsistent; |
| case diag::err_odr_ivar_type_inconsistent: |
| return diag::warn_odr_ivar_type_inconsistent; |
| case diag::err_odr_objc_superclass_inconsistent: |
| return diag::warn_odr_objc_superclass_inconsistent; |
| case diag::err_odr_objc_method_result_type_inconsistent: |
| return diag::warn_odr_objc_method_result_type_inconsistent; |
| case diag::err_odr_objc_method_num_params_inconsistent: |
| return diag::warn_odr_objc_method_num_params_inconsistent; |
| case diag::err_odr_objc_method_param_type_inconsistent: |
| return diag::warn_odr_objc_method_param_type_inconsistent; |
| case diag::err_odr_objc_method_variadic_inconsistent: |
| return diag::warn_odr_objc_method_variadic_inconsistent; |
| case diag::err_odr_objc_property_type_inconsistent: |
| return diag::warn_odr_objc_property_type_inconsistent; |
| case diag::err_odr_objc_property_impl_kind_inconsistent: |
| return diag::warn_odr_objc_property_impl_kind_inconsistent; |
| case diag::err_odr_objc_synthesize_ivar_inconsistent: |
| return diag::warn_odr_objc_synthesize_ivar_inconsistent; |
| case diag::err_odr_different_num_template_parameters: |
| return diag::warn_odr_different_num_template_parameters; |
| case diag::err_odr_different_template_parameter_kind: |
| return diag::warn_odr_different_template_parameter_kind; |
| case diag::err_odr_parameter_pack_non_pack: |
| return diag::warn_odr_parameter_pack_non_pack; |
| case diag::err_odr_non_type_parameter_type_inconsistent: |
| return diag::warn_odr_non_type_parameter_type_inconsistent; |
| } |
| llvm_unreachable("Diagnostic kind not handled in preceding switch"); |
| } |
| |
| bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { |
| |
| // Ensure that the implementation functions (all static functions in this TU) |
| // never call the public ASTStructuralEquivalence::IsEquivalent() functions, |
| // because that will wreak havoc the internal state (DeclsToCheck and |
| // VisitedDecls members) and can cause faulty behaviour. |
| // In other words: Do not start a graph search from a new node with the |
| // internal data of another search in progress. |
| // FIXME: Better encapsulation and separation of internal and public |
| // functionality. |
| assert(DeclsToCheck.empty()); |
| assert(VisitedDecls.empty()); |
| |
| if (!::IsStructurallyEquivalent(*this, D1, D2)) |
| return false; |
| |
| return !Finish(); |
| } |
| |
| bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { |
| assert(DeclsToCheck.empty()); |
| assert(VisitedDecls.empty()); |
| if (!::IsStructurallyEquivalent(*this, T1, T2)) |
| return false; |
| |
| return !Finish(); |
| } |
| |
| bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) { |
| assert(DeclsToCheck.empty()); |
| assert(VisitedDecls.empty()); |
| if (!::IsStructurallyEquivalent(*this, S1, S2)) |
| return false; |
| |
| return !Finish(); |
| } |
| |
| bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { |
| // Check for equivalent described template. |
| TemplateDecl *Template1 = D1->getDescribedTemplate(); |
| TemplateDecl *Template2 = D2->getDescribedTemplate(); |
| if ((Template1 != nullptr) != (Template2 != nullptr)) |
| return false; |
| if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2)) |
| return false; |
| |
| // FIXME: Move check for identifier names into this function. |
| |
| return true; |
| } |
| |
| bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( |
| Decl *D1, Decl *D2) { |
| |
| // Kind mismatch. |
| if (D1->getKind() != D2->getKind()) |
| return false; |
| |
| // Cast the Decls to their actual subclass so that the right overload of |
| // IsStructurallyEquivalent is called. |
| switch (D1->getKind()) { |
| #define ABSTRACT_DECL(DECL) |
| #define DECL(DERIVED, BASE) \ |
| case Decl::Kind::DERIVED: \ |
| return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \ |
| static_cast<DERIVED##Decl *>(D2)); |
| #include "clang/AST/DeclNodes.inc" |
| } |
| return true; |
| } |
| |
| bool StructuralEquivalenceContext::Finish() { |
| while (!DeclsToCheck.empty()) { |
| // Check the next declaration. |
| std::pair<Decl *, Decl *> P = DeclsToCheck.front(); |
| DeclsToCheck.pop(); |
| |
| Decl *D1 = P.first; |
| Decl *D2 = P.second; |
| |
| bool Equivalent = |
| CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); |
| |
| if (!Equivalent) { |
| // Note that these two declarations are not equivalent (and we already |
| // know about it). |
| NonEquivalentDecls.insert(P); |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |