| //===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the APValue class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/APValue.h" |
| #include "Linkage.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/Type.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace clang; |
| |
| /// The identity of a type_info object depends on the canonical unqualified |
| /// type only. |
| TypeInfoLValue::TypeInfoLValue(const Type *T) |
| : T(T->getCanonicalTypeUnqualified().getTypePtr()) {} |
| |
| void TypeInfoLValue::print(llvm::raw_ostream &Out, |
| const PrintingPolicy &Policy) const { |
| Out << "typeid("; |
| QualType(getType(), 0).print(Out, Policy); |
| Out << ")"; |
| } |
| |
| static_assert( |
| 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <= |
| alignof(Type), |
| "Type is insufficiently aligned"); |
| |
| APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V) |
| : Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{I, V} {} |
| APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V) |
| : Ptr(P), Local{I, V} {} |
| |
| APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV, |
| QualType Type) { |
| LValueBase Base; |
| Base.Ptr = LV; |
| Base.DynamicAllocType = Type.getAsOpaquePtr(); |
| return Base; |
| } |
| |
| APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV, |
| QualType TypeInfo) { |
| LValueBase Base; |
| Base.Ptr = LV; |
| Base.TypeInfoType = TypeInfo.getAsOpaquePtr(); |
| return Base; |
| } |
| |
| QualType APValue::LValueBase::getType() const { |
| if (!*this) return QualType(); |
| if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) { |
| // FIXME: It's unclear where we're supposed to take the type from, and |
| // this actually matters for arrays of unknown bound. Eg: |
| // |
| // extern int arr[]; void f() { extern int arr[3]; }; |
| // constexpr int *p = &arr[1]; // valid? |
| // |
| // For now, we take the most complete type we can find. |
| for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; |
| Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { |
| QualType T = Redecl->getType(); |
| if (!T->isIncompleteArrayType()) |
| return T; |
| } |
| return D->getType(); |
| } |
| |
| if (is<TypeInfoLValue>()) |
| return getTypeInfoType(); |
| |
| if (is<DynamicAllocLValue>()) |
| return getDynamicAllocType(); |
| |
| const Expr *Base = get<const Expr*>(); |
| |
| // For a materialized temporary, the type of the temporary we materialized |
| // may not be the type of the expression. |
| if (const MaterializeTemporaryExpr *MTE = |
| clang::dyn_cast<MaterializeTemporaryExpr>(Base)) { |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| const Expr *Temp = MTE->getSubExpr(); |
| const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, |
| Adjustments); |
| // Keep any cv-qualifiers from the reference if we generated a temporary |
| // for it directly. Otherwise use the type after adjustment. |
| if (!Adjustments.empty()) |
| return Inner->getType(); |
| } |
| |
| return Base->getType(); |
| } |
| |
| unsigned APValue::LValueBase::getCallIndex() const { |
| return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 |
| : Local.CallIndex; |
| } |
| |
| unsigned APValue::LValueBase::getVersion() const { |
| return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version; |
| } |
| |
| QualType APValue::LValueBase::getTypeInfoType() const { |
| assert(is<TypeInfoLValue>() && "not a type_info lvalue"); |
| return QualType::getFromOpaquePtr(TypeInfoType); |
| } |
| |
| QualType APValue::LValueBase::getDynamicAllocType() const { |
| assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue"); |
| return QualType::getFromOpaquePtr(DynamicAllocType); |
| } |
| |
| void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddPointer(Ptr.getOpaqueValue()); |
| if (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) |
| return; |
| ID.AddInteger(Local.CallIndex); |
| ID.AddInteger(Local.Version); |
| } |
| |
| namespace clang { |
| bool operator==(const APValue::LValueBase &LHS, |
| const APValue::LValueBase &RHS) { |
| if (LHS.Ptr != RHS.Ptr) |
| return false; |
| if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>()) |
| return true; |
| return LHS.Local.CallIndex == RHS.Local.CallIndex && |
| LHS.Local.Version == RHS.Local.Version; |
| } |
| } |
| |
| APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) { |
| if (const Decl *D = BaseOrMember.getPointer()) |
| BaseOrMember.setPointer(D->getCanonicalDecl()); |
| Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue()); |
| } |
| |
| void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddInteger(Value); |
| } |
| |
| APValue::LValuePathSerializationHelper::LValuePathSerializationHelper( |
| ArrayRef<LValuePathEntry> Path, QualType ElemTy) |
| : ElemTy((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {} |
| |
| QualType APValue::LValuePathSerializationHelper::getType() { |
| return QualType::getFromOpaquePtr(ElemTy); |
| } |
| |
| namespace { |
| struct LVBase { |
| APValue::LValueBase Base; |
| CharUnits Offset; |
| unsigned PathLength; |
| bool IsNullPtr : 1; |
| bool IsOnePastTheEnd : 1; |
| }; |
| } |
| |
| void *APValue::LValueBase::getOpaqueValue() const { |
| return Ptr.getOpaqueValue(); |
| } |
| |
| bool APValue::LValueBase::isNull() const { |
| return Ptr.isNull(); |
| } |
| |
| APValue::LValueBase::operator bool () const { |
| return static_cast<bool>(Ptr); |
| } |
| |
| clang::APValue::LValueBase |
| llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() { |
| clang::APValue::LValueBase B; |
| B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey(); |
| return B; |
| } |
| |
| clang::APValue::LValueBase |
| llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() { |
| clang::APValue::LValueBase B; |
| B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey(); |
| return B; |
| } |
| |
| namespace clang { |
| llvm::hash_code hash_value(const APValue::LValueBase &Base) { |
| if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>()) |
| return llvm::hash_value(Base.getOpaqueValue()); |
| return llvm::hash_combine(Base.getOpaqueValue(), Base.getCallIndex(), |
| Base.getVersion()); |
| } |
| } |
| |
| unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue( |
| const clang::APValue::LValueBase &Base) { |
| return hash_value(Base); |
| } |
| |
| bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual( |
| const clang::APValue::LValueBase &LHS, |
| const clang::APValue::LValueBase &RHS) { |
| return LHS == RHS; |
| } |
| |
| struct APValue::LV : LVBase { |
| static const unsigned InlinePathSpace = |
| (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry); |
| |
| /// Path - The sequence of base classes, fields and array indices to follow to |
| /// walk from Base to the subobject. When performing GCC-style folding, there |
| /// may not be such a path. |
| union { |
| LValuePathEntry Path[InlinePathSpace]; |
| LValuePathEntry *PathPtr; |
| }; |
| |
| LV() { PathLength = (unsigned)-1; } |
| ~LV() { resizePath(0); } |
| |
| void resizePath(unsigned Length) { |
| if (Length == PathLength) |
| return; |
| if (hasPathPtr()) |
| delete [] PathPtr; |
| PathLength = Length; |
| if (hasPathPtr()) |
| PathPtr = new LValuePathEntry[Length]; |
| } |
| |
| bool hasPath() const { return PathLength != (unsigned)-1; } |
| bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; } |
| |
| LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; } |
| const LValuePathEntry *getPath() const { |
| return hasPathPtr() ? PathPtr : Path; |
| } |
| }; |
| |
| namespace { |
| struct MemberPointerBase { |
| llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember; |
| unsigned PathLength; |
| }; |
| } |
| |
| struct APValue::MemberPointerData : MemberPointerBase { |
| static const unsigned InlinePathSpace = |
| (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*); |
| typedef const CXXRecordDecl *PathElem; |
| union { |
| PathElem Path[InlinePathSpace]; |
| PathElem *PathPtr; |
| }; |
| |
| MemberPointerData() { PathLength = 0; } |
| ~MemberPointerData() { resizePath(0); } |
| |
| void resizePath(unsigned Length) { |
| if (Length == PathLength) |
| return; |
| if (hasPathPtr()) |
| delete [] PathPtr; |
| PathLength = Length; |
| if (hasPathPtr()) |
| PathPtr = new PathElem[Length]; |
| } |
| |
| bool hasPathPtr() const { return PathLength > InlinePathSpace; } |
| |
| PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; } |
| const PathElem *getPath() const { |
| return hasPathPtr() ? PathPtr : Path; |
| } |
| }; |
| |
| // FIXME: Reduce the malloc traffic here. |
| |
| APValue::Arr::Arr(unsigned NumElts, unsigned Size) : |
| Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]), |
| NumElts(NumElts), ArrSize(Size) {} |
| APValue::Arr::~Arr() { delete [] Elts; } |
| |
| APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) : |
| Elts(new APValue[NumBases+NumFields]), |
| NumBases(NumBases), NumFields(NumFields) {} |
| APValue::StructData::~StructData() { |
| delete [] Elts; |
| } |
| |
| APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {} |
| APValue::UnionData::~UnionData () { |
| delete Value; |
| } |
| |
| APValue::APValue(const APValue &RHS) : Kind(None) { |
| switch (RHS.getKind()) { |
| case None: |
| case Indeterminate: |
| Kind = RHS.getKind(); |
| break; |
| case Int: |
| MakeInt(); |
| setInt(RHS.getInt()); |
| break; |
| case Float: |
| MakeFloat(); |
| setFloat(RHS.getFloat()); |
| break; |
| case FixedPoint: { |
| APFixedPoint FXCopy = RHS.getFixedPoint(); |
| MakeFixedPoint(std::move(FXCopy)); |
| break; |
| } |
| case Vector: |
| MakeVector(); |
| setVector(((const Vec *)(const char *)&RHS.Data)->Elts, |
| RHS.getVectorLength()); |
| break; |
| case ComplexInt: |
| MakeComplexInt(); |
| setComplexInt(RHS.getComplexIntReal(), RHS.getComplexIntImag()); |
| break; |
| case ComplexFloat: |
| MakeComplexFloat(); |
| setComplexFloat(RHS.getComplexFloatReal(), RHS.getComplexFloatImag()); |
| break; |
| case LValue: |
| MakeLValue(); |
| if (RHS.hasLValuePath()) |
| setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), RHS.getLValuePath(), |
| RHS.isLValueOnePastTheEnd(), RHS.isNullPointer()); |
| else |
| setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), NoLValuePath(), |
| RHS.isNullPointer()); |
| break; |
| case Array: |
| MakeArray(RHS.getArrayInitializedElts(), RHS.getArraySize()); |
| for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I) |
| getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I); |
| if (RHS.hasArrayFiller()) |
| getArrayFiller() = RHS.getArrayFiller(); |
| break; |
| case Struct: |
| MakeStruct(RHS.getStructNumBases(), RHS.getStructNumFields()); |
| for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I) |
| getStructBase(I) = RHS.getStructBase(I); |
| for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I) |
| getStructField(I) = RHS.getStructField(I); |
| break; |
| case Union: |
| MakeUnion(); |
| setUnion(RHS.getUnionField(), RHS.getUnionValue()); |
| break; |
| case MemberPointer: |
| MakeMemberPointer(RHS.getMemberPointerDecl(), |
| RHS.isMemberPointerToDerivedMember(), |
| RHS.getMemberPointerPath()); |
| break; |
| case AddrLabelDiff: |
| MakeAddrLabelDiff(); |
| setAddrLabelDiff(RHS.getAddrLabelDiffLHS(), RHS.getAddrLabelDiffRHS()); |
| break; |
| } |
| } |
| |
| APValue::APValue(APValue &&RHS) : Kind(RHS.Kind), Data(RHS.Data) { |
| RHS.Kind = None; |
| } |
| |
| APValue &APValue::operator=(const APValue &RHS) { |
| if (this != &RHS) |
| *this = APValue(RHS); |
| return *this; |
| } |
| |
| APValue &APValue::operator=(APValue &&RHS) { |
| if (Kind != None && Kind != Indeterminate) |
| DestroyDataAndMakeUninit(); |
| Kind = RHS.Kind; |
| Data = RHS.Data; |
| RHS.Kind = None; |
| return *this; |
| } |
| |
| void APValue::DestroyDataAndMakeUninit() { |
| if (Kind == Int) |
| ((APSInt *)(char *)&Data)->~APSInt(); |
| else if (Kind == Float) |
| ((APFloat *)(char *)&Data)->~APFloat(); |
| else if (Kind == FixedPoint) |
| ((APFixedPoint *)(char *)&Data)->~APFixedPoint(); |
| else if (Kind == Vector) |
| ((Vec *)(char *)&Data)->~Vec(); |
| else if (Kind == ComplexInt) |
| ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt(); |
| else if (Kind == ComplexFloat) |
| ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat(); |
| else if (Kind == LValue) |
| ((LV *)(char *)&Data)->~LV(); |
| else if (Kind == Array) |
| ((Arr *)(char *)&Data)->~Arr(); |
| else if (Kind == Struct) |
| ((StructData *)(char *)&Data)->~StructData(); |
| else if (Kind == Union) |
| ((UnionData *)(char *)&Data)->~UnionData(); |
| else if (Kind == MemberPointer) |
| ((MemberPointerData *)(char *)&Data)->~MemberPointerData(); |
| else if (Kind == AddrLabelDiff) |
| ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData(); |
| Kind = None; |
| } |
| |
| bool APValue::needsCleanup() const { |
| switch (getKind()) { |
| case None: |
| case Indeterminate: |
| case AddrLabelDiff: |
| return false; |
| case Struct: |
| case Union: |
| case Array: |
| case Vector: |
| return true; |
| case Int: |
| return getInt().needsCleanup(); |
| case Float: |
| return getFloat().needsCleanup(); |
| case FixedPoint: |
| return getFixedPoint().getValue().needsCleanup(); |
| case ComplexFloat: |
| assert(getComplexFloatImag().needsCleanup() == |
| getComplexFloatReal().needsCleanup() && |
| "In _Complex float types, real and imaginary values always have the " |
| "same size."); |
| return getComplexFloatReal().needsCleanup(); |
| case ComplexInt: |
| assert(getComplexIntImag().needsCleanup() == |
| getComplexIntReal().needsCleanup() && |
| "In _Complex int types, real and imaginary values must have the " |
| "same size."); |
| return getComplexIntReal().needsCleanup(); |
| case LValue: |
| return reinterpret_cast<const LV *>(&Data)->hasPathPtr(); |
| case MemberPointer: |
| return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr(); |
| } |
| llvm_unreachable("Unknown APValue kind!"); |
| } |
| |
| void APValue::swap(APValue &RHS) { |
| std::swap(Kind, RHS.Kind); |
| std::swap(Data, RHS.Data); |
| } |
| |
| /// Profile the value of an APInt, excluding its bit-width. |
| static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) { |
| for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32) |
| ID.AddInteger((uint32_t)V.extractBitsAsZExtValue(std::min(32u, N - I), I)); |
| } |
| |
| void APValue::Profile(llvm::FoldingSetNodeID &ID) const { |
| // Note that our profiling assumes that only APValues of the same type are |
| // ever compared. As a result, we don't consider collisions that could only |
| // happen if the types are different. (For example, structs with different |
| // numbers of members could profile the same.) |
| |
| ID.AddInteger(Kind); |
| |
| switch (Kind) { |
| case None: |
| case Indeterminate: |
| return; |
| |
| case AddrLabelDiff: |
| ID.AddPointer(getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl()); |
| ID.AddPointer(getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl()); |
| return; |
| |
| case Struct: |
| for (unsigned I = 0, N = getStructNumBases(); I != N; ++I) |
| getStructBase(I).Profile(ID); |
| for (unsigned I = 0, N = getStructNumFields(); I != N; ++I) |
| getStructField(I).Profile(ID); |
| return; |
| |
| case Union: |
| if (!getUnionField()) { |
| ID.AddInteger(0); |
| return; |
| } |
| ID.AddInteger(getUnionField()->getFieldIndex() + 1); |
| getUnionValue().Profile(ID); |
| return; |
| |
| case Array: { |
| if (getArraySize() == 0) |
| return; |
| |
| // The profile should not depend on whether the array is expanded or |
| // not, but we don't want to profile the array filler many times for |
| // a large array. So treat all equal trailing elements as the filler. |
| // Elements are profiled in reverse order to support this, and the |
| // first profiled element is followed by a count. For example: |
| // |
| // ['a', 'c', 'x', 'x', 'x'] is profiled as |
| // [5, 'x', 3, 'c', 'a'] |
| llvm::FoldingSetNodeID FillerID; |
| (hasArrayFiller() ? getArrayFiller() |
| : getArrayInitializedElt(getArrayInitializedElts() - 1)) |
| .Profile(FillerID); |
| ID.AddNodeID(FillerID); |
| unsigned NumFillers = getArraySize() - getArrayInitializedElts(); |
| unsigned N = getArrayInitializedElts(); |
| |
| // Count the number of elements equal to the last one. This loop ends |
| // by adding an integer indicating the number of such elements, with |
| // N set to the number of elements left to profile. |
| while (true) { |
| if (N == 0) { |
| // All elements are fillers. |
| assert(NumFillers == getArraySize()); |
| ID.AddInteger(NumFillers); |
| break; |
| } |
| |
| // No need to check if the last element is equal to the last |
| // element. |
| if (N != getArraySize()) { |
| llvm::FoldingSetNodeID ElemID; |
| getArrayInitializedElt(N - 1).Profile(ElemID); |
| if (ElemID != FillerID) { |
| ID.AddInteger(NumFillers); |
| ID.AddNodeID(ElemID); |
| --N; |
| break; |
| } |
| } |
| |
| // This is a filler. |
| ++NumFillers; |
| --N; |
| } |
| |
| // Emit the remaining elements. |
| for (; N != 0; --N) |
| getArrayInitializedElt(N - 1).Profile(ID); |
| return; |
| } |
| |
| case Vector: |
| for (unsigned I = 0, N = getVectorLength(); I != N; ++I) |
| getVectorElt(I).Profile(ID); |
| return; |
| |
| case Int: |
| profileIntValue(ID, getInt()); |
| return; |
| |
| case Float: |
| profileIntValue(ID, getFloat().bitcastToAPInt()); |
| return; |
| |
| case FixedPoint: |
| profileIntValue(ID, getFixedPoint().getValue()); |
| return; |
| |
| case ComplexFloat: |
| profileIntValue(ID, getComplexFloatReal().bitcastToAPInt()); |
| profileIntValue(ID, getComplexFloatImag().bitcastToAPInt()); |
| return; |
| |
| case ComplexInt: |
| profileIntValue(ID, getComplexIntReal()); |
| profileIntValue(ID, getComplexIntImag()); |
| return; |
| |
| case LValue: |
| getLValueBase().Profile(ID); |
| ID.AddInteger(getLValueOffset().getQuantity()); |
| ID.AddInteger((isNullPointer() ? 1 : 0) | |
| (isLValueOnePastTheEnd() ? 2 : 0) | |
| (hasLValuePath() ? 4 : 0)); |
| if (hasLValuePath()) { |
| ID.AddInteger(getLValuePath().size()); |
| // For uniqueness, we only need to profile the entries corresponding |
| // to union members, but we don't have the type here so we don't know |
| // how to interpret the entries. |
| for (LValuePathEntry E : getLValuePath()) |
| E.Profile(ID); |
| } |
| return; |
| |
| case MemberPointer: |
| ID.AddPointer(getMemberPointerDecl()); |
| ID.AddInteger(isMemberPointerToDerivedMember()); |
| for (const CXXRecordDecl *D : getMemberPointerPath()) |
| ID.AddPointer(D); |
| return; |
| } |
| |
| llvm_unreachable("Unknown APValue kind!"); |
| } |
| |
| static double GetApproxValue(const llvm::APFloat &F) { |
| llvm::APFloat V = F; |
| bool ignored; |
| V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, |
| &ignored); |
| return V.convertToDouble(); |
| } |
| |
| void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx, |
| QualType Ty) const { |
| printPretty(Out, Ctx.getPrintingPolicy(), Ty, &Ctx); |
| } |
| |
| void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy, |
| QualType Ty, const ASTContext *Ctx) const { |
| // There are no objects of type 'void', but values of this type can be |
| // returned from functions. |
| if (Ty->isVoidType()) { |
| Out << "void()"; |
| return; |
| } |
| |
| switch (getKind()) { |
| case APValue::None: |
| Out << "<out of lifetime>"; |
| return; |
| case APValue::Indeterminate: |
| Out << "<uninitialized>"; |
| return; |
| case APValue::Int: |
| if (Ty->isBooleanType()) |
| Out << (getInt().getBoolValue() ? "true" : "false"); |
| else |
| Out << getInt(); |
| return; |
| case APValue::Float: |
| Out << GetApproxValue(getFloat()); |
| return; |
| case APValue::FixedPoint: |
| Out << getFixedPoint(); |
| return; |
| case APValue::Vector: { |
| Out << '{'; |
| QualType ElemTy = Ty->castAs<VectorType>()->getElementType(); |
| getVectorElt(0).printPretty(Out, Policy, ElemTy, Ctx); |
| for (unsigned i = 1; i != getVectorLength(); ++i) { |
| Out << ", "; |
| getVectorElt(i).printPretty(Out, Policy, ElemTy, Ctx); |
| } |
| Out << '}'; |
| return; |
| } |
| case APValue::ComplexInt: |
| Out << getComplexIntReal() << "+" << getComplexIntImag() << "i"; |
| return; |
| case APValue::ComplexFloat: |
| Out << GetApproxValue(getComplexFloatReal()) << "+" |
| << GetApproxValue(getComplexFloatImag()) << "i"; |
| return; |
| case APValue::LValue: { |
| bool IsReference = Ty->isReferenceType(); |
| QualType InnerTy |
| = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType(); |
| if (InnerTy.isNull()) |
| InnerTy = Ty; |
| |
| LValueBase Base = getLValueBase(); |
| if (!Base) { |
| if (isNullPointer()) { |
| Out << (Policy.Nullptr ? "nullptr" : "0"); |
| } else if (IsReference) { |
| Out << "*(" << InnerTy.stream(Policy) << "*)" |
| << getLValueOffset().getQuantity(); |
| } else { |
| Out << "(" << Ty.stream(Policy) << ")" |
| << getLValueOffset().getQuantity(); |
| } |
| return; |
| } |
| |
| if (!hasLValuePath()) { |
| // No lvalue path: just print the offset. |
| CharUnits O = getLValueOffset(); |
| CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(InnerTy).getValueOr( |
| CharUnits::Zero()) |
| : CharUnits::Zero(); |
| if (!O.isZero()) { |
| if (IsReference) |
| Out << "*("; |
| if (S.isZero() || O % S) { |
| Out << "(char*)"; |
| S = CharUnits::One(); |
| } |
| Out << '&'; |
| } else if (!IsReference) { |
| Out << '&'; |
| } |
| |
| if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
| Out << *VD; |
| else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { |
| TI.print(Out, Policy); |
| } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
| Out << "{*new " |
| << Base.getDynamicAllocType().stream(Policy) << "#" |
| << DA.getIndex() << "}"; |
| } else { |
| assert(Base.get<const Expr *>() != nullptr && |
| "Expecting non-null Expr"); |
| Base.get<const Expr*>()->printPretty(Out, nullptr, Policy); |
| } |
| |
| if (!O.isZero()) { |
| Out << " + " << (O / S); |
| if (IsReference) |
| Out << ')'; |
| } |
| return; |
| } |
| |
| // We have an lvalue path. Print it out nicely. |
| if (!IsReference) |
| Out << '&'; |
| else if (isLValueOnePastTheEnd()) |
| Out << "*(&"; |
| |
| QualType ElemTy = Base.getType(); |
| if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { |
| Out << *VD; |
| } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { |
| TI.print(Out, Policy); |
| } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
| Out << "{*new " << Base.getDynamicAllocType().stream(Policy) << "#" |
| << DA.getIndex() << "}"; |
| } else { |
| const Expr *E = Base.get<const Expr*>(); |
| assert(E != nullptr && "Expecting non-null Expr"); |
| E->printPretty(Out, nullptr, Policy); |
| } |
| |
| ArrayRef<LValuePathEntry> Path = getLValuePath(); |
| const CXXRecordDecl *CastToBase = nullptr; |
| for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| if (ElemTy->isRecordType()) { |
| // The lvalue refers to a class type, so the next path entry is a base |
| // or member. |
| const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer(); |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(BaseOrMember)) { |
| CastToBase = RD; |
| // Leave ElemTy referring to the most-derived class. The actual type |
| // doesn't matter except for array types. |
| } else { |
| const ValueDecl *VD = cast<ValueDecl>(BaseOrMember); |
| Out << "."; |
| if (CastToBase) |
| Out << *CastToBase << "::"; |
| Out << *VD; |
| ElemTy = VD->getType(); |
| } |
| } else { |
| // The lvalue must refer to an array. |
| Out << '[' << Path[I].getAsArrayIndex() << ']'; |
| ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType(); |
| } |
| } |
| |
| // Handle formatting of one-past-the-end lvalues. |
| if (isLValueOnePastTheEnd()) { |
| // FIXME: If CastToBase is non-0, we should prefix the output with |
| // "(CastToBase*)". |
| Out << " + 1"; |
| if (IsReference) |
| Out << ')'; |
| } |
| return; |
| } |
| case APValue::Array: { |
| const ArrayType *AT = Ty->castAsArrayTypeUnsafe(); |
| QualType ElemTy = AT->getElementType(); |
| Out << '{'; |
| if (unsigned N = getArrayInitializedElts()) { |
| getArrayInitializedElt(0).printPretty(Out, Policy, ElemTy, Ctx); |
| for (unsigned I = 1; I != N; ++I) { |
| Out << ", "; |
| if (I == 10) { |
| // Avoid printing out the entire contents of large arrays. |
| Out << "..."; |
| break; |
| } |
| getArrayInitializedElt(I).printPretty(Out, Policy, ElemTy, Ctx); |
| } |
| } |
| Out << '}'; |
| return; |
| } |
| case APValue::Struct: { |
| Out << '{'; |
| const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); |
| bool First = true; |
| if (unsigned N = getStructNumBases()) { |
| const CXXRecordDecl *CD = cast<CXXRecordDecl>(RD); |
| CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin(); |
| for (unsigned I = 0; I != N; ++I, ++BI) { |
| assert(BI != CD->bases_end()); |
| if (!First) |
| Out << ", "; |
| getStructBase(I).printPretty(Out, Policy, BI->getType(), Ctx); |
| First = false; |
| } |
| } |
| for (const auto *FI : RD->fields()) { |
| if (!First) |
| Out << ", "; |
| if (FI->isUnnamedBitfield()) continue; |
| getStructField(FI->getFieldIndex()). |
| printPretty(Out, Policy, FI->getType(), Ctx); |
| First = false; |
| } |
| Out << '}'; |
| return; |
| } |
| case APValue::Union: |
| Out << '{'; |
| if (const FieldDecl *FD = getUnionField()) { |
| Out << "." << *FD << " = "; |
| getUnionValue().printPretty(Out, Policy, FD->getType(), Ctx); |
| } |
| Out << '}'; |
| return; |
| case APValue::MemberPointer: |
| // FIXME: This is not enough to unambiguously identify the member in a |
| // multiple-inheritance scenario. |
| if (const ValueDecl *VD = getMemberPointerDecl()) { |
| Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD; |
| return; |
| } |
| Out << "0"; |
| return; |
| case APValue::AddrLabelDiff: |
| Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName(); |
| Out << " - "; |
| Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName(); |
| return; |
| } |
| llvm_unreachable("Unknown APValue kind!"); |
| } |
| |
| std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const { |
| std::string Result; |
| llvm::raw_string_ostream Out(Result); |
| printPretty(Out, Ctx, Ty); |
| Out.flush(); |
| return Result; |
| } |
| |
| bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy, |
| const ASTContext &Ctx) const { |
| if (isInt()) { |
| Result = getInt(); |
| return true; |
| } |
| |
| if (isLValue() && isNullPointer()) { |
| Result = Ctx.MakeIntValue(Ctx.getTargetNullPointerValue(SrcTy), SrcTy); |
| return true; |
| } |
| |
| if (isLValue() && !getLValueBase()) { |
| Result = Ctx.MakeIntValue(getLValueOffset().getQuantity(), SrcTy); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| const APValue::LValueBase APValue::getLValueBase() const { |
| assert(isLValue() && "Invalid accessor"); |
| return ((const LV *)(const void *)&Data)->Base; |
| } |
| |
| bool APValue::isLValueOnePastTheEnd() const { |
| assert(isLValue() && "Invalid accessor"); |
| return ((const LV *)(const void *)&Data)->IsOnePastTheEnd; |
| } |
| |
| CharUnits &APValue::getLValueOffset() { |
| assert(isLValue() && "Invalid accessor"); |
| return ((LV *)(void *)&Data)->Offset; |
| } |
| |
| bool APValue::hasLValuePath() const { |
| assert(isLValue() && "Invalid accessor"); |
| return ((const LV *)(const char *)&Data)->hasPath(); |
| } |
| |
| ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const { |
| assert(isLValue() && hasLValuePath() && "Invalid accessor"); |
| const LV &LVal = *((const LV *)(const char *)&Data); |
| return llvm::makeArrayRef(LVal.getPath(), LVal.PathLength); |
| } |
| |
| unsigned APValue::getLValueCallIndex() const { |
| assert(isLValue() && "Invalid accessor"); |
| return ((const LV *)(const char *)&Data)->Base.getCallIndex(); |
| } |
| |
| unsigned APValue::getLValueVersion() const { |
| assert(isLValue() && "Invalid accessor"); |
| return ((const LV *)(const char *)&Data)->Base.getVersion(); |
| } |
| |
| bool APValue::isNullPointer() const { |
| assert(isLValue() && "Invalid usage"); |
| return ((const LV *)(const char *)&Data)->IsNullPtr; |
| } |
| |
| void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath, |
| bool IsNullPtr) { |
| assert(isLValue() && "Invalid accessor"); |
| LV &LVal = *((LV *)(char *)&Data); |
| LVal.Base = B; |
| LVal.IsOnePastTheEnd = false; |
| LVal.Offset = O; |
| LVal.resizePath((unsigned)-1); |
| LVal.IsNullPtr = IsNullPtr; |
| } |
| |
| MutableArrayRef<APValue::LValuePathEntry> |
| APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size, |
| bool IsOnePastTheEnd, bool IsNullPtr) { |
| assert(isLValue() && "Invalid accessor"); |
| LV &LVal = *((LV *)(char *)&Data); |
| LVal.Base = B; |
| LVal.IsOnePastTheEnd = IsOnePastTheEnd; |
| LVal.Offset = O; |
| LVal.IsNullPtr = IsNullPtr; |
| LVal.resizePath(Size); |
| return {LVal.getPath(), Size}; |
| } |
| |
| void APValue::setLValue(LValueBase B, const CharUnits &O, |
| ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd, |
| bool IsNullPtr) { |
| MutableArrayRef<APValue::LValuePathEntry> InternalPath = |
| setLValueUninit(B, O, Path.size(), IsOnePastTheEnd, IsNullPtr); |
| if (Path.size()) { |
| memcpy(InternalPath.data(), Path.data(), |
| Path.size() * sizeof(LValuePathEntry)); |
| } |
| } |
| |
| void APValue::setUnion(const FieldDecl *Field, const APValue &Value) { |
| assert(isUnion() && "Invalid accessor"); |
| ((UnionData *)(char *)&Data)->Field = |
| Field ? Field->getCanonicalDecl() : nullptr; |
| *((UnionData *)(char *)&Data)->Value = Value; |
| } |
| |
| const ValueDecl *APValue::getMemberPointerDecl() const { |
| assert(isMemberPointer() && "Invalid accessor"); |
| const MemberPointerData &MPD = |
| *((const MemberPointerData *)(const char *)&Data); |
| return MPD.MemberAndIsDerivedMember.getPointer(); |
| } |
| |
| bool APValue::isMemberPointerToDerivedMember() const { |
| assert(isMemberPointer() && "Invalid accessor"); |
| const MemberPointerData &MPD = |
| *((const MemberPointerData *)(const char *)&Data); |
| return MPD.MemberAndIsDerivedMember.getInt(); |
| } |
| |
| ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const { |
| assert(isMemberPointer() && "Invalid accessor"); |
| const MemberPointerData &MPD = |
| *((const MemberPointerData *)(const char *)&Data); |
| return llvm::makeArrayRef(MPD.getPath(), MPD.PathLength); |
| } |
| |
| void APValue::MakeLValue() { |
| assert(isAbsent() && "Bad state change"); |
| static_assert(sizeof(LV) <= DataSize, "LV too big"); |
| new ((void *)(char *)&Data) LV(); |
| Kind = LValue; |
| } |
| |
| void APValue::MakeArray(unsigned InitElts, unsigned Size) { |
| assert(isAbsent() && "Bad state change"); |
| new ((void *)(char *)&Data) Arr(InitElts, Size); |
| Kind = Array; |
| } |
| |
| MutableArrayRef<APValue::LValuePathEntry> |
| setLValueUninit(APValue::LValueBase B, const CharUnits &O, unsigned Size, |
| bool OnePastTheEnd, bool IsNullPtr); |
| |
| MutableArrayRef<const CXXRecordDecl *> |
| APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember, |
| unsigned Size) { |
| assert(isAbsent() && "Bad state change"); |
| MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData; |
| Kind = MemberPointer; |
| MPD->MemberAndIsDerivedMember.setPointer( |
| Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr); |
| MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember); |
| MPD->resizePath(Size); |
| return {MPD->getPath(), MPD->PathLength}; |
| } |
| |
| void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember, |
| ArrayRef<const CXXRecordDecl *> Path) { |
| MutableArrayRef<const CXXRecordDecl *> InternalPath = |
| setMemberPointerUninit(Member, IsDerivedMember, Path.size()); |
| for (unsigned I = 0; I != Path.size(); ++I) |
| InternalPath[I] = Path[I]->getCanonicalDecl(); |
| } |
| |
| LinkageInfo LinkageComputer::getLVForValue(const APValue &V, |
| LVComputationKind computation) { |
| LinkageInfo LV = LinkageInfo::external(); |
| |
| auto MergeLV = [&](LinkageInfo MergeLV) { |
| LV.merge(MergeLV); |
| return LV.getLinkage() == InternalLinkage; |
| }; |
| auto Merge = [&](const APValue &V) { |
| return MergeLV(getLVForValue(V, computation)); |
| }; |
| |
| switch (V.getKind()) { |
| case APValue::None: |
| case APValue::Indeterminate: |
| case APValue::Int: |
| case APValue::Float: |
| case APValue::FixedPoint: |
| case APValue::ComplexInt: |
| case APValue::ComplexFloat: |
| case APValue::Vector: |
| break; |
| |
| case APValue::AddrLabelDiff: |
| // Even for an inline function, it's not reasonable to treat a difference |
| // between the addresses of labels as an external value. |
| return LinkageInfo::internal(); |
| |
| case APValue::Struct: { |
| for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I) |
| if (Merge(V.getStructBase(I))) |
| break; |
| for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I) |
| if (Merge(V.getStructField(I))) |
| break; |
| break; |
| } |
| |
| case APValue::Union: |
| if (V.getUnionField()) |
| Merge(V.getUnionValue()); |
| break; |
| |
| case APValue::Array: { |
| for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
| if (Merge(V.getArrayInitializedElt(I))) |
| break; |
| if (V.hasArrayFiller()) |
| Merge(V.getArrayFiller()); |
| break; |
| } |
| |
| case APValue::LValue: { |
| if (!V.getLValueBase()) { |
| // Null or absolute address: this is external. |
| } else if (const auto *VD = |
| V.getLValueBase().dyn_cast<const ValueDecl *>()) { |
| if (VD && MergeLV(getLVForDecl(VD, computation))) |
| break; |
| } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) { |
| if (MergeLV(getLVForType(*TI.getType(), computation))) |
| break; |
| } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) { |
| // Almost all expression bases are internal. The exception is |
| // lifetime-extended temporaries. |
| // FIXME: These should be modeled as having the |
| // LifetimeExtendedTemporaryDecl itself as the base. |
| // FIXME: If we permit Objective-C object literals in template arguments, |
| // they should not imply internal linkage. |
| auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); |
| if (!MTE || MTE->getStorageDuration() == SD_FullExpression) |
| return LinkageInfo::internal(); |
| if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation))) |
| break; |
| } else { |
| assert(V.getLValueBase().is<DynamicAllocLValue>() && |
| "unexpected LValueBase kind"); |
| return LinkageInfo::internal(); |
| } |
| // The lvalue path doesn't matter: pointers to all subobjects always have |
| // the same visibility as pointers to the complete object. |
| break; |
| } |
| |
| case APValue::MemberPointer: |
| if (const NamedDecl *D = V.getMemberPointerDecl()) |
| MergeLV(getLVForDecl(D, computation)); |
| // Note that we could have a base-to-derived conversion here to a member of |
| // a derived class with less linkage/visibility. That's covered by the |
| // linkage and visibility of the value's type. |
| break; |
| } |
| |
| return LV; |
| } |