blob: 4aea059551dedce0df66e4cf53975371e3194c3e [file] [log] [blame]
//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/BitcodeReader.h"
#include "MetadataLoader.h"
#include "ValueList.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Bitcode/BitcodeCommon.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Bitstream/BitstreamReader.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRangeList.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
static cl::opt<bool> PrintSummaryGUIDs(
"print-summary-global-ids", cl::init(false), cl::Hidden,
cl::desc(
"Print the global id for each value when reading the module summary"));
static cl::opt<bool> ExpandConstantExprs(
"expand-constant-exprs", cl::Hidden,
cl::desc(
"Expand constant expressions to instructions for testing purposes"));
/// Load bitcode directly into RemoveDIs format (use debug records instead
/// of debug intrinsics). UNSET is treated as FALSE, so the default action
/// is to do nothing. Individual tools can override this to incrementally add
/// support for the RemoveDIs format.
cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
"load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
cl::desc("Load bitcode directly into the new debug info format (regardless "
"of input format)"));
extern cl::opt<bool> UseNewDbgInfoFormat;
extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
extern bool WriteNewDbgInfoFormatToBitcode;
extern cl::opt<bool> WriteNewDbgInfoFormat;
namespace {
enum {
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
};
} // end anonymous namespace
static Error error(const Twine &Message) {
return make_error<StringError>(
Message, make_error_code(BitcodeError::CorruptedBitcode));
}
static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
if (!Stream.canSkipToPos(4))
return createStringError(std::errc::illegal_byte_sequence,
"file too small to contain bitcode header");
for (unsigned C : {'B', 'C'})
if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
if (Res.get() != C)
return createStringError(std::errc::illegal_byte_sequence,
"file doesn't start with bitcode header");
} else
return Res.takeError();
for (unsigned C : {0x0, 0xC, 0xE, 0xD})
if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
if (Res.get() != C)
return createStringError(std::errc::illegal_byte_sequence,
"file doesn't start with bitcode header");
} else
return Res.takeError();
return Error::success();
}
static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
if (Buffer.getBufferSize() & 3)
return error("Invalid bitcode signature");
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
return error("Invalid bitcode wrapper header");
BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
if (Error Err = hasInvalidBitcodeHeader(Stream))
return std::move(Err);
return std::move(Stream);
}
/// Convert a string from a record into an std::string, return true on failure.
template <typename StrTy>
static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
Result.append(Record.begin() + Idx, Record.end());
return false;
}
// Strip all the TBAA attachment for the module.
static void stripTBAA(Module *M) {
for (auto &F : *M) {
if (F.isMaterializable())
continue;
for (auto &I : instructions(F))
I.setMetadata(LLVMContext::MD_tbaa, nullptr);
}
}
/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
/// "epoch" encoded in the bitcode, and return the producer name if any.
static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
return std::move(Err);
// Read all the records.
SmallVector<uint64_t, 64> Record;
std::string ProducerIdentification;
while (true) {
BitstreamEntry Entry;
if (Error E = Stream.advance().moveInto(Entry))
return std::move(E);
switch (Entry.Kind) {
default:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return ProducerIdentification;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (MaybeBitCode.get()) {
default: // Default behavior: reject
return error("Invalid value");
case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
convertToString(Record, 0, ProducerIdentification);
break;
case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
unsigned epoch = (unsigned)Record[0];
if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
return error(
Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
"' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
}
}
}
}
}
static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (true) {
if (Stream.AtEndOfStream())
return "";
BitstreamEntry Entry;
if (Error E = Stream.advance().moveInto(Entry))
return std::move(E);
switch (Entry.Kind) {
case BitstreamEntry::EndBlock:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
return readIdentificationBlock(Stream);
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (Error E = Stream.skipRecord(Entry.ID).takeError())
return std::move(E);
continue;
}
}
}
static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return std::move(Err);
SmallVector<uint64_t, 64> Record;
// Read all the records for this module.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default:
break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid section name record");
// Check for the i386 and other (x86_64, ARM) conventions
if (S.find("__DATA,__objc_catlist") != std::string::npos ||
S.find("__OBJC,__category") != std::string::npos ||
S.find("__TEXT,__swift") != std::string::npos)
return true;
break;
}
}
Record.clear();
}
llvm_unreachable("Exit infinite loop");
}
static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (true) {
BitstreamEntry Entry;
if (Error E = Stream.advance().moveInto(Entry))
return std::move(E);
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::MODULE_BLOCK_ID)
return hasObjCCategoryInModule(Stream);
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (Error E = Stream.skipRecord(Entry.ID).takeError())
return std::move(E);
continue;
}
}
}
static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return std::move(Err);
SmallVector<uint64_t, 64> Record;
std::string Triple;
// Read all the records for this module.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Triple;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid triple record");
Triple = S;
break;
}
}
Record.clear();
}
llvm_unreachable("Exit infinite loop");
}
static Expected<std::string> readTriple(BitstreamCursor &Stream) {
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return "";
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::MODULE_BLOCK_ID)
return readModuleTriple(Stream);
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
continue;
else
return Skipped.takeError();
}
}
}
namespace {
class BitcodeReaderBase {
protected:
BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
: Stream(std::move(Stream)), Strtab(Strtab) {
this->Stream.setBlockInfo(&BlockInfo);
}
BitstreamBlockInfo BlockInfo;
BitstreamCursor Stream;
StringRef Strtab;
/// In version 2 of the bitcode we store names of global values and comdats in
/// a string table rather than in the VST.
bool UseStrtab = false;
Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
/// If this module uses a string table, pop the reference to the string table
/// and return the referenced string and the rest of the record. Otherwise
/// just return the record itself.
std::pair<StringRef, ArrayRef<uint64_t>>
readNameFromStrtab(ArrayRef<uint64_t> Record);
Error readBlockInfo();
// Contains an arbitrary and optional string identifying the bitcode producer
std::string ProducerIdentification;
Error error(const Twine &Message);
};
} // end anonymous namespace
Error BitcodeReaderBase::error(const Twine &Message) {
std::string FullMsg = Message.str();
if (!ProducerIdentification.empty())
FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
LLVM_VERSION_STRING "')";
return ::error(FullMsg);
}
Expected<unsigned>
BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
if (Record.empty())
return error("Invalid version record");
unsigned ModuleVersion = Record[0];
if (ModuleVersion > 2)
return error("Invalid value");
UseStrtab = ModuleVersion >= 2;
return ModuleVersion;
}
std::pair<StringRef, ArrayRef<uint64_t>>
BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
if (!UseStrtab)
return {"", Record};
// Invalid reference. Let the caller complain about the record being empty.
if (Record[0] + Record[1] > Strtab.size())
return {"", {}};
return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
}
namespace {
/// This represents a constant expression or constant aggregate using a custom
/// structure internal to the bitcode reader. Later, this structure will be
/// expanded by materializeValue() either into a constant expression/aggregate,
/// or into an instruction sequence at the point of use. This allows us to
/// upgrade bitcode using constant expressions even if this kind of constant
/// expression is no longer supported.
class BitcodeConstant final : public Value,
TrailingObjects<BitcodeConstant, unsigned> {
friend TrailingObjects;
// Value subclass ID: Pick largest possible value to avoid any clashes.
static constexpr uint8_t SubclassID = 255;
public:
// Opcodes used for non-expressions. This includes constant aggregates
// (struct, array, vector) that might need expansion, as well as non-leaf
// constants that don't need expansion (no_cfi, dso_local, blockaddress),
// but still go through BitcodeConstant to avoid different uselist orders
// between the two cases.
static constexpr uint8_t ConstantStructOpcode = 255;
static constexpr uint8_t ConstantArrayOpcode = 254;
static constexpr uint8_t ConstantVectorOpcode = 253;
static constexpr uint8_t NoCFIOpcode = 252;
static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
static constexpr uint8_t BlockAddressOpcode = 250;
static constexpr uint8_t ConstantPtrAuthOpcode = 249;
static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
// Separate struct to make passing different number of parameters to
// BitcodeConstant::create() more convenient.
struct ExtraInfo {
uint8_t Opcode;
uint8_t Flags;
unsigned BlockAddressBB = 0;
Type *SrcElemTy = nullptr;
std::optional<ConstantRange> InRange;
ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
std::optional<ConstantRange> InRange = std::nullopt)
: Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
InRange(std::move(InRange)) {}
ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
: Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
};
uint8_t Opcode;
uint8_t Flags;
unsigned NumOperands;
unsigned BlockAddressBB;
Type *SrcElemTy; // GEP source element type.
std::optional<ConstantRange> InRange; // GEP inrange attribute.
private:
BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
: Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
getTrailingObjects<unsigned>());
}
BitcodeConstant &operator=(const BitcodeConstant &) = delete;
public:
static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
const ExtraInfo &Info,
ArrayRef<unsigned> OpIDs) {
void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
alignof(BitcodeConstant));
return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
}
static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
ArrayRef<unsigned> getOperandIDs() const {
return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
}
std::optional<ConstantRange> getInRange() const {
assert(Opcode == Instruction::GetElementPtr);
return InRange;
}
const char *getOpcodeName() const {
return Instruction::getOpcodeName(Opcode);
}
};
class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
LLVMContext &Context;
Module *TheModule = nullptr;
// Next offset to start scanning for lazy parsing of function bodies.
uint64_t NextUnreadBit = 0;
// Last function offset found in the VST.
uint64_t LastFunctionBlockBit = 0;
bool SeenValueSymbolTable = false;
uint64_t VSTOffset = 0;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
std::vector<Type *> TypeList;
/// Track type IDs of contained types. Order is the same as the contained
/// types of a Type*. This is used during upgrades of typed pointer IR in
/// opaque pointer mode.
DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
/// In some cases, we need to create a type ID for a type that was not
/// explicitly encoded in the bitcode, or we don't know about at the current
/// point. For example, a global may explicitly encode the value type ID, but
/// not have a type ID for the pointer to value type, for which we create a
/// virtual type ID instead. This map stores the new type ID that was created
/// for the given pair of Type and contained type ID.
DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
DenseMap<Function *, unsigned> FunctionTypeIDs;
/// Allocator for BitcodeConstants. This should come before ValueList,
/// because the ValueList might hold ValueHandles to these constants, so
/// ValueList must be destroyed before Alloc.
BumpPtrAllocator Alloc;
BitcodeReaderValueList ValueList;
std::optional<MetadataLoader> MDLoader;
std::vector<Comdat *> ComdatList;
DenseSet<GlobalObject *> ImplicitComdatObjects;
SmallVector<Instruction *, 64> InstructionList;
std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
struct FunctionOperandInfo {
Function *F;
unsigned PersonalityFn;
unsigned Prefix;
unsigned Prologue;
};
std::vector<FunctionOperandInfo> FunctionOperands;
/// The set of attributes by index. Index zero in the file is for null, and
/// is thus not represented here. As such all indices are off by one.
std::vector<AttributeList> MAttributes;
/// The set of attribute groups.
std::map<unsigned, AttributeList> MAttributeGroups;
/// While parsing a function body, this is a list of the basic blocks for the
/// function.
std::vector<BasicBlock*> FunctionBBs;
// When reading the module header, this list is populated with functions that
// have bodies later in the file.
std::vector<Function*> FunctionsWithBodies;
// When intrinsic functions are encountered which require upgrading they are
// stored here with their replacement function.
using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
UpdatedIntrinsicMap UpgradedIntrinsics;
// Several operations happen after the module header has been read, but
// before function bodies are processed. This keeps track of whether
// we've done this yet.
bool SeenFirstFunctionBody = false;
/// When function bodies are initially scanned, this map contains info about
/// where to find deferred function body in the stream.
DenseMap<Function*, uint64_t> DeferredFunctionInfo;
/// When Metadata block is initially scanned when parsing the module, we may
/// choose to defer parsing of the metadata. This vector contains info about
/// which Metadata blocks are deferred.
std::vector<uint64_t> DeferredMetadataInfo;
/// These are basic blocks forward-referenced by block addresses. They are
/// inserted lazily into functions when they're loaded. The basic block ID is
/// its index into the vector.
DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
std::deque<Function *> BasicBlockFwdRefQueue;
/// These are Functions that contain BlockAddresses which refer a different
/// Function. When parsing the different Function, queue Functions that refer
/// to the different Function. Those Functions must be materialized in order
/// to resolve their BlockAddress constants before the different Function
/// gets moved into another Module.
std::vector<Function *> BackwardRefFunctions;
/// Indicates that we are using a new encoding for instruction operands where
/// most operands in the current FUNCTION_BLOCK are encoded relative to the
/// instruction number, for a more compact encoding. Some instruction
/// operands are not relative to the instruction ID: basic block numbers, and
/// types. Once the old style function blocks have been phased out, we would
/// not need this flag.
bool UseRelativeIDs = false;
/// True if all functions will be materialized, negating the need to process
/// (e.g.) blockaddress forward references.
bool WillMaterializeAllForwardRefs = false;
/// Tracks whether we have seen debug intrinsics or records in this bitcode;
/// seeing both in a single module is currently a fatal error.
bool SeenDebugIntrinsic = false;
bool SeenDebugRecord = false;
bool StripDebugInfo = false;
TBAAVerifier TBAAVerifyHelper;
std::vector<std::string> BundleTags;
SmallVector<SyncScope::ID, 8> SSIDs;
std::optional<ValueTypeCallbackTy> ValueTypeCallback;
public:
BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
StringRef ProducerIdentification, LLVMContext &Context);
Error materializeForwardReferencedFunctions();
Error materialize(GlobalValue *GV) override;
Error materializeModule() override;
std::vector<StructType *> getIdentifiedStructTypes() const override;
/// Main interface to parsing a bitcode buffer.
/// \returns true if an error occurred.
Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
bool IsImporting, ParserCallbacks Callbacks = {});
static uint64_t decodeSignRotatedValue(uint64_t V);
/// Materialize any deferred Metadata block.
Error materializeMetadata() override;
void setStripDebugInfo() override;
private:
std::vector<StructType *> IdentifiedStructTypes;
StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
StructType *createIdentifiedStructType(LLVMContext &Context);
static constexpr unsigned InvalidTypeID = ~0u;
Type *getTypeByID(unsigned ID);
Type *getPtrElementTypeByID(unsigned ID);
unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
void callValueTypeCallback(Value *F, unsigned TypeID);
Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
Expected<Constant *> getValueForInitializer(unsigned ID);
Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
BasicBlock *ConstExprInsertBB) {
if (Ty && Ty->isMetadataTy())
return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
}
Metadata *getFnMetadataByID(unsigned ID) {
return MDLoader->getMetadataFwdRefOrLoad(ID);
}
BasicBlock *getBasicBlock(unsigned ID) const {
if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
return FunctionBBs[ID];
}
AttributeList getAttributes(unsigned i) const {
if (i-1 < MAttributes.size())
return MAttributes[i-1];
return AttributeList();
}
/// Read a value/type pair out of the specified record from slot 'Slot'.
/// Increment Slot past the number of slots used in the record. Return true on
/// failure.
bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
unsigned InstNum, Value *&ResVal, unsigned &TypeID,
BasicBlock *ConstExprInsertBB) {
if (Slot == Record.size()) return true;
unsigned ValNo = (unsigned)Record[Slot++];
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
if (ValNo < InstNum) {
// If this is not a forward reference, just return the value we already
// have.
TypeID = ValueList.getTypeID(ValNo);
ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
"Incorrect type ID stored for value");
return ResVal == nullptr;
}
if (Slot == Record.size())
return true;
TypeID = (unsigned)Record[Slot++];
ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
ConstExprInsertBB);
return ResVal == nullptr;
}
bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record,
unsigned &Slot, unsigned InstNum, Value *&ResVal,
BasicBlock *ConstExprInsertBB) {
if (Slot == Record.size())
return true;
unsigned ValID = Record[Slot++];
if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) {
unsigned TypeId;
return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId,
ConstExprInsertBB);
}
if (Slot == Record.size())
return true;
unsigned ValNo = InstNum - (unsigned)Record[Slot++];
ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo));
return false;
}
/// Read a value out of the specified record from slot 'Slot'. Increment Slot
/// past the number of slots used by the value in the record. Return true if
/// there is an error.
bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
BasicBlock *ConstExprInsertBB) {
if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
return true;
// All values currently take a single record slot.
++Slot;
return false;
}
/// Like popValue, but does not increment the Slot number.
bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
BasicBlock *ConstExprInsertBB) {
ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
return ResVal == nullptr;
}
/// Version of getValue that returns ResVal directly, or 0 if there is an
/// error.
Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty, unsigned TyID,
BasicBlock *ConstExprInsertBB) {
if (Slot == Record.size()) return nullptr;
unsigned ValNo = (unsigned)Record[Slot];
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
}
/// Like getValue, but decodes signed VBRs.
Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty, unsigned TyID,
BasicBlock *ConstExprInsertBB) {
if (Slot == Record.size()) return nullptr;
unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
}
Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
unsigned &OpNum,
unsigned BitWidth) {
if (Record.size() - OpNum < 2)
return error("Too few records for range");
if (BitWidth > 64) {
unsigned LowerActiveWords = Record[OpNum];
unsigned UpperActiveWords = Record[OpNum++] >> 32;
if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
return error("Too few records for range");
APInt Lower =
readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
OpNum += LowerActiveWords;
APInt Upper =
readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
OpNum += UpperActiveWords;
return ConstantRange(Lower, Upper);
} else {
int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
return ConstantRange(APInt(BitWidth, Start, true),
APInt(BitWidth, End, true));
}
}
Expected<ConstantRange>
readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
if (Record.size() - OpNum < 1)
return error("Too few records for range");
unsigned BitWidth = Record[OpNum++];
return readConstantRange(Record, OpNum, BitWidth);
}
/// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
/// corresponding argument's pointee type. Also upgrades intrinsics that now
/// require an elementtype attribute.
Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
/// Converts alignment exponent (i.e. power of two (or zero)) to the
/// corresponding alignment to use. If alignment is too large, returns
/// a corresponding error code.
Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
ParserCallbacks Callbacks = {});
Error parseComdatRecord(ArrayRef<uint64_t> Record);
Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
Error parseFunctionRecord(ArrayRef<uint64_t> Record);
Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
ArrayRef<uint64_t> Record);
Error parseAttributeBlock();
Error parseAttributeGroupBlock();
Error parseTypeTable();
Error parseTypeTableBody();
Error parseOperandBundleTags();
Error parseSyncScopeNames();
Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
unsigned NameIndex, Triple &TT);
void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
ArrayRef<uint64_t> Record);
Error parseValueSymbolTable(uint64_t Offset = 0);
Error parseGlobalValueSymbolTable();
Error parseConstants();
Error rememberAndSkipFunctionBodies();
Error rememberAndSkipFunctionBody();
/// Save the positions of the Metadata blocks and skip parsing the blocks.
Error rememberAndSkipMetadata();
Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
Error parseFunctionBody(Function *F);
Error globalCleanup();
Error resolveGlobalAndIndirectSymbolInits();
Error parseUseLists();
Error findFunctionInStream(
Function *F,
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
SyncScope::ID getDecodedSyncScopeID(unsigned Val);
};
/// Class to manage reading and parsing function summary index bitcode
/// files/sections.
class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
/// The module index built during parsing.
ModuleSummaryIndex &TheIndex;
/// Indicates whether we have encountered a global value summary section
/// yet during parsing.
bool SeenGlobalValSummary = false;
/// Indicates whether we have already parsed the VST, used for error checking.
bool SeenValueSymbolTable = false;
/// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
/// Used to enable on-demand parsing of the VST.
uint64_t VSTOffset = 0;
// Map to save ValueId to ValueInfo association that was recorded in the
// ValueSymbolTable. It is used after the VST is parsed to convert
// call graph edges read from the function summary from referencing
// callees by their ValueId to using the ValueInfo instead, which is how
// they are recorded in the summary index being built.
// We save a GUID which refers to the same global as the ValueInfo, but
// ignoring the linkage, i.e. for values other than local linkage they are
// identical (this is the second member). ValueInfo has the real GUID.
DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
ValueIdToValueInfoMap;
/// Map populated during module path string table parsing, from the
/// module ID to a string reference owned by the index's module
/// path string table, used to correlate with combined index
/// summary records.
DenseMap<uint64_t, StringRef> ModuleIdMap;
/// Original source file name recorded in a bitcode record.
std::string SourceFileName;
/// The string identifier given to this module by the client, normally the
/// path to the bitcode file.
StringRef ModulePath;
/// Callback to ask whether a symbol is the prevailing copy when invoked
/// during combined index building.
std::function<bool(GlobalValue::GUID)> IsPrevailing;
/// Saves the stack ids from the STACK_IDS record to consult when adding stack
/// ids from the lists in the callsite and alloc entries to the index.
std::vector<uint64_t> StackIds;
public:
ModuleSummaryIndexBitcodeReader(
BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
StringRef ModulePath,
std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
Error parseModule();
private:
void setValueGUID(uint64_t ValueID, StringRef ValueName,
GlobalValue::LinkageTypes Linkage,
StringRef SourceFileName);
Error parseValueSymbolTable(
uint64_t Offset,
DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
SmallVector<FunctionSummary::EdgeTy, 0>
makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
bool HasProfile, bool HasRelBF);
Error parseEntireSummary(unsigned ID);
Error parseModuleStringTable();
void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
TypeIdCompatibleVtableInfo &TypeId);
std::vector<FunctionSummary::ParamAccess>
parseParamAccesses(ArrayRef<uint64_t> Record);
template <bool AllowNullValueInfo = false>
std::pair<ValueInfo, GlobalValue::GUID>
getValueInfoFromValueId(unsigned ValueId);
void addThisModule();
ModuleSummaryIndex::ModuleInfo *getThisModule();
};
} // end anonymous namespace
std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
Error Err) {
if (Err) {
std::error_code EC;
handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
EC = EIB.convertToErrorCode();
Ctx.emitError(EIB.message());
});
return EC;
}
return std::error_code();
}
BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
StringRef ProducerIdentification,
LLVMContext &Context)
: BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
ValueList(this->Stream.SizeInBytes(),
[this](unsigned ValID, BasicBlock *InsertBB) {
return materializeValue(ValID, InsertBB);
}) {
this->ProducerIdentification = std::string(ProducerIdentification);
}
Error BitcodeReader::materializeForwardReferencedFunctions() {
if (WillMaterializeAllForwardRefs)
return Error::success();
// Prevent recursion.
WillMaterializeAllForwardRefs = true;
while (!BasicBlockFwdRefQueue.empty()) {
Function *F = BasicBlockFwdRefQueue.front();
BasicBlockFwdRefQueue.pop_front();
assert(F && "Expected valid function");
if (!BasicBlockFwdRefs.count(F))
// Already materialized.
continue;
// Check for a function that isn't materializable to prevent an infinite
// loop. When parsing a blockaddress stored in a global variable, there
// isn't a trivial way to check if a function will have a body without a
// linear search through FunctionsWithBodies, so just check it here.
if (!F->isMaterializable())
return error("Never resolved function from blockaddress");
// Try to materialize F.
if (Error Err = materialize(F))
return Err;
}
assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
for (Function *F : BackwardRefFunctions)
if (Error Err = materialize(F))
return Err;
BackwardRefFunctions.clear();
// Reset state.
WillMaterializeAllForwardRefs = false;
return Error::success();
}
//===----------------------------------------------------------------------===//
// Helper functions to implement forward reference resolution, etc.
//===----------------------------------------------------------------------===//
static bool hasImplicitComdat(size_t Val) {
switch (Val) {
default:
return false;
case 1: // Old WeakAnyLinkage
case 4: // Old LinkOnceAnyLinkage
case 10: // Old WeakODRLinkage
case 11: // Old LinkOnceODRLinkage
return true;
}
}
static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
case 0:
return GlobalValue::ExternalLinkage;
case 2:
return GlobalValue::AppendingLinkage;
case 3:
return GlobalValue::InternalLinkage;
case 5:
return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
case 6:
return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
case 7:
return GlobalValue::ExternalWeakLinkage;
case 8:
return GlobalValue::CommonLinkage;
case 9:
return GlobalValue::PrivateLinkage;
case 12:
return GlobalValue::AvailableExternallyLinkage;
case 13:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
case 14:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
case 15:
return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
case 1: // Old value with implicit comdat.
case 16:
return GlobalValue::WeakAnyLinkage;
case 10: // Old value with implicit comdat.
case 17:
return GlobalValue::WeakODRLinkage;
case 4: // Old value with implicit comdat.
case 18:
return GlobalValue::LinkOnceAnyLinkage;
case 11: // Old value with implicit comdat.
case 19:
return GlobalValue::LinkOnceODRLinkage;
}
}
static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
FunctionSummary::FFlags Flags;
Flags.ReadNone = RawFlags & 0x1;
Flags.ReadOnly = (RawFlags >> 1) & 0x1;
Flags.NoRecurse = (RawFlags >> 2) & 0x1;
Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
Flags.NoInline = (RawFlags >> 4) & 0x1;
Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
Flags.NoUnwind = (RawFlags >> 6) & 0x1;
Flags.MayThrow = (RawFlags >> 7) & 0x1;
Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
return Flags;
}
// Decode the flags for GlobalValue in the summary. The bits for each attribute:
//
// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
// visibility: [8, 10).
static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
uint64_t Version) {
// Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
// like getDecodedLinkage() above. Any future change to the linkage enum and
// to getDecodedLinkage() will need to be taken into account here as above.
auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit
RawFlags = RawFlags >> 4;
bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
// The Live flag wasn't introduced until version 3. For dead stripping
// to work correctly on earlier versions, we must conservatively treat all
// values as live.
bool Live = (RawFlags & 0x2) || Version < 3;
bool Local = (RawFlags & 0x4);
bool AutoHide = (RawFlags & 0x8);
return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
Live, Local, AutoHide, IK);
}
// Decode the flags for GlobalVariable in the summary
static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
return GlobalVarSummary::GVarFlags(
(RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
(RawFlags & 0x4) ? true : false,
(GlobalObject::VCallVisibility)(RawFlags >> 3));
}
static std::pair<CalleeInfo::HotnessType, bool>
getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
CalleeInfo::HotnessType Hotness =
static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
bool HasTailCall = (RawFlags & 0x8); // 1 bit
return {Hotness, HasTailCall};
}
static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
bool &HasTailCall) {
static constexpr uint64_t RelBlockFreqMask =
(1 << CalleeInfo::RelBlockFreqBits) - 1;
RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
}
static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
case 0: return GlobalValue::DefaultVisibility;
case 1: return GlobalValue::HiddenVisibility;
case 2: return GlobalValue::ProtectedVisibility;
}
}
static GlobalValue::DLLStorageClassTypes
getDecodedDLLStorageClass(unsigned Val) {
switch (Val) {
default: // Map unknown values to default.
case 0: return GlobalValue::DefaultStorageClass;
case 1: return GlobalValue::DLLImportStorageClass;
case 2: return GlobalValue::DLLExportStorageClass;
}
}
static bool getDecodedDSOLocal(unsigned Val) {
switch(Val) {
default: // Map unknown values to preemptable.
case 0: return false;
case 1: return true;
}
}
static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
switch (Val) {
case 1:
return CodeModel::Tiny;
case 2:
return CodeModel::Small;
case 3:
return CodeModel::Kernel;
case 4:
return CodeModel::Medium;
case 5:
return CodeModel::Large;
}
return {};
}
static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
switch (Val) {
case 0: return GlobalVariable::NotThreadLocal;
default: // Map unknown non-zero value to general dynamic.
case 1: return GlobalVariable::GeneralDynamicTLSModel;
case 2: return GlobalVariable::LocalDynamicTLSModel;
case 3: return GlobalVariable::InitialExecTLSModel;
case 4: return GlobalVariable::LocalExecTLSModel;
}
}
static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
switch (Val) {
default: // Map unknown to UnnamedAddr::None.
case 0: return GlobalVariable::UnnamedAddr::None;
case 1: return GlobalVariable::UnnamedAddr::Global;
case 2: return GlobalVariable::UnnamedAddr::Local;
}
}
static int getDecodedCastOpcode(unsigned Val) {
switch (Val) {
default: return -1;
case bitc::CAST_TRUNC : return Instruction::Trunc;
case bitc::CAST_ZEXT : return Instruction::ZExt;
case bitc::CAST_SEXT : return Instruction::SExt;
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
case bitc::CAST_UITOFP : return Instruction::UIToFP;
case bitc::CAST_SITOFP : return Instruction::SIToFP;
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
case bitc::CAST_FPEXT : return Instruction::FPExt;
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
case bitc::CAST_BITCAST : return Instruction::BitCast;
case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
}
}
static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
bool IsFP = Ty->isFPOrFPVectorTy();
// UnOps are only valid for int/fp or vector of int/fp types
if (!IsFP && !Ty->isIntOrIntVectorTy())
return -1;
switch (Val) {
default:
return -1;
case bitc::UNOP_FNEG:
return IsFP ? Instruction::FNeg : -1;
}
}
static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
bool IsFP = Ty->isFPOrFPVectorTy();
// BinOps are only valid for int/fp or vector of int/fp types
if (!IsFP && !Ty->isIntOrIntVectorTy())
return -1;
switch (Val) {
default:
return -1;
case bitc::BINOP_ADD:
return IsFP ? Instruction::FAdd : Instruction::Add;
case bitc::BINOP_SUB:
return IsFP ? Instruction::FSub : Instruction::Sub;
case bitc::BINOP_MUL:
return IsFP ? Instruction::FMul : Instruction::Mul;
case bitc::BINOP_UDIV:
return IsFP ? -1 : Instruction::UDiv;
case bitc::BINOP_SDIV:
return IsFP ? Instruction::FDiv : Instruction::SDiv;
case bitc::BINOP_UREM:
return IsFP ? -1 : Instruction::URem;
case bitc::BINOP_SREM:
return IsFP ? Instruction::FRem : Instruction::SRem;
case bitc::BINOP_SHL:
return IsFP ? -1 : Instruction::Shl;
case bitc::BINOP_LSHR:
return IsFP ? -1 : Instruction::LShr;
case bitc::BINOP_ASHR:
return IsFP ? -1 : Instruction::AShr;
case bitc::BINOP_AND:
return IsFP ? -1 : Instruction::And;
case bitc::BINOP_OR:
return IsFP ? -1 : Instruction::Or;
case bitc::BINOP_XOR:
return IsFP ? -1 : Instruction::Xor;
}
}
static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
switch (Val) {
default: return AtomicRMWInst::BAD_BINOP;
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
case bitc::RMW_ADD: return AtomicRMWInst::Add;
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
case bitc::RMW_AND: return AtomicRMWInst::And;
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
case bitc::RMW_OR: return AtomicRMWInst::Or;
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
case bitc::RMW_MAX: return AtomicRMWInst::Max;
case bitc::RMW_MIN: return AtomicRMWInst::Min;
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
case bitc::RMW_UINC_WRAP:
return AtomicRMWInst::UIncWrap;
case bitc::RMW_UDEC_WRAP:
return AtomicRMWInst::UDecWrap;
case bitc::RMW_USUB_COND:
return AtomicRMWInst::USubCond;
case bitc::RMW_USUB_SAT:
return AtomicRMWInst::USubSat;
}
}
static AtomicOrdering getDecodedOrdering(unsigned Val) {
switch (Val) {
case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
default: // Map unknown orderings to sequentially-consistent.
case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
}
}
static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
switch (Val) {
default: // Map unknown selection kinds to any.
case bitc::COMDAT_SELECTION_KIND_ANY:
return Comdat::Any;
case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
return Comdat::ExactMatch;
case bitc::COMDAT_SELECTION_KIND_LARGEST:
return Comdat::Largest;
case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
return Comdat::NoDeduplicate;
case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
return Comdat::SameSize;
}
}
static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
FastMathFlags FMF;
if (0 != (Val & bitc::UnsafeAlgebra))
FMF.setFast();
if (0 != (Val & bitc::AllowReassoc))
FMF.setAllowReassoc();
if (0 != (Val & bitc::NoNaNs))
FMF.setNoNaNs();
if (0 != (Val & bitc::NoInfs))
FMF.setNoInfs();
if (0 != (Val & bitc::NoSignedZeros))
FMF.setNoSignedZeros();
if (0 != (Val & bitc::AllowReciprocal))
FMF.setAllowReciprocal();
if (0 != (Val & bitc::AllowContract))
FMF.setAllowContract(true);
if (0 != (Val & bitc::ApproxFunc))
FMF.setApproxFunc();
return FMF;
}
static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
// A GlobalValue with local linkage cannot have a DLL storage class.
if (GV->hasLocalLinkage())
return;
switch (Val) {
case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
}
}
Type *BitcodeReader::getTypeByID(unsigned ID) {
// The type table size is always specified correctly.
if (ID >= TypeList.size())
return nullptr;
if (Type *Ty = TypeList[ID])
return Ty;
// If we have a forward reference, the only possible case is when it is to a
// named struct. Just create a placeholder for now.
return TypeList[ID] = createIdentifiedStructType(Context);
}
unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
auto It = ContainedTypeIDs.find(ID);
if (It == ContainedTypeIDs.end())
return InvalidTypeID;
if (Idx >= It->second.size())
return InvalidTypeID;
return It->second[Idx];
}
Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
if (ID >= TypeList.size())
return nullptr;
Type *Ty = TypeList[ID];
if (!Ty->isPointerTy())
return nullptr;
return getTypeByID(getContainedTypeID(ID, 0));
}
unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
ArrayRef<unsigned> ChildTypeIDs) {
unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
auto CacheKey = std::make_pair(Ty, ChildTypeID);
auto It = VirtualTypeIDs.find(CacheKey);
if (It != VirtualTypeIDs.end()) {
// The cmpxchg return value is the only place we need more than one
// contained type ID, however the second one will always be the same (i1),
// so we don't need to include it in the cache key. This asserts that the
// contained types are indeed as expected and there are no collisions.
assert((ChildTypeIDs.empty() ||
ContainedTypeIDs[It->second] == ChildTypeIDs) &&
"Incorrect cached contained type IDs");
return It->second;
}
unsigned TypeID = TypeList.size();
TypeList.push_back(Ty);
if (!ChildTypeIDs.empty())
append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
VirtualTypeIDs.insert({CacheKey, TypeID});
return TypeID;
}
static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
GEPNoWrapFlags NW;
if (Flags & (1 << bitc::GEP_INBOUNDS))
NW |= GEPNoWrapFlags::inBounds();
if (Flags & (1 << bitc::GEP_NUSW))
NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
if (Flags & (1 << bitc::GEP_NUW))
NW |= GEPNoWrapFlags::noUnsignedWrap();
return NW;
}
static bool isConstExprSupported(const BitcodeConstant *BC) {
uint8_t Opcode = BC->Opcode;
// These are not real constant expressions, always consider them supported.
if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
return true;
// If -expand-constant-exprs is set, we want to consider all expressions
// as unsupported.
if (ExpandConstantExprs)
return false;
if (Instruction::isBinaryOp(Opcode))
return ConstantExpr::isSupportedBinOp(Opcode);
if (Instruction::isCast(Opcode))
return ConstantExpr::isSupportedCastOp(Opcode);
if (Opcode == Instruction::GetElementPtr)
return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
switch (Opcode) {
case Instruction::FNeg:
case Instruction::Select:
case Instruction::ICmp:
case Instruction::FCmp:
return false;
default:
return true;
}
}
Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
BasicBlock *InsertBB) {
// Quickly handle the case where there is no BitcodeConstant to resolve.
if (StartValID < ValueList.size() && ValueList[StartValID] &&
!isa<BitcodeConstant>(ValueList[StartValID]))
return ValueList[StartValID];
SmallDenseMap<unsigned, Value *> MaterializedValues;
SmallVector<unsigned> Worklist;
Worklist.push_back(StartValID);
while (!Worklist.empty()) {
unsigned ValID = Worklist.back();
if (MaterializedValues.count(ValID)) {
// Duplicate expression that was already handled.
Worklist.pop_back();
continue;
}
if (ValID >= ValueList.size() || !ValueList[ValID])
return error("Invalid value ID");
Value *V = ValueList[ValID];
auto *BC = dyn_cast<BitcodeConstant>(V);
if (!BC) {
MaterializedValues.insert({ValID, V});
Worklist.pop_back();
continue;
}
// Iterate in reverse, so values will get popped from the worklist in
// expected order.
SmallVector<Value *> Ops;
for (unsigned OpID : reverse(BC->getOperandIDs())) {
auto It = MaterializedValues.find(OpID);
if (It != MaterializedValues.end())
Ops.push_back(It->second);
else
Worklist.push_back(OpID);
}
// Some expressions have not been resolved yet, handle them first and then
// revisit this one.
if (Ops.size() != BC->getOperandIDs().size())
continue;
std::reverse(Ops.begin(), Ops.end());
SmallVector<Constant *> ConstOps;
for (Value *Op : Ops)
if (auto *C = dyn_cast<Constant>(Op))
ConstOps.push_back(C);
// Materialize as constant expression if possible.
if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
Constant *C;
if (Instruction::isCast(BC->Opcode)) {
C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
if (!C)
C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
} else if (Instruction::isBinaryOp(BC->Opcode)) {
C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
} else {
switch (BC->Opcode) {
case BitcodeConstant::ConstantPtrAuthOpcode: {
auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
if (!Key)
return error("ptrauth key operand must be ConstantInt");
auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
if (!Disc)
return error("ptrauth disc operand must be ConstantInt");
C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
break;
}
case BitcodeConstant::NoCFIOpcode: {
auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
if (!GV)
return error("no_cfi operand must be GlobalValue");
C = NoCFIValue::get(GV);
break;
}
case BitcodeConstant::DSOLocalEquivalentOpcode: {
auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
if (!GV)
return error("dso_local operand must be GlobalValue");
C = DSOLocalEquivalent::get(GV);
break;
}
case BitcodeConstant::BlockAddressOpcode: {
Function *Fn = dyn_cast<Function>(ConstOps[0]);
if (!Fn)
return error("blockaddress operand must be a function");
// If the function is already parsed we can insert the block address
// right away.
BasicBlock *BB;
unsigned BBID = BC->BlockAddressBB;
if (!BBID)
// Invalid reference to entry block.
return error("Invalid ID");
if (!Fn->empty()) {
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
for (size_t I = 0, E = BBID; I != E; ++I) {
if (BBI == BBE)
return error("Invalid ID");
++BBI;
}
BB = &*BBI;
} else {
// Otherwise insert a placeholder and remember it so it can be
// inserted when the function is parsed.
auto &FwdBBs = BasicBlockFwdRefs[Fn];
if (FwdBBs.empty())
BasicBlockFwdRefQueue.push_back(Fn);
if (FwdBBs.size() < BBID + 1)
FwdBBs.resize(BBID + 1);
if (!FwdBBs[BBID])
FwdBBs[BBID] = BasicBlock::Create(Context);
BB = FwdBBs[BBID];
}
C = BlockAddress::get(Fn, BB);
break;
}
case BitcodeConstant::ConstantStructOpcode:
C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
break;
case BitcodeConstant::ConstantArrayOpcode:
C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
break;
case BitcodeConstant::ConstantVectorOpcode:
C = ConstantVector::get(ConstOps);
break;
case Instruction::GetElementPtr:
C = ConstantExpr::getGetElementPtr(
BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
toGEPNoWrapFlags(BC->Flags), BC->getInRange());
break;
case Instruction::ExtractElement:
C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
break;
case Instruction::InsertElement:
C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
ConstOps[2]);
break;
case Instruction::ShuffleVector: {
SmallVector<int, 16> Mask;
ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
break;
}
default:
llvm_unreachable("Unhandled bitcode constant");
}
}
// Cache resolved constant.
ValueList.replaceValueWithoutRAUW(ValID, C);
MaterializedValues.insert({ValID, C});
Worklist.pop_back();
continue;
}
if (!InsertBB)
return error(Twine("Value referenced by initializer is an unsupported "
"constant expression of type ") +
BC->getOpcodeName());
// Materialize as instructions if necessary.
Instruction *I;
if (Instruction::isCast(BC->Opcode)) {
I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
BC->getType(), "constexpr", InsertBB);
} else if (Instruction::isUnaryOp(BC->Opcode)) {
I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
"constexpr", InsertBB);
} else if (Instruction::isBinaryOp(BC->Opcode)) {
I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
Ops[1], "constexpr", InsertBB);
if (isa<OverflowingBinaryOperator>(I)) {
if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
I->setHasNoSignedWrap();
if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
I->setHasNoUnsignedWrap();
}
if (isa<PossiblyExactOperator>(I) &&
(BC->Flags & PossiblyExactOperator::IsExact))
I->setIsExact();
} else {
switch (BC->Opcode) {
case BitcodeConstant::ConstantVectorOpcode: {
Type *IdxTy = Type::getInt32Ty(BC->getContext());
Value *V = PoisonValue::get(BC->getType());
for (auto Pair : enumerate(Ops)) {
Value *Idx = ConstantInt::get(IdxTy, Pair.index());
V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
InsertBB);
}
I = cast<Instruction>(V);
break;
}
case BitcodeConstant::ConstantStructOpcode:
case BitcodeConstant::ConstantArrayOpcode: {
Value *V = PoisonValue::get(BC->getType());
for (auto Pair : enumerate(Ops))
V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
"constexpr.ins", InsertBB);
I = cast<Instruction>(V);
break;
}
case Instruction::ICmp:
case Instruction::FCmp:
I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
(CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
"constexpr", InsertBB);
break;
case Instruction::GetElementPtr:
I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
ArrayRef(Ops).drop_front(), "constexpr",
InsertBB);
cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
break;
case Instruction::Select:
I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
break;
case Instruction::ExtractElement:
I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
break;
case Instruction::InsertElement:
I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
InsertBB);
break;
case Instruction::ShuffleVector:
I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
InsertBB);
break;
default:
llvm_unreachable("Unhandled bitcode constant");
}
}
MaterializedValues.insert({ValID, I});
Worklist.pop_back();
}
return MaterializedValues[StartValID];
}
Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
if (!MaybeV)
return MaybeV.takeError();
// Result must be Constant if InsertBB is nullptr.
return cast<Constant>(MaybeV.get());
}
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
StringRef Name) {
auto *Ret = StructType::create(Context, Name);
IdentifiedStructTypes.push_back(Ret);
return Ret;
}
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
auto *Ret = StructType::create(Context);
IdentifiedStructTypes.push_back(Ret);
return Ret;
}
//===----------------------------------------------------------------------===//
// Functions for parsing blocks from the bitcode file
//===----------------------------------------------------------------------===//
static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
switch (Val) {
case Attribute::EndAttrKinds:
case Attribute::EmptyKey:
case Attribute::TombstoneKey:
llvm_unreachable("Synthetic enumerators which should never get here");
case Attribute::None: return 0;
case Attribute::ZExt: return 1 << 0;
case Attribute::SExt: return 1 << 1;
case Attribute::NoReturn: return 1 << 2;
case Attribute::InReg: return 1 << 3;
case Attribute::StructRet: return 1 << 4;
case Attribute::NoUnwind: return 1 << 5;
case Attribute::NoAlias: return 1 << 6;
case Attribute::ByVal: return 1 << 7;
case Attribute::Nest: return 1 << 8;
case Attribute::ReadNone: return 1 << 9;
case Attribute::ReadOnly: return 1 << 10;
case Attribute::NoInline: return 1 << 11;
case Attribute::AlwaysInline: return 1 << 12;
case Attribute::OptimizeForSize: return 1 << 13;
case Attribute::StackProtect: return 1 << 14;
case Attribute::StackProtectReq: return 1 << 15;
case Attribute::Alignment: return 31 << 16;
case Attribute::NoCapture: return 1 << 21;
case Attribute::NoRedZone: return 1 << 22;
case Attribute::NoImplicitFloat: return 1 << 23;
case Attribute::Naked: return 1 << 24;
case Attribute::InlineHint: return 1 << 25;
case Attribute::StackAlignment: return 7 << 26;
case Attribute::ReturnsTwice: return 1 << 29;
case Attribute::UWTable: return 1 << 30;
case Attribute::NonLazyBind: return 1U << 31;
case Attribute::SanitizeAddress: return 1ULL << 32;
case Attribute::MinSize: return 1ULL << 33;
case Attribute::NoDuplicate: return 1ULL << 34;
case Attribute::StackProtectStrong: return 1ULL << 35;
case Attribute::SanitizeThread: return 1ULL << 36;
case Attribute::SanitizeMemory: return 1ULL << 37;
case Attribute::NoBuiltin: return 1ULL << 38;
case Attribute::Returned: return 1ULL << 39;
case Attribute::Cold: return 1ULL << 40;
case Attribute::Builtin: return 1ULL << 41;
case Attribute::OptimizeNone: return 1ULL << 42;
case Attribute::InAlloca: return 1ULL << 43;
case Attribute::NonNull: return 1ULL << 44;
case Attribute::JumpTable: return 1ULL << 45;
case Attribute::Convergent: return 1ULL << 46;
case Attribute::SafeStack: return 1ULL << 47;
case Attribute::NoRecurse: return 1ULL << 48;
// 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
// 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
case Attribute::SwiftSelf: return 1ULL << 51;
case Attribute::SwiftError: return 1ULL << 52;
case Attribute::WriteOnly: return 1ULL << 53;
case Attribute::Speculatable: return 1ULL << 54;
case Attribute::StrictFP: return 1ULL << 55;
case Attribute::SanitizeHWAddress: return 1ULL << 56;
case Attribute::NoCfCheck: return 1ULL << 57;
case Attribute::OptForFuzzing: return 1ULL << 58;
case Attribute::ShadowCallStack: return 1ULL << 59;
case Attribute::SpeculativeLoadHardening:
return 1ULL << 60;
case Attribute::ImmArg:
return 1ULL << 61;
case Attribute::WillReturn:
return 1ULL << 62;
case Attribute::NoFree:
return 1ULL << 63;
default:
// Other attributes are not supported in the raw format,
// as we ran out of space.
return 0;
}
llvm_unreachable("Unsupported attribute type");
}
static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
if (!Val) return;
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (uint64_t A = (Val & getRawAttributeMask(I))) {
if (I == Attribute::Alignment)
B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
else if (I == Attribute::StackAlignment)
B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
else if (Attribute::isTypeAttrKind(I))
B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
else
B.addAttribute(I);
}
}
}
/// This fills an AttrBuilder object with the LLVM attributes that have
/// been decoded from the given integer. This function must stay in sync with
/// 'encodeLLVMAttributesForBitcode'.
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
uint64_t EncodedAttrs,
uint64_t AttrIdx) {
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
// the bits above 31 down by 11 bits.
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
assert((!Alignment || isPowerOf2_32(Alignment)) &&
"Alignment must be a power of two.");
if (Alignment)
B.addAlignmentAttr(Alignment);
uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
(EncodedAttrs & 0xffff);
if (AttrIdx == AttributeList::FunctionIndex) {
// Upgrade old memory attributes.
MemoryEffects ME = MemoryEffects::unknown();
if (Attrs & (1ULL << 9)) {
// ReadNone
Attrs &= ~(1ULL << 9);
ME &= MemoryEffects::none();
}
if (Attrs & (1ULL << 10)) {
// ReadOnly
Attrs &= ~(1ULL << 10);
ME &= MemoryEffects::readOnly();
}
if (Attrs & (1ULL << 49)) {
// InaccessibleMemOnly
Attrs &= ~(1ULL << 49);
ME &= MemoryEffects::inaccessibleMemOnly();
}
if (Attrs & (1ULL << 50)) {
// InaccessibleMemOrArgMemOnly
Attrs &= ~(1ULL << 50);
ME &= MemoryEffects::inaccessibleOrArgMemOnly();
}
if (Attrs & (1ULL << 53)) {
// WriteOnly
Attrs &= ~(1ULL << 53);
ME &= MemoryEffects::writeOnly();
}
if (ME != MemoryEffects::unknown())
B.addMemoryAttr(ME);
}
addRawAttributeValue(B, Attrs);
}
Error BitcodeReader::parseAttributeBlock() {
if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Err;
if (!MAttributes.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
SmallVector<AttributeList, 8> Attrs;
// Read all the records.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
// Deprecated, but still needed to read old bitcode files.
if (Record.size() & 1)
return error("Invalid parameter attribute record");
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
AttrBuilder B(Context);
decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
Attrs.push_back(AttributeList::get(Context, Record[i], B));
}
MAttributes.push_back(AttributeList::get(Context, Attrs));
Attrs.clear();
break;
case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
for (uint64_t Val : Record)
Attrs.push_back(MAttributeGroups[Val]);
MAttributes.push_back(AttributeList::get(Context, Attrs));
Attrs.clear();
break;
}
}
}
// Returns Attribute::None on unrecognized codes.
static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
switch (Code) {
default:
return Attribute::None;
case bitc::ATTR_KIND_ALIGNMENT:
return Attribute::Alignment;
case bitc::ATTR_KIND_ALWAYS_INLINE:
return Attribute::AlwaysInline;
case bitc::ATTR_KIND_BUILTIN:
return Attribute::Builtin;
case bitc::ATTR_KIND_BY_VAL:
return Attribute::ByVal;
case bitc::ATTR_KIND_IN_ALLOCA:
return Attribute::InAlloca;
case bitc::ATTR_KIND_COLD:
return Attribute::Cold;
case bitc::ATTR_KIND_CONVERGENT:
return Attribute::Convergent;
case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
return Attribute::DisableSanitizerInstrumentation;
case bitc::ATTR_KIND_ELEMENTTYPE:
return Attribute::ElementType;
case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
return Attribute::FnRetThunkExtern;
case bitc::ATTR_KIND_INLINE_HINT:
return Attribute::InlineHint;
case bitc::ATTR_KIND_IN_REG:
return Attribute::InReg;
case bitc::ATTR_KIND_JUMP_TABLE:
return Attribute::JumpTable;
case bitc::ATTR_KIND_MEMORY:
return Attribute::Memory;
case bitc::ATTR_KIND_NOFPCLASS:
return Attribute::NoFPClass;
case bitc::ATTR_KIND_MIN_SIZE:
return Attribute::MinSize;
case bitc::ATTR_KIND_NAKED:
return Attribute::Naked;
case bitc::ATTR_KIND_NEST:
return Attribute::Nest;
case bitc::ATTR_KIND_NO_ALIAS:
return Attribute::NoAlias;
case bitc::ATTR_KIND_NO_BUILTIN:
return Attribute::NoBuiltin;
case bitc::ATTR_KIND_NO_CALLBACK:
return Attribute::NoCallback;
case bitc::ATTR_KIND_NO_CAPTURE:
return Attribute::NoCapture;
case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE:
return Attribute::NoDivergenceSource;
case bitc::ATTR_KIND_NO_DUPLICATE:
return Attribute::NoDuplicate;
case bitc::ATTR_KIND_NOFREE:
return Attribute::NoFree;
case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
return Attribute::NoImplicitFloat;
case bitc::ATTR_KIND_NO_INLINE:
return Attribute::NoInline;
case bitc::ATTR_KIND_NO_RECURSE:
return Attribute::NoRecurse;
case bitc::ATTR_KIND_NO_MERGE:
return Attribute::NoMerge;
case bitc::ATTR_KIND_NON_LAZY_BIND:
return Attribute::NonLazyBind;
case bitc::ATTR_KIND_NON_NULL:
return Attribute::NonNull;
case bitc::ATTR_KIND_DEREFERENCEABLE:
return Attribute::Dereferenceable;
case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
return Attribute::DereferenceableOrNull;
case bitc::ATTR_KIND_ALLOC_ALIGN:
return Attribute::AllocAlign;
case bitc::ATTR_KIND_ALLOC_KIND:
return Attribute::AllocKind;
case bitc::ATTR_KIND_ALLOC_SIZE:
return Attribute::AllocSize;
case bitc::ATTR_KIND_ALLOCATED_POINTER:
return Attribute::AllocatedPointer;
case bitc::ATTR_KIND_NO_RED_ZONE:
return Attribute::NoRedZone;
case bitc::ATTR_KIND_NO_RETURN:
return Attribute::NoReturn;
case bitc::ATTR_KIND_NOSYNC:
return Attribute::NoSync;
case bitc::ATTR_KIND_NOCF_CHECK:
return Attribute::NoCfCheck;
case bitc::ATTR_KIND_NO_PROFILE:
return Attribute::NoProfile;
case bitc::ATTR_KIND_SKIP_PROFILE:
return Attribute::SkipProfile;
case bitc::ATTR_KIND_NO_UNWIND:
return Attribute::NoUnwind;
case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
return Attribute::NoSanitizeBounds;
case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
return Attribute::NoSanitizeCoverage;
case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
return Attribute::NullPointerIsValid;
case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
return Attribute::OptimizeForDebugging;
case bitc::ATTR_KIND_OPT_FOR_FUZZING:
return Attribute::OptForFuzzing;
case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
return Attribute::OptimizeForSize;
case bitc::ATTR_KIND_OPTIMIZE_NONE:
return Attribute::OptimizeNone;
case bitc::ATTR_KIND_READ_NONE:
return Attribute::ReadNone;
case bitc::ATTR_KIND_READ_ONLY:
return Attribute::ReadOnly;
case bitc::ATTR_KIND_RETURNED:
return Attribute::Returned;
case bitc::ATTR_KIND_RETURNS_TWICE:
return Attribute::ReturnsTwice;
case bitc::ATTR_KIND_S_EXT:
return Attribute::SExt;
case bitc::ATTR_KIND_SPECULATABLE:
return Attribute::Speculatable;
case bitc::ATTR_KIND_STACK_ALIGNMENT:
return Attribute::StackAlignment;
case bitc::ATTR_KIND_STACK_PROTECT:
return Attribute::StackProtect;
case bitc::ATTR_KIND_STACK_PROTECT_REQ:
return Attribute::StackProtectReq;
case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
return Attribute::StackProtectStrong;
case bitc::ATTR_KIND_SAFESTACK:
return Attribute::SafeStack;
case bitc::ATTR_KIND_SHADOWCALLSTACK:
return Attribute::ShadowCallStack;
case bitc::ATTR_KIND_STRICT_FP:
return Attribute::StrictFP;
case bitc::ATTR_KIND_STRUCT_RET:
return Attribute::StructRet;
case bitc::ATTR_KIND_SANITIZE_ADDRESS:
return Attribute::SanitizeAddress;
case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
return Attribute::SanitizeHWAddress;
case bitc::ATTR_KIND_SANITIZE_THREAD:
return Attribute::SanitizeThread;
case bitc::ATTR_KIND_SANITIZE_MEMORY:
return Attribute::SanitizeMemory;
case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
return Attribute::SanitizeNumericalStability;
case bitc::ATTR_KIND_SANITIZE_REALTIME:
return Attribute::SanitizeRealtime;
case bitc::ATTR_KIND_SANITIZE_REALTIME_UNSAFE:
return Attribute::SanitizeRealtimeUnsafe;
case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
return Attribute::SpeculativeLoadHardening;
case bitc::ATTR_KIND_SWIFT_ERROR:
return Attribute::SwiftError;
case bitc::ATTR_KIND_SWIFT_SELF:
return Attribute::SwiftSelf;
case bitc::ATTR_KIND_SWIFT_ASYNC:
return Attribute::SwiftAsync;
case bitc::ATTR_KIND_UW_TABLE:
return Attribute::UWTable;
case bitc::ATTR_KIND_VSCALE_RANGE:
return Attribute::VScaleRange;
case bitc::ATTR_KIND_WILLRETURN:
return Attribute::WillReturn;
case bitc::ATTR_KIND_WRITEONLY:
return Attribute::WriteOnly;
case bitc::ATTR_KIND_Z_EXT:
return Attribute::ZExt;
case bitc::ATTR_KIND_IMMARG:
return Attribute::ImmArg;
case bitc::ATTR_KIND_SANITIZE_MEMTAG:
return Attribute::SanitizeMemTag;
case bitc::ATTR_KIND_PREALLOCATED:
return Attribute::Preallocated;
case bitc::ATTR_KIND_NOUNDEF:
return Attribute::NoUndef;
case bitc::ATTR_KIND_BYREF:
return Attribute::ByRef;
case bitc::ATTR_KIND_MUSTPROGRESS:
return Attribute::MustProgress;
case bitc::ATTR_KIND_HOT:
return Attribute::Hot;
case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
return Attribute::PresplitCoroutine;
case bitc::ATTR_KIND_WRITABLE:
return Attribute::Writable;
case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
return Attribute::CoroDestroyOnlyWhenComplete;
case bitc::ATTR_KIND_DEAD_ON_UNWIND:
return Attribute::DeadOnUnwind;
case bitc::ATTR_KIND_RANGE:
return Attribute::Range;
case bitc::ATTR_KIND_INITIALIZES:
return Attribute::Initializes;
case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
return Attribute::CoroElideSafe;
case bitc::ATTR_KIND_NO_EXT:
return Attribute::NoExt;
}
}
Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
MaybeAlign &Alignment) {
// Note: Alignment in bitcode files is incremented by 1, so that zero
// can be used for default alignment.
if (Exponent > Value::MaxAlignmentExponent + 1)
return error("Invalid alignment value");
Alignment = decodeMaybeAlign(Exponent);
return Error::success();
}
Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
*Kind = getAttrFromCode(Code);
if (*Kind == Attribute::None)
return error("Unknown attribute kind (" + Twine(Code) + ")");
return Error::success();
}
static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
switch (EncodedKind) {
case bitc::ATTR_KIND_READ_NONE:
ME &= MemoryEffects::none();
return true;
case bitc::ATTR_KIND_READ_ONLY:
ME &= MemoryEffects::readOnly();
return true;
case bitc::ATTR_KIND_WRITEONLY:
ME &= MemoryEffects::writeOnly();
return true;
case bitc::ATTR_KIND_ARGMEMONLY:
ME &= MemoryEffects::argMemOnly();
return true;
case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
ME &= MemoryEffects::inaccessibleMemOnly();
return true;
case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
ME &= MemoryEffects::inaccessibleOrArgMemOnly();
return true;
default:
return false;
}
}
Error BitcodeReader::parseAttributeGroupBlock() {
if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
return Err;
if (!MAttributeGroups.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
if (Record.size() < 3)
return error("Invalid grp record");
uint64_t GrpID = Record[0];
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
AttrBuilder B(Context);
MemoryEffects ME = MemoryEffects::unknown();
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Record[i] == 0) { // Enum attribute
Attribute::AttrKind Kind;
uint64_t EncodedKind = Record[++i];
if (Idx == AttributeList::FunctionIndex &&
upgradeOldMemoryAttribute(ME, EncodedKind))
continue;
if (Error Err = parseAttrKind(EncodedKind, &Kind))
return Err;
// Upgrade old-style byval attribute to one with a type, even if it's
// nullptr. We will have to insert the real type when we associate
// this AttributeList with a function.
if (Kind == Attribute::ByVal)
B.addByValAttr(nullptr);
else if (Kind == Attribute::StructRet)
B.addStructRetAttr(nullptr);
else if (Kind == Attribute::InAlloca)
B.addInAllocaAttr(nullptr);
else if (Kind == Attribute::UWTable)
B.addUWTableAttr(UWTableKind::Default);
else if (Attribute::isEnumAttrKind(Kind))
B.addAttribute(Kind);
else
return error("Not an enum attribute");
} else if (Record[i] == 1) { // Integer attribute
Attribute::AttrKind Kind;
if (Error Err = parseAttrKind(Record[++i], &Kind))
return Err;
if (!Attribute::isIntAttrKind(Kind))
return error("Not an int attribute");
if (Kind == Attribute::Alignment)
B.addAlignmentAttr(Record[++i]);
else if (Kind == Attribute::StackAlignment)
B.addStackAlignmentAttr(Record[++i]);
else if (Kind == Attribute::Dereferenceable)
B.addDereferenceableAttr(Record[++i]);
else if (Kind == Attribute::DereferenceableOrNull)
B.addDereferenceableOrNullAttr(Record[++i]);
else if (Kind == Attribute::AllocSize)
B.addAllocSizeAttrFromRawRepr(Record[++i]);
else if (Kind == Attribute::VScaleRange)
B.addVScaleRangeAttrFromRawRepr(Record[++i]);
else if (Kind == Attribute::UWTable)
B.addUWTableAttr(UWTableKind(Record[++i]));
else if (Kind == Attribute::AllocKind)
B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
else if (Kind == Attribute::Memory)
B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
else if (Kind == Attribute::NoFPClass)
B.addNoFPClassAttr(
static_cast<FPClassTest>(Record[++i] & fcAllFlags));
} else if (Record[i] == 3 || Record[i] == 4) { // String attribute
bool HasValue = (Record[i++] == 4);
SmallString<64> KindStr;
SmallString<64> ValStr;
while (Record[i] != 0 && i != e)
KindStr += Record[i++];
assert(Record[i] == 0 && "Kind string not null terminated");
if (HasValue) {
// Has a value associated with it.
++i; // Skip the '0' that terminates the "kind" string.
while (Record[i] != 0 && i != e)
ValStr += Record[i++];
assert(Record[i] == 0 && "Value string not null terminated");
}
B.addAttribute(KindStr.str(), ValStr.str());
} else if (Record[i] == 5 || Record[i] == 6) {
bool HasType = Record[i] == 6;
Attribute::AttrKind Kind;
if (Error Err = parseAttrKind(Record[++i], &Kind))
return Err;
if (!Attribute::isTypeAttrKind(Kind))
return error("Not a type attribute");
B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
} else if (Record[i] == 7) {
Attribute::AttrKind Kind;
i++;
if (Error Err = parseAttrKind(Record[i++], &Kind))
return Err;
if (!Attribute::isConstantRangeAttrKind(Kind))
return error("Not a ConstantRange attribute");
Expected<ConstantRange> MaybeCR =
readBitWidthAndConstantRange(Record, i);
if (!MaybeCR)
return MaybeCR.takeError();
i--;
B.addConstantRangeAttr(Kind, MaybeCR.get());
} else if (Record[i] == 8) {
Attribute::AttrKind Kind;
i++;
if (Error Err = parseAttrKind(Record[i++], &Kind))
return Err;
if (!Attribute::isConstantRangeListAttrKind(Kind))
return error("Not a constant range list attribute");
SmallVector<ConstantRange, 2> Val;
if (i + 2 > e)
return error("Too few records for constant range list");
unsigned RangeSize = Record[i++];
unsigned BitWidth = Record[i++];
for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
Expected<ConstantRange> MaybeCR =
readConstantRange(Record, i, BitWidth);
if (!MaybeCR)
return MaybeCR.takeError();
Val.push_back(MaybeCR.get());
}
i--;
if (!ConstantRangeList::isOrderedRanges(Val))
return error("Invalid (unordered or overlapping) range list");
B.addConstantRangeListAttr(Kind, Val);
} else {
return error("Invalid attribute group entry");
}
}
if (ME != MemoryEffects::unknown())
B.addMemoryAttr(ME);
UpgradeAttributes(B);
MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
break;
}
}
}
}
Error BitcodeReader::parseTypeTable() {
if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
return Err;
return parseTypeTableBody();
}
Error BitcodeReader::parseTypeTableBody() {
if (!TypeList.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
SmallString<64> TypeName;
// Read all the records for this type table.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (NumRecords != TypeList.size())
return error("Malformed block");
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Type *ResultTy = nullptr;
SmallVector<unsigned> ContainedIDs;
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default:
return error("Invalid value");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.empty())
return error("Invalid numentry record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_HALF: // HALF
ResultTy = Type::getHalfTy(Context);
break;
case bitc::TYPE_CODE_BFLOAT: // BFLOAT
ResultTy = Type::getBFloatTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_METADATA: // METADATA
ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
// Deprecated: decodes as <1 x i64>
ResultTy =
llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
break;
case bitc::TYPE_CODE_X86_AMX: // X86_AMX
ResultTy = Type::getX86_AMXTy(Context);
break;
case bitc::TYPE_CODE_TOKEN: // TOKEN
ResultTy = Type::getTokenTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
if (Record.empty())
return error("Invalid integer record");
uint64_t NumBits = Record[0];
if (NumBits < IntegerType::MIN_INT_BITS ||
NumBits > IntegerType::MAX_INT_BITS)
return error("Bitwidth for integer type out of range");
ResultTy = IntegerType::get(Context, NumBits);
break;
}
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.empty())
return error("Invalid pointer record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = getTypeByID(Record[0]);
if (!ResultTy ||
!PointerType::isValidElementType(ResultTy))
return error("Invalid type");
ContainedIDs.push_back(Record[0]);
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
if (Record.size() != 1)
return error("Invalid opaque pointer record");
unsigned AddressSpace = Record[0];
ResultTy = PointerType::get(Context, AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION_OLD: {
// Deprecated, but still needed to read old bitcode files.
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return error("Invalid function record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[2]);
if (!ResultTy || ArgTys.size() < Record.size()-3)
return error("Invalid type");
ContainedIDs.append(Record.begin() + 2, Record.end());
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FUNCTION: [vararg, retty, paramty x N]
if (Record.size() < 2)
return error("Invalid function record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i])) {
if (!FunctionType::isValidArgumentType(T))
return error("Invalid function argument type");
ArgTys.push_back(T);
}
else
break;
}
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || ArgTys.size() < Record.size()-2)
return error("Invalid type");
ContainedIDs.append(Record.begin() + 1, Record.end());
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
if (Record.empty())
return error("Invalid anon struct record");
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return error("Invalid type");
ContainedIDs.append(Record.begin() + 1, Record.end());
ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
if (convertToString(Record, 0, TypeName))
return error("Invalid struct name record");
continue;
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
if (Record.empty())
return error("Invalid named struct record");
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct.
Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return error("Invalid named struct record");
Res->setBody(EltTys, Record[0]);
ContainedIDs.append(Record.begin() + 1, Record.end());
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
if (Record.size() != 1)
return error("Invalid opaque type record");
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct with no body.
Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
if (Record.size() < 1)
return error("Invalid target extension type record");
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
if (Record[0] >= Record.size())
return error("Too many type parameters");
unsigned NumTys = Record[0];
SmallVector<Type *, 4> TypeParams;
SmallVector<unsigned, 8> IntParams;
for (unsigned i = 0; i < NumTys; i++) {
if (Type *T = getTypeByID(Record[i + 1]))
TypeParams.push_back(T);
else
return error("Invalid type");
}
for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
if (Record[i] > UINT_MAX)
return error("Integer parameter too large");
IntParams.push_back(Record[i]);
}
auto TTy =
TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams);
if (auto E = TTy.takeError())
return E;
ResultTy = *TTy;
TypeName.clear();
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return error("Invalid array type record");
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
return error("Invalid type");
ContainedIDs.push_back(Record[1]);
ResultTy = ArrayType::get(ResultTy, Record[0]);
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
// [numelts, eltty, scalable]
if (Record.size() < 2)
return error("Invalid vector type record");
if (Record[0] == 0)
return error("Invalid vector length");
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || !VectorType::isValidElementType(ResultTy))
return error("Invalid type");
bool Scalable = Record.size() > 2 ? Record[2] : false;
ContainedIDs.push_back(Record[1]);
ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
break;
}
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
if (TypeList[NumRecords])
return error(
"Invalid TYPE table: Only named structs can be forward referenced");
assert(ResultTy && "Didn't read a type?");
TypeList[NumRecords] = ResultTy;
if (!ContainedIDs.empty())
ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
++NumRecords;
}
}
Error BitcodeReader::parseOperandBundleTags() {
if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
return Err;
if (!BundleTags.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Tags are implicitly mapped to integers by their order.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
return error("Invalid operand bundle record");
// OPERAND_BUNDLE_TAG: [strchr x N]
BundleTags.emplace_back();
if (convertToString(Record, 0, BundleTags.back()))
return error("Invalid operand bundle record");
Record.clear();
}
}
Error BitcodeReader::parseSyncScopeNames() {
if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
return Err;
if (!SSIDs.empty())
return error("Invalid multiple synchronization scope names blocks");
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (SSIDs.empty())
return error("Invalid empty synchronization scope names block");
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Synchronization scope names are implicitly mapped to synchronization
// scope IDs by their order.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
return error("Invalid sync scope record");
SmallString<16> SSN;
if (convertToString(Record, 0, SSN))
return error("Invalid sync scope record");
SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
Record.clear();
}
}
/// Associate a value with its name from the given index in the provided record.
Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
unsigned NameIndex, Triple &TT) {
SmallString<128> ValueName;
if (convertToString(Record, NameIndex, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size() || !ValueList[ValueID])
return error("Invalid record");
Value *V = ValueList[ValueID];
StringRef NameStr(ValueName.data(), ValueName.size());
if (NameStr.contains(0))
return error("Invalid value name");
V->setName(NameStr);
auto *GO = dyn_cast<GlobalObject>(V);
if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
return V;
}
/// Helper to note and return the current location, and jump to the given
/// offset.
static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
BitstreamCursor &Stream) {
// Save the current parsing location so we can jump back at the end
// of the VST read.
uint64_t CurrentBit = Stream.GetCurrentBitNo();
if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
return std::move(JumpFailed);
Expected<BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
return error("Expected value symbol table subblock");
return CurrentBit;
}
void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
Function *F,
ArrayRef<uint64_t> Record) {
// Note that we subtract 1 here because the offset is relative to one word
// before the start of the identification or module block, which was
// historically always the start of the regular bitcode header.
uint64_t FuncWordOffset = Record[1] - 1;
uint64_t FuncBitOffset = FuncWordOffset * 32;
DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
// Set the LastFunctionBlockBit to point to the last function block.
// Later when parsing is resumed after function materialization,
// we can simply skip that last function block.
if (FuncBitOffset > LastFunctionBlockBit)
LastFunctionBlockBit = FuncBitOffset;
}
/// Read a new-style GlobalValue symbol table.
Error BitcodeReader::parseGlobalValueSymbolTable() {
unsigned FuncBitcodeOffsetDelta =
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
break;
}
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size() || !ValueList[ValueID])
return error("Invalid value reference in symbol table");
setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
cast<Function>(ValueList[ValueID]), Record);
break;
}
}
}
}
/// Parse the value symbol table at either the current parsing location or
/// at the given bit offset if provided.
Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
uint64_t CurrentBit;
// Pass in the Offset to distinguish between calling for the module-level
// VST (where we want to jump to the VST offset) and the function-level
// VST (where we don't).
if (Offset > 0) {
Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
if (!MaybeCurrentBit)
return MaybeCurrentBit.takeError();
CurrentBit = MaybeCurrentBit.get();
// If this module uses a string table, read this as a module-level VST.
if (UseStrtab) {
if (Error Err = parseGlobalValueSymbolTable())
return Err;
if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
return JumpFailed;
return Error::success();
}
// Otherwise, the VST will be in a similar format to a function-level VST,
// and will contain symbol names.
}
// Compute the delta between the bitcode indices in the VST (the word offset
// to the word-aligned ENTER_SUBBLOCK for the function block, and that
// expected by the lazy reader. The reader's EnterSubBlock expects to have
// already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
// (size BlockIDWidth). Note that we access the stream's AbbrevID width here
// just before entering the VST subblock because: 1) the EnterSubBlock
// changes the AbbrevID width; 2) the VST block is nested within the same
// outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
// AbbrevID width before calling EnterSubBlock; and 3) when we want to
// jump to the FUNCTION_BLOCK using this offset later, we don't want
// to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
unsigned FuncBitcodeOffsetDelta =
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
Triple TT(TheModule->getTargetTriple());
// Read all the records for this value table.
SmallString<128> ValueName;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (Offset > 0)
if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
return JumpFailed;
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: unknown type.
break;
case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
if (Error Err = ValOrErr.takeError())
return Err;
ValOrErr.get();
break;
}
case bitc::VST_CODE_FNENTRY: {
// VST_CODE_FNENTRY: [valueid, offset, namechar x N]
Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
if (Error Err = ValOrErr.takeError())
return Err;
Value *V = ValOrErr.get();
// Ignore function offsets emitted for aliases of functions in older
// versions of LLVM.
if (auto *F = dyn_cast<Function>(V))
setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
break;
}
case bitc::VST_CODE_BBENTRY: {
if (convertToString(Record, 1, ValueName))
return error("Invalid bbentry record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (!BB)
return error("Invalid bbentry record");
BB->setName(ValueName.str());
ValueName.clear();
break;
}
}
}
}
/// Decode a signed value stored with the sign bit in the LSB for dense VBR
/// encoding.
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
}
/// Resolve all of the initializers for global values and aliases that we can.
Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
std::vector<FunctionOperandInfo> FunctionOperandWorklist;
GlobalInitWorklist.swap(GlobalInits);
IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
FunctionOperandWorklist.swap(FunctionOperands);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
if (ValID >= ValueList.size()) {
// Not ready to resolve this yet, it requires something later in the file.
GlobalInits.push_back(GlobalInitWorklist.back());
} else {
Expected<Constant *> MaybeC = getValueForInitializer(ValID);
if (!MaybeC)
return MaybeC.takeError();
GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
}
GlobalInitWorklist.pop_back();
}
while (!IndirectSymbolInitWorklist.empty()) {
unsigned ValID = IndirectSymbolInitWorklist.back().second;
if (ValID >= ValueList.size()) {
IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
} else {
Expected<Constant *> MaybeC = getValueForInitializer(ValID);
if (!MaybeC)
return MaybeC.takeError();
Constant *C = MaybeC.get();
GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
if (C->getType() != GV->getType())
return error("Alias and aliasee types don't match");
GA->setAliasee(C);
} else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
GI->setResolver(C);
} else {
return error("Expected an alias or an ifunc");
}
}
IndirectSymbolInitWorklist.pop_back();
}
while (!FunctionOperandWorklist.empty()) {
FunctionOperandInfo &Info = FunctionOperandWorklist.back();
if (Info.PersonalityFn) {
unsigned ValID = Info.PersonalityFn - 1;
if (ValID < ValueList.size()) {
Expected<Constant *> MaybeC = getValueForInitializer(ValID);
if (!MaybeC)
return MaybeC.takeError();
Info.F->setPersonalityFn(MaybeC.get());
Info.PersonalityFn = 0;
}
}
if (Info.Prefix) {
unsigned ValID = Info.Prefix - 1;
if (ValID < ValueList.size()) {
Expected<Constant *> MaybeC = getValueForInitializer(ValID);
if (!MaybeC)
return MaybeC.takeError();
Info.F->setPrefixData(MaybeC.get());
Info.Prefix = 0;
}
}
if (Info.Prologue) {
unsigned ValID = Info.Prologue - 1;
if (ValID < ValueList.size()) {
Expected<Constant *> MaybeC = getValueForInitializer(ValID);
if (!MaybeC)
return MaybeC.takeError();
Info.F->setPrologueData(MaybeC.get());
Info.Prologue = 0;
}
}
if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
FunctionOperands.push_back(Info);
FunctionOperandWorklist.pop_back();
}
return Error::success();
}
APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
SmallVector<uint64_t, 8> Words(Vals.size());
transform(Vals, Words.begin(),
BitcodeReader::decodeSignRotatedValue);
return APInt(TypeBits, Words);
}
Error BitcodeReader::parseConstants() {
if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
Type *CurTy = Type::getInt32Ty(Context);
unsigned Int32TyID = getVirtualTypeID(CurTy);
unsigned CurTyID = Int32TyID;
Type *CurElemTy = nullptr;
unsigned NextCstNo = ValueList.size();
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (NextCstNo != ValueList.size())
return error("Invalid constant reference");
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Type *VoidType = Type::getVoidTy(Context);
Value *V = nullptr;
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
break;
case bitc::CST_CODE_POISON: // POISON
V = PoisonValue::get(CurTy);
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
return error("Invalid settype record");
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
return error("Invalid settype record");
if (TypeList[Record[0]] == VoidType)
return error("Invalid constant type");
CurTyID = Record[0];
CurTy = TypeList[CurTyID];
CurElemTy = getPtrElementTypeByID(CurTyID);
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
return error("Invalid type for a constant null value");
if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
if (!TETy->hasProperty(TargetExtType::HasZeroInit))
return error("Invalid type for a constant null value");
V = Constant::getNullValue(CurTy);
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!CurTy->isIntOrIntVectorTy() || Record.empty())
return error("Invalid integer const record");
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!CurTy->isIntOrIntVectorTy() || Record.empty())
return error("Invalid wide integer const record");
auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
V = ConstantInt::get(CurTy, VInt);
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return error("Invalid float const record");
auto *ScalarTy = CurTy->getScalarType();
if (ScalarTy->isHalfTy())
V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
APInt(16, (uint16_t)Record[0])));
else if (ScalarTy->isBFloatTy())
V = ConstantFP::get(
CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
else if (ScalarTy->isFloatTy())
V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
APInt(32, (uint32_t)Record[0])));
else if (ScalarTy->isDoubleTy())
V = ConstantFP::get(
CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
else if (ScalarTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
V = ConstantFP::get(
CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
} else if (ScalarTy->isFP128Ty())
V = ConstantFP::get(CurTy,
APFloat(APFloat::IEEEquad(), APInt(128, Record)));
else if (ScalarTy->isPPC_FP128Ty())
V = ConstantFP::get(
CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
else
V = PoisonValue::get(CurTy);
break;
}
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return error("Invalid aggregate record");
unsigned Size = Record.size();
SmallVector<unsigned, 16> Elts;
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(Record[i]);
if (isa<StructType>(CurTy)) {
V = BitcodeConstant::create(
Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
} else if (isa<ArrayType>(CurTy)) {
V = BitcodeConstant::create(Alloc, CurTy,
BitcodeConstant::ConstantArrayOpcode, Elts);
} else if (isa<VectorType>(CurTy)) {
V = BitcodeConstant::create(
Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
} else {
V = PoisonValue::get(CurTy);
}
break;
}
case bitc::CST_CODE_STRING: // STRING: [values]
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return error("Invalid string record");
SmallString<16> Elts(Record.begin(), Record.end());
V = ConstantDataArray::getString(Context, Elts,
BitCode == bitc::CST_CODE_CSTRING);
break;
}
case bitc::CST_CODE_DATA: {// DATA: [n x value]
if (Record.empty())
return error("Invalid data record");
Type *EltTy;
if (auto *Array = dyn_cast<ArrayType>(CurTy))
EltTy = Array->getElementType();
else
EltTy = cast<VectorType>(CurTy)->getElementType();
if (EltTy->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(64)) {
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isHalfTy()) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(EltTy, Elts);
else
V = ConstantDataArray::getFP(EltTy, Elts);
} else if (EltTy->isBFloatTy()) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(EltTy, Elts);
else
V = ConstantDataArray::getFP(EltTy, Elts);
} else if (EltTy->isFloatTy()) {
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(EltTy, Elts);
else
V = ConstantDataArray::getFP(EltTy, Elts);
} else if (EltTy->isDoubleTy()) {
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(EltTy, Elts);
else
V = ConstantDataArray::getFP(EltTy, Elts);
} else {
return error("Invalid type for value");
}
break;
}
case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
if (Record.size() < 2)
return error("Invalid unary op constexpr record");
int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = PoisonValue::get(CurTy); // Unknown unop.
} else {
V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
}
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3)
return error("Invalid binary op constexpr record");
int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = PoisonValue::get(CurTy); // Unknown binop.
} else {
uint8_t Flags = 0;
if (Record.size() >= 4) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[3] & (1 << bitc::PEO_EXACT))
Flags |= PossiblyExactOperator::IsExact;
}
}
V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
{(unsigned)Record[1], (unsigned)Record[2]});
}
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3)
return error("Invalid cast constexpr record");
int Opc = getDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = PoisonValue::get(CurTy); // Unknown cast.
} else {
unsigned OpTyID = Record[1];
Type *OpTy = getTypeByID(OpTyID);
if (!OpTy)
return error("Invalid cast constexpr record");
V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
}
break;
}
case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands]
case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
// operands]
case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands]
case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
// operands]
if (Record.size() < 2)
return error("Constant GEP record must have at least two elements");
unsigned OpNum = 0;
Type *PointeeType = nullptr;
if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
PointeeType = getTypeByID(Record[OpNum++]);
uint64_t Flags = 0;
std::optional<ConstantRange> InRange;
if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
uint64_t Op = Record[OpNum++];
Flags = Op & 1; // inbounds
unsigned InRangeIndex = Op >> 1;
// "Upgrade" inrange by dropping it. The feature is too niche to
// bother.
(void)InRangeIndex;
} else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
Flags = Record[OpNum++];
Expected<ConstantRange> MaybeInRange =
readBitWidthAndConstantRange(Record, OpNum);
if (!MaybeInRange)
return MaybeInRange.takeError();
InRange = MaybeInRange.get();
} else if (BitCode == bitc::CST_CODE_CE_GEP) {
Flags = Record[OpNum++];
} else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
Flags = (1 << bitc::GEP_INBOUNDS);
SmallVector<unsigned, 16> Elts;
unsigned BaseTypeID = Record[OpNum];
while (OpNum != Record.size()) {
unsigned ElTyID = Record[OpNum++];
Type *ElTy = getTypeByID(ElTyID);
if (!ElTy)
return error("Invalid getelementptr constexpr record");
Elts.push_back(Record[OpNum++]);
}
if (Elts.size() < 1)
return error("Invalid gep with no operands");
Type *BaseType = getTypeByID(BaseTypeID);
if (isa<VectorType>(BaseType)) {
BaseTypeID = getContainedTypeID(BaseTypeID, 0);
BaseType = getTypeByID(BaseTypeID);
}
PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
if (!OrigPtrTy)
return error("GEP base operand must be pointer or vector of pointer");
if (!PointeeType) {
PointeeType = getPtrElementTypeByID(BaseTypeID);
if (!PointeeType)
return error("Missing element type for old-style constant GEP");
}
V = BitcodeConstant::create(
Alloc, CurTy,
{Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
Elts);
break;
}
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3)
return error("Invalid select constexpr record");
V = BitcodeConstant::create(
Alloc, CurTy, Instruction::Select,
{(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
break;
}
case bitc::CST_CODE_CE_EXTRACTELT
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
if (Record.size() < 3)
return error("Invalid extractelement constexpr record");
unsigned OpTyID = Record[0];
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
if (!OpTy)
return error("Invalid extractelement constexpr record");
unsigned IdxRecord;
if (Record.size() == 4) {
unsigned IdxTyID = Record[2];
Type *IdxTy = getTypeByID(IdxTyID);
if (!IdxTy)
return error("Invalid extractelement constexpr record");
IdxRecord = Record[3];
} else {
// Deprecated, but still needed to read old bitcode files.
IdxRecord = Record[2];
}
V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
{(unsigned)Record[1], IdxRecord});
break;
}
case bitc::CST_CODE_CE_INSERTELT
: { // CE_INSERTELT: [opval, opval, opty, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
return error("Invalid insertelement constexpr record");
unsigned IdxRecord;
if (Record.size() == 4) {
unsigned IdxTyID = Record[2];
Type *IdxTy = getTypeByID(IdxTyID);
if (!IdxTy)
return error("Invalid insertelement constexpr record");
IdxRecord = Record[3];
} else {
// Deprecated, but still needed to read old bitcode files.
IdxRecord = Record[2];
}
V = BitcodeConstant::create(
Alloc, CurTy, Instruction::InsertElement,
{(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
return error("Invalid shufflevector constexpr record");
V = BitcodeConstant::create(
Alloc, CurTy, Instruction::ShuffleVector,
{(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
break;
}
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
VectorType *RTy = dyn_cast<VectorType>(CurTy);
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (Record.size() < 4 || !RTy || !OpTy)
return error("Invalid shufflevector constexpr record");
V = BitcodeConstant::create(
Alloc, CurTy, Instruction::ShuffleVector,
{(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
break;
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4)
return error("Invalid cmp constexpt record");
unsigned OpTyID = Record[0];
Type *OpTy = getTypeByID(OpTyID);
if (!OpTy)
return error("Invalid cmp constexpr record");
V = BitcodeConstant::create(
Alloc, CurTy,
{(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
: Instruction::ICmp),
(uint8_t)Record[3]},
{(unsigned)Record[1], (unsigned)Record[2]});
break;
}
// This maintains backward compatibility, pre-asm dialect keywords.
// Deprecated, but still needed to read old bitcode files.
case bitc::CST_CODE_INLINEASM_OLD: {
if (Record.size() < 2)
return error("Invalid inlineasm record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return error("Invalid inlineasm record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return error("Invalid inlineasm record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
UpgradeInlineAsmString(&AsmStr);
if (!CurElemTy)
return error("Missing element type for old-style inlineasm");
V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
HasSideEffects, IsAlignStack);
break;
}
// This version adds support for the asm dialect keywords (e.g.,
// inteldialect).
case bitc::CST_CODE_INLINEASM_OLD2: {
if (Record.size() < 2)
return error("Invalid inlineasm record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = (Record[0] >> 1) & 1;
unsigned AsmDialect = Record[0] >> 2;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return error("Invalid inlineasm record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return error("Invalid inlineasm record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
UpgradeInlineAsmString(&AsmStr);
if (!CurElemTy)
return error("Missing element type for old-style inlineasm");
V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
HasSideEffects, IsAlignStack,
InlineAsm::AsmDialect(AsmDialect));
break;
}
// This version adds support for the unwind keyword.
case bitc::CST_CODE_INLINEASM_OLD3: {
if (Record.size() < 2)
return error("Invalid inlineasm record");
unsigned OpNum = 0;
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[OpNum] & 1;
bool IsAlignStack = (Record[OpNum] >> 1) & 1;
unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
bool CanThrow = (Record[OpNum] >> 3) & 1;
++OpNum;
unsigned AsmStrSize = Record[OpNum];
++OpNum;
if (OpNum + AsmStrSize >= Record.size())
return error("Invalid inlineasm record");
unsigned ConstStrSize = Record[OpNum + AsmStrSize];
if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
return error("Invalid inlineasm record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[OpNum + i];
++OpNum;
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[OpNum + AsmStrSize + i];
UpgradeInlineAsmString(&AsmStr);
if (!CurElemTy)
return error("Missing element type for old-style inlineasm");
V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
HasSideEffects, IsAlignStack,
InlineAsm::AsmDialect(AsmDialect), CanThrow);
break;
}
// This version adds explicit function type.
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 3)
return error("Invalid inlineasm record");
unsigned OpNum = 0;
auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
++OpNum;
if (!FnTy)
return error("Invalid inlineasm record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[OpNum] & 1;
bool IsAlignStack = (Record[OpNum] >> 1) & 1;
unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
bool CanThrow = (Record[OpNum] >> 3) & 1;
++OpNum;
unsigned AsmStrSize = Record[OpNum];
++OpNum;
if (OpNum + AsmStrSize >= Record.size())
return error("Invalid inlineasm record");
unsigned ConstStrSize = Record[OpNum + AsmStrSize];
if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
return error("Invalid inlineasm record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[OpNum + i];
++OpNum;
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[OpNum + AsmStrSize + i];
UpgradeInlineAsmString(&AsmStr);
V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
InlineAsm::AsmDialect(AsmDialect), CanThrow);
break;
}
case bitc::CST_CODE_BLOCKADDRESS:{
if (Record.size() < 3)
return error("Invalid blockaddress record");
unsigned FnTyID = Record[0];
Type *FnTy = getTypeByID(FnTyID);
if (!FnTy)
return error("Invalid blockaddress record");
V = BitcodeConstant::create(
Alloc, CurTy,
{BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
Record[1]);
break;
}
case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
if (Record.size() < 2)
return error("Invalid dso_local record");
unsigned GVTyID = Record[0];
Type *GVTy = getTypeByID(GVTyID);
if (!GVTy)
return error("Invalid dso_local record");
V = BitcodeConstant::create(
Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
break;
}
case bitc::CST_CODE_NO_CFI_VALUE: {
if (Record.size() < 2)
return error("Invalid no_cfi record");
unsigned GVTyID = Record[0];
Type *GVTy = getTypeByID(GVTyID);
if (!GVTy)
return error("Invalid no_cfi record");
V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
Record[1]);
break;
}
case bitc::CST_CODE_PTRAUTH: {
if (Record.size() < 4)
return error("Invalid ptrauth record");
// Ptr, Key, Disc, AddrDisc
V = BitcodeConstant::create(Alloc, CurTy,
BitcodeConstant::ConstantPtrAuthOpcode,
{(unsigned)Record[0], (unsigned)Record[1],
(unsigned)Record[2], (unsigned)Record[3]});
break;
}
}
assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
return Err;
++NextCstNo;
}
}
Error BitcodeReader::parseUseLists() {
if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
return Err;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a use list record.
Record.clear();
bool IsBB = false;
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: unknown type.
break;
case bitc::USELIST_CODE_BB:
IsBB = true;
[[fallthrough]];
case bitc::USELIST_CODE_DEFAULT: {
unsigned RecordLength = Record.size();
if (RecordLength < 3)
// Records should have at least an ID and two indexes.
return error("Invalid record");
unsigned ID = Record.pop_back_val();
Value *V;
if (IsBB) {
assert(ID < FunctionBBs.size() && "Basic block not found");
V = FunctionBBs[ID];
} else
V = ValueList[ID];
unsigned NumUses = 0;
SmallDenseMap<const Use *, unsigned, 16> Order;
for (const Use &U : V->materialized_uses()) {
if (++NumUses > Record.size())
break;
Order[&U] = Record[NumUses - 1];
}
if (Order.size() != Record.size() || NumUses > Record.size())
// Mismatches can happen if the functions are being materialized lazily
// (out-of-order), or a value has been upgraded.
break;
V->sortUseList([&](const Use &L, const Use &R) {
return Order.lookup(&L) < Order.lookup(&R);
});
break;
}
}
}
}
/// When we see the block for metadata, remember where it is and then skip it.
/// This lets us lazily deserialize the metadata.
Error BitcodeReader::rememberAndSkipMetadata() {
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredMetadataInfo.push_back(CurBit);
// Skip over the block for now.
if (Error Err = Stream.SkipBlock())
return Err;
return Error::success();
}
Error BitcodeReader::materializeMetadata() {
for (uint64_t BitPos : DeferredMetadataInfo) {
// Move the bit stream to the saved position.
if (Error JumpFailed = Stream.JumpToBit(BitPos))
return JumpFailed;
if (Error Err = MDLoader->parseModuleMetadata())
return Err;
}
// Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
// metadata. Only upgrade if the new option doesn't exist to avoid upgrade
// multiple times.
if (!TheModule->getNamedMetadata("llvm.linker.options")) {
if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
NamedMDNode *LinkerOpts =
TheModule->getOrInsertNamedMetadata("llvm.linker.options");
for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
LinkerOpts->addOperand(cast<MDNode>(MDOptions));
}
}
DeferredMetadataInfo.clear();
return Error::success();
}
void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
/// When we see the block for a function body, remember where it is and then
/// skip it. This lets us lazily deserialize the functions.
Error BitcodeReader::rememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
assert(
(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
"Mismatch between VST and scanned function offsets");
DeferredFunctionInfo[Fn] = CurBit;
// Skip over the function block for now.
if (Error Err = Stream.SkipBlock())
return Err;
return Error::success();
}
Error BitcodeReader::globalCleanup() {
// Patch the initializers for globals and aliases up.
if (Error Err = resolveGlobalAndIndirectSymbolInits())
return Err;
if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
return error("Malformed global initializer set");
// Look for intrinsic functions which need to be upgraded at some point
// and functions that need to have their function attributes upgraded.
for (Function &F : *TheModule) {
MDLoader->upgradeDebugIntrinsics(F);
Function *NewFn;
// If PreserveInputDbgFormat=true, then we don't know whether we want
// intrinsics or records, and we won't perform any conversions in either
// case, so don't upgrade intrinsics to records.
if (UpgradeIntrinsicFunction(
&F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
UpgradedIntrinsics[&F] = NewFn;
// Look for functions that rely on old function attribute behavior.
UpgradeFunctionAttributes(F);
}
// Look for global variables which need to be renamed.
std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
for (GlobalVariable &GV : TheModule->globals())
if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
UpgradedVariables.emplace_back(&GV, Upgraded);
for (auto &Pair : UpgradedVariables) {
Pair.first->eraseFromParent();
TheModule->insertGlobalVariable(Pair.second);
}
// Force deallocation of memory for these vectors to favor the client that
// want lazy deserialization.
std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
return Error::success();
}
/// Support for lazy parsing of function bodies. This is required if we
/// either have an old bitcode file without a VST forward declaration record,
/// or if we have an anonymous function being materialized, since anonymous
/// functions do not have a name and are therefore not in the VST.
Error BitcodeReader::rememberAndSkipFunctionBodies() {
if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
return JumpFailed;
if (Stream.AtEndOfStream())
return error("Could not find function in stream");
if (!SeenFirstFunctionBody)
return error("Trying to materialize functions before seeing function blocks");
// An old bitcode file with the symbol table at the end would have
// finished the parse greedily.
assert(SeenValueSymbolTable);
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
default:
return error("Expect SubBlock");
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default:
return error("Expect function block");
case bitc::FUNCTION_BLOCK_ID:
if (Error Err = rememberAndSkipFunctionBody())
return Err;
NextUnreadBit = Stream.GetCurrentBitNo();
return Error::success();
}
}
}
}
Error BitcodeReaderBase::readBlockInfo() {
Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
Stream.ReadBlockInfoBlock();
if (!MaybeNewBlockInfo)
return MaybeNewBlockInfo.takeError();
std::optional<BitstreamBlockInfo> NewBlockInfo =
std::move(MaybeNewBlockInfo.get());
if (!NewBlockInfo)
return error("Malformed block");
BlockInfo = std::move(*NewBlockInfo);
return Error::success();
}
Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
// v1: [selection_kind, name]
// v2: [strtab_offset, strtab_size, selection_kind]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
if (Record.empty())
return error("Invalid record");
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
std::string OldFormatName;
if (!UseStrtab) {
if (Record.size() < 2)
return error("Invalid record");
unsigned ComdatNameSize = Record[1];
if (ComdatNameSize > Record.size() - 2)
return error("Comdat name size too large");
OldFormatName.reserve(ComdatNameSize);
for (unsigned i = 0; i != ComdatNameSize; ++i)
OldFormatName += (char)Record[2 + i];
Name = OldFormatName;
}
Comdat *C = TheModule->getOrInsertComdat(Name);
C->setSelectionKind(SK);
ComdatList.push_back(C);
return Error::success();
}
static void inferDSOLocal(GlobalValue *GV) {
// infer dso_local from linkage and visibility if it is not encoded.
if (GV->hasLocalLinkage() ||
(!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
GV->setDSOLocal(true);
}
GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
GlobalValue::SanitizerMetadata Meta;
if (V & (1 << 0))
Meta.NoAddress = true;
if (V & (1 << 1))
Meta.NoHWAddress = true;
if (V & (1 << 2))
Meta.Memtag = true;
if (V & (1 << 3))
Meta.IsDynInit = true;
return Meta;
}
Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
// v1: [pointer type, isconst, initid, linkage, alignment, section,
// visibility, threadlocal, unnamed_addr, externally_initialized,
// dllstorageclass, comdat, attributes, preemption specifier,
// partition strtab offset, partition strtab size] (name in VST)
// v2: [strtab_offset, strtab_size, v1]
// v3: [v2, code_model]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
if (Record.size() < 6)
return error("Invalid record");
unsigned TyID = Record[0];
Type *Ty = getTypeByID(TyID);
if (!Ty)
return error("Invalid record");
bool isConstant = Record[1] & 1;
bool explicitType = Record[1] & 2;
unsigned AddressSpace;
if (explicitType) {
AddressSpace = Record[1] >> 2;
} else {
if (!Ty->isPointerTy())
return error("Invalid type for value");
AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
TyID = getContainedTypeID(TyID);
Ty = getTypeByID(TyID);
if (!Ty)
return error("Missing element type for old-style global");
}
uint64_t RawLinkage = Record[3];
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
MaybeAlign Alignment;
if (Error Err = parseAlignmentValue(Record[4], Alignment))
return Err;
std::string Section;
if (Record[5]) {
if (Record[5] - 1 >= SectionTable.size())
return error("Invalid ID");
Section = SectionTable[Record[5] - 1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
// Local linkage must have default visibility.
// auto-upgrade `hidden` and `protected` for old bitcode.
if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
Visibility = getDecodedVisibility(Record[6]);
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
if (Record.size() > 7)
TLM = getDecodedThreadLocalMode(Record[7]);
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
if (Record.size() > 8)
UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
bool ExternallyInitialized = false;
if (Record.size() > 9)
ExternallyInitialized = Record[9];
GlobalVariable *NewGV =
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
nullptr, TLM, AddressSpace, ExternallyInitialized);
if (Alignment)
NewGV->setAlignment(*Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setUnnamedAddr(UnnamedAddr);
if (Record.size() > 10) {
// A GlobalValue with local linkage cannot have a DLL storage class.
if (!NewGV->hasLocalLinkage()) {
NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
}
} else {
upgradeDLLImportExportLinkage(NewGV, RawLinkage);
}
ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
if (Record.size() > 11) {
if (unsigned ComdatID = Record[11]) {
if (ComdatID > ComdatList.size())
return error("Invalid global variable comdat ID");
NewGV->setComdat(ComdatList[ComdatID - 1]);
}
} else if (hasImplicitComdat(RawLinkage)) {
ImplicitComdatObjects.insert(NewGV);
}
if (Record.size() > 12) {
auto AS = getAttributes(Record[12]).getFnAttrs();
NewGV->setAttributes(AS);
}
if (Record.size() > 13) {
NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
}
inferDSOLocal(NewGV);
// Check whether we have enough values to read a partition name.
if (Record.size() > 15)
NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
if (Record.size() > 16 && Record[16]) {
llvm::GlobalValue::SanitizerMetadata Meta =
deserializeSanitizerMetadata(Record[16]);
NewGV->setSanitizerMetadata(Meta);
}
if (Record.size() > 17 && Record[17]) {
if (auto CM = getDecodedCodeModel(Record[17]))
NewGV->setCodeModel(*CM);
else
return error("Invalid global variable code model");
}
return Error::success();
}
void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
if (ValueTypeCallback) {
(*ValueTypeCallback)(
F, TypeID, [this](unsigned I) { return getTypeByID(I); },
[this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
}
}
Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
// v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
// visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
// prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
// v2: [strtab_offset, strtab_size, v1]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
if (Record.size() < 8)
return error("Invalid record");
unsigned FTyID = Record[0];
Type *FTy = getTypeByID(FTyID);
if (!FTy)
return error("Invalid record");
if (isa<PointerType>(FTy)) {
FTyID = getContainedTypeID(FTyID, 0);
FTy = getTypeByID(FTyID);
if (!FTy)
return error("Missing element type for old-style function");
}
if (!isa<FunctionType>(FTy))
return error("Invalid type for value");
auto CC = static_cast<CallingConv::ID>(Record[1]);
if (CC & ~CallingConv::MaxID)
return error("Invalid calling convention ID");
unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
if (Record.size() > 16)
AddrSpace = Record[16];
Function *Func =
Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
AddrSpace, Name, TheModule);
assert(Func->getFunctionType() == FTy &&
"Incorrect fully specified type provided for function");
FunctionTypeIDs[Func] = FTyID;
Func->setCallingConv(CC);
bool isProto = Record[2];
uint64_t RawLinkage = Record[3];
Func->setLinkage(getDecodedLinkage(RawLinkage));
Func->setAttributes(getAttributes(Record[4]));
callValueTypeCallback(Func, FTyID);
// Upgrade any old-style byval or sret without a type by propagating the
// argument's pointee type. There should be no opaque pointers where the byval
// type is implicit.
for (unsigned i = 0; i != Func->arg_size(); ++i) {
for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
Attribute::InAlloca}) {
if (!Func->hasParamAttribute(i, Kind))
continue;
if (Func->getParamAttribute(i, Kind).getValueAsType())
continue;
Func->removeParamAttr(i, Kind);
unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
if (!PtrEltTy)
return error("Missing param element type for attribute upgrade");
Attribute NewAttr;
switch (Kind) {
case Attribute::ByVal:
NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
break;
case Attribute::StructRet:
NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
break;
case Attribute::InAlloca:
NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
break;
default:
llvm_unreachable("not an upgraded type attribute");
}
Func->addParamAttr(i, NewAttr);
}
}
if (Func->getCallingConv() == CallingConv::X86_INTR &&
!Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
if (!ByValTy)
return error("Missing param element type for x86_intrcc upgrade");
Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
Func->addParamAttr(0, NewAttr);
}
MaybeAlign Alignment;
if (Error Err = parseAlignmentValue(Record[5], Alignment))
return Err;
if (Alignment)
Func->setAlignment(*Alignment);
if (Record[6]) {
if (Record[6] - 1 >= SectionTable.size())
return error("Invalid ID");
Func->setSection(SectionTable[Record[6] - 1]);
}
// Local linkage must have default visibility.
// auto-upgrade `hidden` and `protected` for old bitcode.
if (!Func->hasLocalLinkage())
Func->setVisibility(getDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8] - 1 >= GCTable.size())
return error("Invalid ID");
Func->setGC(GCTable[Record[8] - 1]);
}
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
if (Record.size() > 9)
UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
Func->setUnnamedAddr(UnnamedAddr);
FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
if (Record.size() > 10)
OperandInfo.Prologue = Record[10];
if (Record.size() > 11) {
// A GlobalValue with local linkage cannot have a DLL storage class.
if (!Func->hasLocalLinkage()) {
Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
}
} else {
upgradeDLLImportExportLinkage(Func, RawLinkage);
}
if (Record.size() > 12) {
if (unsigned ComdatID = Record[12]) {
if (ComdatID > ComdatList.size())
return error("Invalid function comdat ID");
Func->setComdat(ComdatList[ComdatID - 1]);
}
} else if (hasImplicitComdat(RawLinkage)) {
ImplicitComdatObjects.insert(Func);
}
if (Record.size() > 13)
OperandInfo.Prefix = Record[13];
if (Record.size() > 14)
OperandInfo.PersonalityFn = Record[14];
if (Record.size() > 15) {
Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
}
inferDSOLocal(Func);
// Record[16] is the address space number.
// Check whether we have enough values to read a partition name. Also make
// sure Strtab has enough values.
if (Record.size() > 18 && Strtab.data() &&
Record[17] + Record[18] <= Strtab.size()) {
Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
}
ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
FunctionOperands.push_back(OperandInfo);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto) {
Func->setIsMaterializable(true);
FunctionsWithBodies.push_back(Func);
DeferredFunctionInfo[Func] = 0;
}
return Error::success();
}
Error BitcodeReader::parseGlobalIndirectSymbolRecord(
unsigned BitCode, ArrayRef<uint64_t> Record) {
// v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
// v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
// dllstorageclass, threadlocal, unnamed_addr,
// preemption specifier] (name in VST)
// v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
// visibility, dllstorageclass, threadlocal, unnamed_addr,
// preemption specifier] (name in VST)
// v2: [strtab_offset, strtab_size, v1]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
if (Record.size() < (3 + (unsigned)NewRecord))
return error("Invalid record");
unsigned OpNum = 0;
unsigned TypeID = Record[OpNum++];
Type *Ty = getTypeByID(TypeID);
if (!Ty)
return error("Invalid record");
unsigned AddrSpace;
if (!NewRecord) {
auto *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
return error("Invalid type for value");
AddrSpace = PTy->getAddressSpace();
TypeID = getContainedTypeID(TypeID);
Ty = getTypeByID(TypeID);
if (!Ty)
return error("Missing element type for old-style indirect symbol");
} else {
AddrSpace = Record[OpNum++];
}
auto Val = Record[OpNum++];
auto Linkage = Record[OpNum++];
GlobalValue *NewGA;
if (BitCode == bitc::MODULE_CODE_ALIAS ||
BitCode == bitc::MODULE_CODE_ALIAS_OLD)
NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
TheModule);
else
NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
nullptr, TheModule);
// Local linkage must have default visibility.
// auto-upgrade `hidden` and `protected` for old bitcode.
if (OpNum != Record.size()) {
auto VisInd = OpNum++;
if (!NewGA->hasLocalLinkage())
NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
}
if (BitCode == bitc::MODULE_CODE_ALIAS ||
BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
if (OpNum != Record.size()) {
auto S = Record[OpNum++];
// A GlobalValue with local linkage cannot have a DLL storage class.
if (!NewGA->hasLocalLinkage())
NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
}
else
upgradeDLLImportExportLinkage(NewGA, Linkage);
if (OpNum != Record.size())
NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
if (OpNum != Record.size())
NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
}
if (OpNum != Record.size())
NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
inferDSOLocal(NewGA);
// Check whether we have enough values to read a partition name.
if (OpNum + 1 < Record.size()) {
// Check Strtab has enough values for the partition.
if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
return error("Malformed partition, too large.");
NewGA->setPartition(
StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
}
ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
return Error::success();
}
Error BitcodeReader::parseModule(uint64_t ResumeBit,
bool ShouldLazyLoadMetadata,
ParserCallbacks Callbacks) {
// Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
// has been set to true and we aren't attempting to preserve the existing
// format in the bitcode (default action: load into the old debug format).
if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
TheModule->IsNewDbgInfoFormat =
UseNewDbgInfoFormat &&
LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
}
this->ValueTypeCallback = std::move(Callbacks.ValueType);
if (ResumeBit) {
if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
return JumpFailed;
} else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Parts of bitcode parsing depend on the datalayout. Make sure we
// finalize the datalayout before we run any of that code.
bool ResolvedDataLayout = false;
// In order to support importing modules with illegal data layout strings,
// delay parsing the data layout string until after upgrades and overrides
// have been applied, allowing to fix illegal data layout strings.
// Initialize to the current module's layout string in case none is specified.
std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
auto ResolveDataLayout = [&]() -> Error {
if (ResolvedDataLayout)
return Error::success();
// Datalayout and triple can't be parsed after this point.
ResolvedDataLayout = true;
// Auto-upgrade the layout string
TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
TentativeDataLayoutStr, TheModule->getTargetTriple());
// Apply override
if (Callbacks.DataLayout) {
if (auto LayoutOverride = (*Callbacks.DataLayout)(
TheModule->getTargetTriple(), TentativeDataLayoutStr))
TentativeDataLayoutStr = *LayoutOverride;
}
// Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
if (!MaybeDL)
return MaybeDL.takeError();
TheModule->setDataLayout(MaybeDL.get());
return Error::success();
};
// Read all the records for this module.
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (Error Err = ResolveDataLayout())
return Err;
return globalCleanup();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (Error Err = readBlockInfo())
return Err;
break;
case bitc::PARAMATTR_BLOCK_ID:
if (Error Err = parseAttributeBlock())
return Err;
break;
case bitc::PARAMATTR_GROUP_BLOCK_ID:
if (Error Err = parseAttributeGroupBlock())
return Err;
break;
case bitc::TYPE_BLOCK_ID_NEW:
if (Error Err = parseTypeTable())
return Err;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (!SeenValueSymbolTable) {
// Either this is an old form VST without function index and an
// associated VST forward declaration record (which would have caused
// the VST to be jumped to and parsed before it was encountered
// normally in the stream), or there were no function blocks to
// trigger an earlier parsing of the VST.
assert(VSTOffset == 0 || FunctionsWithBodies.empty());
if (Error Err = parseValueSymbolTable())
return Err;
SeenValueSymbolTable = true;
} else {
// We must have had a VST forward declaration record, which caused
// the parser to jump to and parse the VST earlier.
assert(VSTOffset > 0);
if (Error Err = Stream.SkipBlock())
return Err;
}
break;
case bitc::CONSTANTS_BLOCK_ID:
if (Error Err = parseConstants())
return Err;
if (Error Err = resolveGlobalAndIndirectSymbolInits())
return Err;
break;
case bitc::METADATA_BLOCK_ID:
if (ShouldLazyLoadMetadata) {
if (Error Err = rememberAndSkipMetadata())
return Err;
break;
}
assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
if (Error Err = MDLoader->parseModuleMetadata())
return Err;
break;
case bitc::METADATA_KIND_BLOCK_ID:
if (Error Err = MDLoader->parseMetadataKinds())
return Err;
break;
case bitc::FUNCTION_BLOCK_ID:
if (Error Err = ResolveDataLayout())
return Err;
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
if (!SeenFirstFunctionBody) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
if (Error Err = globalCleanup())
return Err;
SeenFirstFunctionBody = true;
}
if (VSTOffset > 0) {
// If we have a VST forward declaration record, make sure we
// parse the VST now if we haven't already. It is needed to
// set up the DeferredFunctionInfo vector for lazy reading.
if (!SeenValueSymbolTable) {
if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
return Err;
SeenValueSymbolTable = true;
// Fall through so that we record the NextUnreadBit below.
// This is necessary in case we have an anonymous function that
// is later materialized. Since it will not have a VST entry we
// need to fall back to the lazy parse to find its offset.
} else {
// If we have a VST forward declaration record, but have already
// parsed the VST (just above, when the first function body was
// encountered here), then we are resuming the parse after
// materializing functions. The ResumeBit points to the
// start of the last function block recorded in the
// DeferredFunctionInfo map. Skip it.
if (Error Err = Stream.SkipBlock())
return Err;
continue;
}
}
// Support older bitcode files that did not have the function
// index in the VST, nor a VST forward declaration record, as
// well as anonymous functions that do not have VST entries.
// Build the DeferredFunctionInfo vector on the fly.
if (Error Err = rememberAndSkipFunctionBody())
return Err;
// Suspend parsing when we reach the function bodies. Subsequent
// materialization calls will resume it when necessary. If the bitcode
// file is old, the symbol table will be at the end instead and will not
// have been seen yet. In this case, just finish the parse now.
if (SeenValueSymbolTable) {
NextUnreadBit = Stream.GetCurrentBitNo();
// After the VST has been parsed, we need to make sure intrinsic name
// are auto-upgraded.
return globalCleanup();
}
break;
case bitc::USELIST_BLOCK_ID:
if (Error Err = parseUseLists())
return Err;
break;
case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
if (Error Err = parseOperandBundleTags())
return Err;
break;
case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
if (Error Err = parseSyncScopeNames())
return Err;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: {
Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
if (!VersionOrErr)
return VersionOrErr.takeError();
UseRelativeIDs = *VersionOrErr >= 1;
break;
}
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
if (ResolvedDataLayout)
return error("target triple too late in module");
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
if (ResolvedDataLayout)
return error("datalayout too late in module");
if (convertToString(Record, 0, TentativeDataLayoutStr))
return error("Invalid record");
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
TheModule->setModuleInlineAsm(S);
break;
}
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
// Deprecated, but still needed to read old bitcode files.
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
// Ignore value.
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
GCTable.push_back(S);
break;
}
case bitc::MODULE_CODE_COMDAT:
if (Error Err = parseComdatRecord(Record))
return Err;
break;
// FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
// written by ThinLinkBitcodeWriter. See
// `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
// record
// (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
case bitc::MODULE_CODE_GLOBALVAR:
if (Error Err = parseGlobalVarRecord(Record))
return Err;
break;
case bitc::MODULE_CODE_FUNCTION:
if (Error Err = ResolveDataLayout())
return Err;
if (Error Err = parseFunctionRecord(Record))
return Err;
break;
case bitc::MODULE_CODE_IFUNC:
case bitc::MODULE_CODE_ALIAS:
case bitc::MODULE_CODE_ALIAS_OLD:
if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
return Err;
break;
/// MODULE_CODE_VSTOFFSET: [offset]
case bitc::MODULE_CODE_VSTOFFSET:
if (Record.empty())
return error("Invalid record");
// Note that we subtract 1 here because the offset is relative to one word
// before the start of the identification or module block, which was
// historically always the start of the regular bitcode header.
VSTOffset = Record[0] - 1;
break;
/// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
case bitc::MODULE_CODE_SOURCE_FILENAME:
SmallString<128> ValueName;
if (convertToString(Record, 0, ValueName))
return error("Invalid record");
TheModule->setSourceFileName(ValueName);
break;
}
Record.clear();
}
this->ValueTypeCallback = std::nullopt;
return Error::success();
}
Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
bool IsImporting,
ParserCallbacks Callbacks) {
TheModule = M;
MetadataLoaderCallbacks MDCallbacks;
MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
return getContainedTypeID(I, J);
};
MDCallbacks.MDType = Callbacks.MDType;
MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
}
Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
if (!isa<PointerType>(PtrType))
return error("Load/Store operand is not a pointer type");
if (!PointerType::isLoadableOrStorableType(ValType))
return error("Cannot load/store from pointer");
return Error::success();
}
Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
ArrayRef<unsigned> ArgTyIDs) {
AttributeList Attrs = CB->getAttributes();
for (unsigned i = 0; i != CB->arg_size(); ++i) {
for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
Attribute::InAlloca}) {
if (!Attrs.hasParamAttr(i, Kind) ||
Attrs.getParamAttr(i, Kind).getValueAsType())
continue;
Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
if (!PtrEltTy)
return error("Missing element type for typed attribute upgrade");
Attribute NewAttr;
switch (Kind) {
case Attribute::ByVal:
NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
break;
case Attribute::StructRet:
NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
break;
case Attribute::InAlloca:
NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
break;
default:
llvm_unreachable("not an upgraded type attribute");
}
Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
}
}
if (CB->isInlineAsm()) {
const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
unsigned ArgNo = 0;
for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
if (!CI.hasArg())
continue;
if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
if (!ElemTy)
return error("Missing element type for inline asm upgrade");
Attrs = Attrs.addParamAttribute(
Context, ArgNo,
Attribute::get(Context, Attribute::ElementType, ElemTy));
}
ArgNo++;
}
}
switch (CB->getIntrinsicID()) {
case Intrinsic::preserve_array_access_index:
case Intrinsic::preserve_struct_access_index:
case Intrinsic::aarch64_ldaxr:
case Intrinsic::aarch64_ldxr:
case Intrinsic::aarch64_stlxr:
case Intrinsic::aarch64_stxr:
case Intrinsic::arm_ldaex:
case Intrinsic::arm_ldrex:
case Intrinsic::arm_stlex:
case Intrinsic::arm_strex: {
unsigned ArgNo;
switch (CB->getIntrinsicID()) {
case Intrinsic::aarch64_stlxr:
case Intrinsic::aarch64_stxr:
case Intrinsic::arm_stlex:
case Intrinsic::arm_strex:
ArgNo = 1;
break;
default:
ArgNo = 0;
break;
}
if (!Attrs.getParamElementType(ArgNo)) {
Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
if (!ElTy)
return error("Missing element type for elementtype upgrade");
Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
}
break;
}
default:
break;
}
CB->setAttributes(Attrs);
return Error::success();
}
/// Lazily parse the specified function body block.
Error BitcodeReader::parseFunctionBody(Function *F) {
if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Err;
// Unexpected unresolved metadata when parsing function.
if (MDLoader->hasFwdRefs())
return error("Invalid function metadata: incoming forward references");
InstructionList.clear();
unsigned ModuleValueListSize = ValueList.size();
unsigned ModuleMDLoaderSize = MDLoader->size();
// Add all the function arguments to the value table.
unsigned ArgNo = 0;
unsigned FTyID = FunctionTypeIDs[F];
for (Argument &I : F->args()) {
unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
assert(I.getType() == getTypeByID(ArgTyID) &&
"Incorrect fully specified type for Function Argument");
ValueList.push_back(&I, ArgTyID);
++ArgNo;
}
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = nullptr;
unsigned CurBBNo = 0;
// Block into which constant expressions from phi nodes are materialized.
BasicBlock *PhiConstExprBB = nullptr;
// Edge blocks for phi nodes into which constant expressions have been
// expanded.
SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
ConstExprEdgeBBs;
DebugLoc LastLoc;
auto getLastInstruction = [&]() -> Instruction * {
if (CurBB && !CurBB->empty())
return &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
!FunctionBBs[CurBBNo - 1]->empty())
return &FunctionBBs[CurBBNo - 1]->back();
return nullptr;
};
std::vector<OperandBundleDef> OperandBundles;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
goto OutOfRecordLoop;
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::CONSTANTS_BLOCK_ID:
if (Error Err = parseConstants())
return Err;
NextValueNo = ValueList.size();
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (Error Err = parseValueSymbolTable())
return Err;
break;
case bitc::METADATA_ATTACHMENT_ID:
if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
return Err;
break;
case bitc::METADATA_BLOCK_ID:
assert(DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level");
if (Error Err = MDLoader->parseFunctionMetadata())
return Err;
break;
case bitc::USELIST_BLOCK_ID:
if (Error Err = parseUseLists())
return Err;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Instruction *I = nullptr;
unsigned ResTypeID = InvalidTypeID;
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: // Default behavior: reject
return error("Invalid value");
case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
if (Record.empty() || Record[0] == 0)
return error("Invalid record");
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
// See if anything took the address of blocks in this function.
auto BBFRI = BasicBlockFwdRefs.find(F);
if (BBFRI == BasicBlockFwdRefs.end()) {
for (BasicBlock *&BB : FunctionBBs)
BB = BasicBlock::Create(Context, "", F);
} else {
auto &BBRefs = BBFRI->second;
// Check for invalid basic block references.
if (BBRefs.size() > FunctionBBs.size())
return error("Invalid ID");
assert(!BBRefs.empty() && "Unexpected empty array");
assert(!BBRefs.front() && "Invalid reference to entry block");
for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
++I)
if (I < RE && BBRefs[I]) {
BBRefs[I]->insertInto(F);
FunctionBBs[I] = BBRefs[I];
} else {
FunctionBBs[I] = BasicBlock::Create(Context, "", F);
}
// Erase from the table.
BasicBlockFwdRefs.erase(BBFRI);
}
CurBB = FunctionBBs[0];
continue;
}
case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
// The record should not be emitted if it's an empty list.
if (Record.empty())
return error("Invalid record");
// When we have the RARE case of a BlockAddress Constant that is not
// scoped to the Function it refers to, we need to conservatively
// materialize the referred to Function, regardless of whether or not
// that Function will ultimately be linked, otherwise users of
// BitcodeReader might start splicing out Function bodies such that we
// might no longer be able to materialize the BlockAddress since the
// BasicBlock (and entire body of the Function) the BlockAddress refers
// to may have been moved. In the case that the user of BitcodeReader
// decides ultimately not to link the Function body, materializing here
// could be considered wasteful, but it's better than a deserialization
// failure as described. This keeps BitcodeReader unaware of complex
// linkage policy decisions such as those use by LTO, leaving those
// decisions "one layer up."
for (uint64_t ValID : Record)
if (auto *F = dyn_cast<Function>(ValueList[ValID]))
BackwardRefFunctions.push_back(F);
else
return error("Invalid record");
continue;
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
// This record indicates that the last instruction is at the same
// location as the previous instruction with a location.
I = getLastInstruction();
if (!I)
return error("Invalid record");
I->setDebugLoc(LastLoc);
I = nullptr;
continue;
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
I = getLastInstruction();
if (!I || Record.size() < 4)
return error("Invalid record");
unsigned Line = Record[0], Col = Record[1];
unsigned ScopeID = Record[2], IAID = Record[3];
bool isImplicitCode = Record.size() == 5 && Record[4];
MDNode *Scope = nullptr, *IA = nullptr;
if (ScopeID) {
Scope = dyn_cast_or_null<MDNode>(
MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
if (!Scope)
return error("Invalid record");
}
if (IAID) {
IA = dyn_cast_or_null<MDNode>(
MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
if (!IA)
return error("Invalid record");
}
LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
isImplicitCode);
I->setDebugLoc(LastLoc);
I = nullptr;
continue;
}
case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
unsigned OpNum = 0;
Value *LHS;
unsigned TypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
OpNum+1 > Record.size())
return error("Invalid record");
int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1)
return error("Invalid record");
I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
ResTypeID = TypeID;
InstructionList.push_back(I);
if (OpNum < Record.size()) {
if (isa<FPMathOperator>(I)) {
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
}
break;
}
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
unsigned TypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
CurBB) ||
OpNum+1 > Record.size())
return error("Invalid record");
int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1)
return error("Invalid record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
ResTypeID = TypeID;
InstructionList.push_back(I);
if (OpNum < Record.size()) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
cast<BinaryOperator>(I)->setIsExact(true);
} else if (Opc == Instruction::Or) {
if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
} else if (isa<FPMathOperator>(I)) {
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
}
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
unsigned OpNum = 0;
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
OpNum + 1 > Record.size())
return error("Invalid record");
ResTypeID = Record[OpNum++];
Type *ResTy = getTypeByID(ResTypeID);
int Opc = getDecodedCastOpcode(Record[OpNum++]);
if (Opc == -1 || !ResTy)
return error("Invalid record");
Instruction *Temp = nullptr;
if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
if (Temp) {
InstructionList.push_back(Temp);
assert(CurBB && "No current BB?");
Temp->insertInto(CurBB, CurBB->end());
}
} else {
auto CastOp = (Instruction::CastOps)Opc;
if (!CastInst::castIsValid(CastOp, Op, ResTy))
return error("Invalid cast");
I = CastInst::Create(CastOp, Op, ResTy);
}
if (OpNum < Record.size()) {
if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
cast<PossiblyNonNegInst>(I)->setNonNeg(true);
} else if (Opc == Instruction::Trunc) {
if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
cast<TruncInst>(I)->setHasNoSignedWrap(true);
}
}
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
case bitc::FUNC_CODE_INST_GEP_OLD:
case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
unsigned OpNum = 0;
unsigned TyID;
Type *Ty;
GEPNoWrapFlags NW;
if (BitCode == bitc::FUNC_CODE_INST_GEP) {
NW = toGEPNoWrapFlags(Record[OpNum++]);
TyID = Record[OpNum++];
Ty = getTypeByID(TyID);
} else {
if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
NW = GEPNoWrapFlags::inBounds();
TyID = InvalidTypeID;
Ty = nullptr;
}
Value *BasePtr;
unsigned BasePtrTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
CurBB))
return error("Invalid record");
if (!Ty) {
TyID = getContainedTypeID(BasePtrTypeID);
if (BasePtr->getType()->isVectorTy())
TyID = getContainedTypeID(TyID);
Ty = getTypeByID(TyID);
}
SmallVector<Value*, 16> GEPIdx;
while (OpNum != Record.size()) {
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
return error("Invalid record");
GEPIdx.push_back(Op);
}
auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
I = GEP;
ResTypeID = TyID;
if (cast<GEPOperator>(I)->getNumIndices() != 0) {
auto GTI = std::next(gep_type_begin(I));
for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
unsigned SubType = 0;
if (GTI.isStruct()) {
ConstantInt *IdxC =
Idx->getType()->isVectorTy()
? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
: cast<ConstantInt>(Idx);
SubType = IdxC->getZExtValue();
}
ResTypeID = getContainedTypeID(ResTypeID, SubType);
++GTI;
}
}
// At this point ResTypeID is the result element type. We need a pointer
// or vector of pointer to it.
ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
if (I->getType()->isVectorTy())
ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
InstructionList.push_back(I);
GEP->setNoWrapFlags(NW);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
unsigned AggTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
return error("Invalid record");
Type *Ty = Agg->getType();
unsigned RecSize = Record.size();
if (OpNum == RecSize)
return error("EXTRACTVAL: Invalid instruction with 0 indices");
SmallVector<unsigned, 4> EXTRACTVALIdx;
ResTypeID = AggTypeID;
for (; OpNum != RecSize; ++OpNum) {
bool IsArray = Ty->isArrayTy();
bool IsStruct = Ty->isStructTy();
uint64_t Index = Record[OpNum];
if (!IsStruct && !IsArray)
return error("EXTRACTVAL: Invalid type");
if ((unsigned)Index != Index)
return error("Invalid value");
if (IsStruct && Index >= Ty->getStructNumElements())
return error("EXTRACTVAL: Invalid struct index");
if (IsArray && Index >= Ty->getArrayNumElements())
return error("EXTRACTVAL: Invalid array index");
EXTRACTVALIdx.push_back((unsigned)Index);
if (IsStruct) {
Ty = Ty->getStructElementType(Index);
ResTypeID = getContainedTypeID(ResTypeID, Index);
} else {
Ty = Ty->getArrayElementType();
ResTypeID = getContainedTypeID(ResTypeID);
}
}
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
unsigned AggTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
return error("Invalid record");
Value *Val;
unsigned ValTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
return error("Invalid record");
unsigned RecSize = Record.size();
if (OpNum == RecSize)
return error("INSERTVAL: Invalid instruction with 0 indices");
SmallVector<unsigned, 4> INSERTVALIdx;
Type *CurTy = Agg->getType();
for (; OpNum != RecSize; ++OpNum) {
bool IsArray = CurTy->isArrayTy();
bool IsStruct = CurTy->isStructTy();
uint64_t Index = Record[OpNum];
if (!IsStruct && !IsArray)
return error("INSERTVAL: Invalid type");
if ((unsigned)Index != Index)
return error("Invalid value");
if (IsStruct && Index >= CurTy->getStructNumElements())
return error("INSERTVAL: Invalid struct index");
if (IsArray && Index >= CurTy->getArrayNumElements())
return error("INSERTVAL: Invalid array index");
INSERTVALIdx.push_back((unsigned)Index);
if (IsStruct)
CurTy = CurTy->getStructElementType(Index);
else
CurTy = CurTy->getArrayElementType();
}
if (CurTy != Val->getType())
return error("Inserted value type doesn't match aggregate type");
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
ResTypeID = AggTypeID;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
unsigned TypeID;
Type *CondType = Type::getInt1Ty(Context);
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
CurBB) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
FalseVal, CurBB) ||
popValue(Record, OpNum, NextValueNo, CondType,
getVirtualTypeID(CondType), Cond, CurBB))
return error("Invalid record");
I = SelectInst::Create(Cond, TrueVal, FalseVal);
ResTypeID = TypeID;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
unsigned ValTypeID, CondTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
CurBB) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
FalseVal, CurBB) ||
getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
return error("Invalid record");
// select condition can be either i1 or [N x i1]
if (VectorType* vector_type =
dyn_cast<VectorType>(Cond->getType())) {
// expect <n x i1>
if (vector_type->getElementType() != Type::getInt1Ty(Context))
return error("Invalid type for value");
} else {
// expect i1
if (Cond->getType() != Type::getInt1Ty(Context))
return error("Invalid type for value");
}
I = SelectInst::Create(Cond, TrueVal, FalseVal);
ResTypeID = ValTypeID;
InstructionList.push_back(I);
if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
break;
}
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
unsigned VecTypeID, IdxTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
return error("Invalid record");
if (!Vec->getType()->isVectorTy())
return error("Invalid type for value");
I = ExtractElementInst::Create(Vec, Idx);
ResTypeID = getContainedTypeID(VecTypeID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
unsigned VecTypeID, IdxTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
return error("Invalid record");
if (!Vec->getType()->isVectorTy())
return error("Invalid type for value");
if (popValue(Record, OpNum, NextValueNo,
cast<VectorType>(Vec->getType())->getElementType(),
getContainedTypeID(VecTypeID), Elt, CurBB) ||
getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
return error("Invalid record");
I = InsertElementInst::Create(Vec, Elt, Idx);
ResTypeID = VecTypeID;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
unsigned Vec1TypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
CurBB) ||
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
Vec2, CurBB))
return error("Invalid record");
unsigned MaskTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
return error("Invalid record");
if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
return error("Invalid type for value");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
ResTypeID =
getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
// Old form of ICmp/FCmp returning bool
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
// both legal on vectors but had different behaviour.
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
// FCmp/ICmp returning bool or vector of bool
unsigned OpNum = 0;
Value *LHS, *RHS;
unsigned LHSTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
CurBB))
return error("Invalid record");
if (OpNum >= Record.size())
return error(
"Invalid record: operand number exceeded available operands");
CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
bool IsFP = LHS->getType()->isFPOrFPVectorTy();
FastMathFlags FMF;
if (IsFP && Record.size() > OpNum+1)
FMF = getDecodedFastMathFlags(Record[++OpNum]);
if (IsFP) {
if (!CmpInst::isFPPredicate(PredVal))
return error("Invalid fcmp predicate");
I = new FCmpInst(PredVal, LHS, RHS);
} else {
if (!CmpInst::isIntPredicate(PredVal))
return error("Invalid icmp predicate");
I = new ICmpInst(PredVal, LHS, RHS);
if (Record.size() > OpNum + 1 &&
(Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN)))
cast<ICmpInst>(I)->setSameSign();
}
if (OpNum + 1 != Record.size())
return error("Invalid record");
ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
if (LHS->getType()->isVectorTy())
ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
if (FMF.any())
I->setFastMathFlags(FMF);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
I = ReturnInst::Create(Context);
InstructionList.push_back(I);
break;
}
unsigned OpNum = 0;
Value *Op = nullptr;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
return error("Invalid record");
if (OpNum != Record.size())
return error("Invalid record");
I = ReturnInst::Create(Context, Op);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
if (Record.size() != 1 && Record.size() != 3)
return error("Invalid record");
BasicBlock *TrueDest = getBasicBlock(Record[0]);
if (!TrueDest)
return error("Invalid record");
if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
InstructionList.push_back(I);
}
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
Type *CondType = Type::getInt1Ty(Context);
Value *Cond = getValue(Record, 2, NextValueNo, CondType,
getVirtualTypeID(CondType), CurBB);
if (!FalseDest || !Cond)
return error("Invalid record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
InstructionList.push_back(I);
}
break;
}
case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
if (Record.size() != 1 && Record.size() != 2)
return error("Invalid record");
unsigned Idx = 0;
Type *TokenTy = Type::getTokenTy(Context);
Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
getVirtualTypeID(TokenTy), CurBB);
if (!CleanupPad)
return error("Invalid record");
BasicBlock *UnwindDest = nullptr;
if (Record.size() == 2) {
UnwindDest = getBasicBlock(Record[Idx++]);
if (!UnwindDest)
return error("Invalid record");
}
I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
if (Record.size() != 2)
return error("Invalid record");
unsigned Idx = 0;
Type *TokenTy = Type::getTokenTy(Context);
Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
getVirtualTypeID(TokenTy), CurBB);
if (!CatchPad)
return error("Invalid record");
BasicBlock *BB = getBasicBlock(Record[Idx++]);
if (!BB)
return error("Invalid record");
I = CatchReturnInst::Create(CatchPad, BB);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
// We must have, at minimum, the outer scope and the number of arguments.
if (Record.size() < 2)
return error("Invalid record");
unsigned Idx = 0;
Type *TokenTy = Type::getTokenTy(Context);
Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
getVirtualTypeID(TokenTy), CurBB);
if (!ParentPad)
return error("Invalid record");
unsigned NumHandlers = Record[Idx++];
SmallVector<BasicBlock *, 2> Handlers;
for (unsigned Op = 0; Op != NumHandlers; ++Op) {
BasicBlock *BB = getBasicBlock(Record[Idx++]);
if (!BB)
return error("Invalid record");
Handlers.push_back(BB);
}
BasicBlock *UnwindDest = nullptr;
if (Idx + 1 == Record.size()) {
UnwindDest = getBasicBlock(Record[Idx++]);
if (!UnwindDest)
return error("Invalid record");
}
if (Record.size() != Idx)
return error("Invalid record");
auto *CatchSwitch =
CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
for (BasicBlock *Handler : Handlers)
CatchSwitch->addHandler(Handler);
I = CatchSwitch;
ResTypeID = getVirtualTypeID(I->getType());
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CATCHPAD:
case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
// We must have, at minimum, the outer scope and the number of arguments.
if (Record.size() < 2)
return error("Invalid record");
unsigned Idx = 0;
Type *TokenTy = Type::getTokenTy(Context);
Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
getVirtualTypeID(TokenTy), CurBB);
if (!ParentPad)
return error("Invald record");
unsigned NumArgOperands = Record[Idx++];
SmallVector<Value *, 2> Args;
for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
Value *Val;
unsigned ValTypeID;
if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
return error("Invalid record");
Args.push_back(Val);
}
if (Record.size() != Idx)
return error("Invalid record");
if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
I = CleanupPadInst::Create(ParentPad, Args);
else
I = CatchPadInst::Create(ParentPad, Args);
ResTypeID = getVirtualTypeID(I->getType());
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
// Check magic
if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
// "New" SwitchInst format with case ranges. The changes to write this
// format were reverted but we still recognize bitcode that uses it.
// Hopefully someday we will have support for case ranges and can use
// this format again.
unsigned OpTyID = Record[1];
Type *OpTy = getTypeByID(OpTyID);
unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
BasicBlock *Default = getBasicBlock(Record[3]);
if (!OpTy || !Cond || !Default)
return error("Invalid record");
unsigned NumCases = Record[4];
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
unsigned CurIdx = 5;
for (unsigned i = 0; i != NumCases; ++i) {
SmallVector<ConstantInt*, 1> CaseVals;
unsigned NumItems = Record[CurIdx++];
for (unsigned ci = 0; ci != NumItems; ++ci) {
bool isSingleNumber = Record[CurIdx++];
APInt Low;
unsigned ActiveWords = 1;
if (ValueBitWidth > 64)
ActiveWords = Record[CurIdx++];
Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
ValueBitWidth);
CurIdx += ActiveWords;
if (!isSingleNumber) {
ActiveWords = 1;
if (ValueBitWidth > 64)
ActiveWords = Record[CurIdx++];
APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
ValueBitWidth);
CurIdx += ActiveWords;
// FIXME: It is not clear whether values in the range should be
// compared as signed or unsigned values. The partially
// implemented changes that used this format in the past used
// unsigned comparisons.
for ( ; Low.ule(High); ++Low)
CaseVals.push_back(ConstantInt::get(Context, Low));
} else
CaseVals.push_back(ConstantInt::get(Context, Low));
}
BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
for (ConstantInt *Cst : CaseVals)
SI->addCase(Cst, DestBB);
}
I = SI;
break;
}
// Old SwitchInst format without case ranges.
if (Record.size() < 3 || (Record.size() & 1) == 0)
return error("Invalid record");
unsigned OpTyID = Record[0];
Type *OpTy = getTypeByID(OpTyID);
Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
BasicBlock *Default = getBasicBlock(Record[2]);
if (!OpTy || !Cond || !Default)
return error("Invalid record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (!CaseVal || !DestBB) {
delete SI;
return error("Invalid record");
}
SI->addCase(CaseVal, DestBB);
}
I = SI;
break;
}
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
if (Record.size() < 2)
return error("Invalid record");
unsigned OpTyID = Record[0];
Type *OpTy = getTypeByID(OpTyID);
Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
if (!OpTy || !Address)
return error("Invalid record");
unsigned NumDests = Record.size()-2;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
InstructionList.push_back(IBI);
for (unsigned i = 0, e = NumDests; i != e; ++i) {
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
IBI->addDestination(DestBB);
} else {
delete IBI;
return error("Invalid record");
}
}
I = IBI;
break;
}
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4)
return error("Invalid record");
unsigned OpNum = 0;
AttributeList PAL = getAttributes(Record[OpNum++]);
unsigned CCInfo = Record[OpNum++];
BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
unsigned FTyID = InvalidTypeID;
FunctionType *FTy = nullptr;
if ((CCInfo >> 13) & 1) {
FTyID = Record[OpNum++];
FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
if (!FTy)
return error("Explicit invoke type is not a function type");
}
Value *Callee;
unsigned CalleeTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
CurBB))
return error("Invalid record");
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
if (!CalleeTy)
return error("Callee is not a pointer");
if (!FTy) {
FTyID = getContainedTypeID(CalleeTypeID);
FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
if (!FTy)
return error("Callee is not of pointer to function type");
}
if (Record.size() < FTy->getNumParams() + OpNum)
return error("Insufficient operands to call");
SmallVector<Value*, 16> Ops;
SmallVector<unsigned, 16> ArgTyIDs;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
ArgTyID, CurBB));
ArgTyIDs.push_back(ArgTyID);
if (!Ops.back())
return error("Invalid record");
}
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return error("Invalid record");
} else {
// Read type/value pairs for varargs params.
while (OpNum != Record.size()) {
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
return error("Invalid record");
Ops.push_back(Op);
ArgTyIDs.push_back(OpTypeID);
}
}
// Upgrade the bundles if needed.
if (!OperandBundles.empty())
UpgradeOperandBundles(OperandBundles);
I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
OperandBundles);
ResTypeID = getContainedTypeID(FTyID);
OperandBundles.clear();
InstructionList.push_back(I);
cast<InvokeInst>(I)->setCallingConv(
static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
cast<InvokeInst>(I)->setAttributes(PAL);
if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
I->deleteValue();
return Err;
}
break;
}
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
unsigned Idx = 0;
Value *Val = nullptr;
unsigned ValTypeID;
if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
return error("Invalid record");
I = ResumeInst::Create(Val);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CALLBR: {
// CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
unsigned OpNum = 0;
AttributeList PAL = getAttributes(Record[OpNum++]);
unsigned CCInfo = Record[OpNum++];
BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
unsigned NumIndirectDests = Record[OpNum++];
SmallVector<BasicBlock *, 16> IndirectDests;
for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
unsigned FTyID = InvalidTypeID;
FunctionType *FTy = nullptr;
if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
FTyID = Record[OpNum++];
FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
if (!FTy)
return error("Explicit call type is not a function type");
}
Value *Callee;
unsigned CalleeTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
CurBB))
return error("Invalid record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
if (!OpTy)
return error("Callee is not a pointer type");
if (!FTy) {
FTyID = getContainedTypeID(CalleeTypeID);
FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
if (!FTy)
return error("Callee is not of pointer to function type");
}
if (Record.size() < FTy->getNumParams() + OpNum)
return error("Insufficient operands to call");
SmallVector<Value*, 16> Args;
SmallVector<unsigned, 16> ArgTyIDs;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Value *Arg;
unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
if (FTy->getParamType(i)->isLabelTy())
Arg = getBasicBlock(Record[OpNum]);
else
Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
ArgTyID, CurBB);
if (!Arg)
return error("Invalid record");
Args.push_back(Arg);
ArgTyIDs.push_back(ArgTyID);
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return error("Invalid record");
} else {
while (OpNum != Record.size()) {
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
return error("Invalid record");
Args.push_back(Op);
ArgTyIDs.push_back(OpTypeID);
}
}
// Upgrade the bundles if needed.
if (!OperandBundles.empty())
UpgradeOperandBundles(OperandBundles);
if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
return CI.Type == InlineAsm::isLabel;
};
if (none_of(ConstraintInfo, IsLabelConstraint)) {
// Upgrade explicit blockaddress arguments to label constraints.
// Verify that the last arguments are blockaddress arguments that
// match the indirect destinations. Clang always generates callbr
// in this form. We could support reordering with more effort.
unsigned FirstBlockArg = Args.size() - IndirectDests.size();
for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
unsigned LabelNo = ArgNo - FirstBlockArg;
auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
if (!BA || BA->getFunction() != F ||
LabelNo > IndirectDests.size() ||
BA->getBasicBlock() != IndirectDests[LabelNo])
return error("callbr argument does not match indirect dest");
}
// Remove blockaddress arguments.
Args.erase(Args.begin() + FirstBlockArg, Args.end());
ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
// Recreate the function type with less arguments.
SmallVector<Type *> ArgTys;
for (Value *Arg : Args)
ArgTys.push_back(Arg->getType());
FTy =
FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
// Update constraint string to use label constraints.
std::string Constraints = IA->getConstraintString();
unsigned ArgNo = 0;
size_t Pos = 0;
for (const auto &CI : ConstraintInfo) {
if (CI.hasArg()) {
if (ArgNo >= FirstBlockArg)
Constraints.insert(Pos, "!");
++ArgNo;
}
// Go to next constraint in string.
Pos = Constraints.find(',', Pos);
if (Pos == std::string::npos)
break;
++Pos;
}
Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
IA->hasSideEffects(), IA->isAlignStack(),
IA->getDialect(), IA->canThrow());
}
}
I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
OperandBundles);
ResTypeID = getContainedTypeID(FTyID);
OperandBundles.clear();
InstructionList.push_back(I);
cast<CallBrInst>(I)->setCallingConv(
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
cast<CallBrInst>(I)->setAttributes(PAL);
if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
I->deleteValue();
return Err;
}
break;
}
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
I = new UnreachableInst(Context);
InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.empty())
return error("Invalid phi record");
// The first record specifies the type.
unsigned TyID = Record[0];
Type *Ty = getTypeByID(TyID);
if (!Ty)
return error("Invalid phi record");
// Phi arguments are pairs of records of [value, basic block].
// There is an optional final record for fast-math-flags if this phi has a
// floating-point type.
size_t NumArgs = (Record.size() - 1) / 2;
PHINode *PN = PHINode::Create(Ty, NumArgs);
if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
PN->deleteValue();
return error("Invalid phi record");
}
InstructionList.push_back(PN);
SmallDenseMap<BasicBlock *, Value *> Args;
for (unsigned i = 0; i != NumArgs; i++) {
BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
if (!BB) {
PN->deleteValue();
return error("Invalid phi BB");
}
// Phi nodes may contain the same predecessor multiple times, in which
// case the incoming value must be identical. Directly reuse the already
// seen value here, to avoid expanding a constant expression multiple
// times.
auto It = Args.find(BB);
if (It != Args.end()) {
PN->addIncoming(It->second, BB);
continue;
}
// If there already is a block for this edge (from a different phi),
// use it.
BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
if (!EdgeBB) {
// Otherwise, use a temporary block (that we will discard if it
// turns out to be unnecessary).
if (!PhiConstExprBB)
PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
EdgeBB = PhiConstExprBB;
}
// With the new function encoding, it is possible that operands have
// negative IDs (for forward references). Use a signed VBR
// representation to keep the encoding small.
Value *V;
if (UseRelativeIDs)
V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
else
V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
if (!V) {
PN->deleteValue();
PhiConstExprBB->eraseFromParent();
return error("Invalid phi record");
}
if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
PhiConstExprBB = nullptr;
}
PN->addIncoming(V, BB);
Args.insert({BB, V});
}
I = PN;
ResTypeID = TyID;
// If there are an even number of records, the final record must be FMF.
if (Record.size() % 2 == 0) {
assert(isa<FPMathOperator>(I) && "Unexpected phi type");
FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
break;
}
case bitc::FUNC_CODE_INST_LANDINGPAD:
case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
unsigned Idx = 0;
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
if (Record.size() < 3)
return error("Invalid record");
} else {
assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
if (Record.size() < 4)
return error("Invalid record");
}
ResTypeID = Record[Idx++];
Type *Ty = getTypeByID(ResTypeID);
if (!Ty)
return error("Invalid record");
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
Value *PersFn = nullptr;
unsigned PersFnTypeID;
if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
nullptr))
return error("Invalid record");
if (!F->hasPersonalityFn())
F->setPersonalityFn(cast<Constant>(PersFn));
else if (F->getPersonalityFn() != cast<Constant>(PersFn))
return error("Personality function mismatch");
}
bool IsCleanup = !!Record[Idx++];
unsigned NumClauses = Record[Idx++];
LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
LP->setCleanup(IsCleanup);
for (unsigned J = 0; J != NumClauses; ++J) {
LandingPadInst::ClauseType CT =
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
Value *Val;
unsigned ValTypeID;
if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
nullptr)) {
delete LP;
return error("Invalid record");
}
assert((CT != LandingPadInst::Catch ||
!isa<ArrayType>(Val->getType())) &&
"Catch clause has a invalid type!");
assert((CT != LandingPadInst::Filter ||
isa<ArrayType>(Val->getType())) &&
"Filter clause has invalid type!");
LP->addClause(cast<Constant>(Val));
}
I = LP;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
if (Record.size() != 4 && Record.size() != 5)
return error("Invalid record");
using APV = AllocaPackedValues;
const uint64_t Rec = Record[3];
const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
unsigned TyID = Record[0];
Type *Ty = getTypeByID(TyID);
if (!Bitfield::get<APV::ExplicitType>(Rec)) {
TyID = getContainedTypeID(TyID);
Ty = getTypeByID(TyID);
if (!Ty)
return error("Missing element type for old-style alloca");
}
unsigned OpTyID = Record[1];
Type *OpTy = getTypeByID(OpTyID);
Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
MaybeAlign Align;
uint64_t AlignExp =
Bitfield::get<APV::AlignLower>(Rec) |
(Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
if (Error Err = parseAlignmentValue(AlignExp, Align)) {
return Err;
}
if (!Ty || !Size)
return error("Invalid record");
const DataLayout &DL = TheModule->getDataLayout();
unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
SmallPtrSet<Type *, 4> Visited;
if (!Align && !Ty->isSized(&Visited))
return error("alloca of unsized type");
if (!Align)
Align = DL.getPrefTypeAlign(Ty);
if (!Size->getType()->isIntegerTy())
return error("alloca element count must have integer type");
AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
AI->setUsedWithInAlloca(InAlloca);
AI->setSwiftError(SwiftError);
I = AI;
ResTypeID = getVirtualTypeID(AI->getType(), TyID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
unsigned OpNum = 0;
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
(OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
return error("Invalid record");
if (!isa<PointerType>(Op->getType()))
return error("Load operand is not a pointer type");
Type *Ty = nullptr;
if (OpNum + 3 == Record.size()) {
ResTypeID = Record[OpNum++];
Ty = getTypeByID(ResTypeID);
} else {
ResTypeID = getContainedTypeID(OpTypeID);
Ty = getTypeByID(ResTypeID);
}
if (!Ty)
return error("Missing load type");
if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
return Err;
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
SmallPtrSet<Type *, 4> Visited;
if (!Align && !Ty->isSized(&Visited))
return error("load of unsized type");
if (!Align)
Align = TheModule->getDataLayout().getABITypeAlign(Ty);
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOADATOMIC: {
// LOADATOMIC: [opty, op, align, vol, ordering, ssid]
unsigned OpNum = 0;
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
(OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
return error("Invalid record");
if (!isa<PointerType>(Op->getType()))
return error("Load operand is not a pointer type");
Type *Ty = nullptr;
if (OpNum + 5 == Record.size()) {
ResTypeID = Record[OpNum++];
Ty = getTypeByID(ResTypeID);
} else {
ResTypeID = getContainedTypeID(OpTypeID);
Ty = getTypeByID(ResTypeID);
}
if (!Ty)
return error("Missing atomic load type");
if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
return Err;
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Release ||
Ordering == AtomicOrdering::AcquireRelease)
return error("Invalid record");
if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
if (!Align)
return error("Alignment missing from atomic load");
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STORE:
case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
unsigned OpNum = 0;
Value *Val, *Ptr;
unsigned PtrTypeID, ValTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
return error("Invalid record");
if (BitCode == bitc::FUNC_CODE_INST_STORE) {
if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
return error("Invalid record");
} else {
ValTypeID = getContainedTypeID(PtrTypeID);
if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
ValTypeID, Val, CurBB))
return error("Invalid record");
}
if (OpNum + 2 != Record.size())
return error("Invalid record");
if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
return Err;
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
SmallPtrSet<Type *, 4> Visited;
if (!Align && !Val->getType()->isSized(&Visited))
return error("store of unsized type");
if (!Align)
Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STOREATOMIC:
case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
unsigned OpNum = 0;
Value *Val, *Ptr;
unsigned PtrTypeID, ValTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
!isa<PointerType>(Ptr->getType()))
return error("Invalid record");
if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
return error("Invalid record");
} else {
ValTypeID = getContainedTypeID(PtrTypeID);
if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
ValTypeID, Val, CurBB))
return error("Invalid record");
}
if (OpNum + 4 != Record.size())
return error("Invalid record");
if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
return Err;
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Acquire ||
Ordering == AtomicOrdering::AcquireRelease)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
return error("Invalid record");
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
if (!Align)
return error("Alignment missing from atomic store");
I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
// CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
// failure_ordering?, weak?]
const size_t NumRecords = Record.size();
unsigned OpNum = 0;
Value *Ptr = nullptr;
unsigned PtrTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
return error("Invalid record");
if (!isa<PointerType>(Ptr->getType()))
return error("Cmpxchg operand is not a pointer type");
Value *Cmp = nullptr;
unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
CmpTypeID, Cmp, CurBB))
return error("Invalid record");
Value *New = nullptr;
if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
New, CurBB) ||
NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
return error("Invalid record");
const AtomicOrdering SuccessOrdering =
getDecodedOrdering(Record[OpNum + 1]);
if (SuccessOrdering == AtomicOrdering::NotAtomic ||
SuccessOrdering == AtomicOrdering::Unordered)
return error("Invalid record");
const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
return Err;
const AtomicOrdering FailureOrdering =
NumRecords < 7
? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
: getDecodedOrdering(Record[OpNum + 3]);
if (FailureOrdering == AtomicOrdering::NotAtomic ||
FailureOrdering == AtomicOrdering::Unordered)
return error("Invalid record");
const Align Alignment(
TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
FailureOrdering, SSID);
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
if (NumRecords < 8) {
// Before weak cmpxchgs existed, the instruction simply returned the
// value loaded from memory, so bitcode files from that era will be
// expecting the first component of a modern cmpxchg.
I->insertInto(CurBB, CurBB->end());
I = ExtractValueInst::Create(I, 0);
ResTypeID = CmpTypeID;
} else {
cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
}
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMPXCHG: {
// CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
// failure_ordering, weak, align?]
const size_t NumRecords = Record.size();
unsigned OpNum = 0;
Value *Ptr = nullptr;
unsigned PtrTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
return error("Invalid record");
if (!isa<PointerType>(Ptr->getType()))
return error("Cmpxchg operand is not a pointer type");
Value *Cmp = nullptr;
unsigned CmpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
return error("Invalid record");
Value *Val = nullptr;
if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
CurBB))
return error("Invalid record");
if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
return error("Invalid record");
const bool IsVol = Record[OpNum];
const AtomicOrdering SuccessOrdering =
getDecodedOrdering(Record[OpNum + 1]);
if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
return error("Invalid cmpxchg success ordering");
const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
return Err;
const AtomicOrdering FailureOrdering =
getDecodedOrdering(Record[OpNum + 3]);
if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
return error("Invalid cmpxchg failure ordering");
const bool IsWeak = Record[OpNum + 4];
MaybeAlign Alignment;
if (NumRecords == (OpNum + 6)) {
if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
return Err;
}
if (!Alignment)
Alignment =
Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
FailureOrdering, SSID);
cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
case bitc::FUNC_CODE_INST_ATOMICRMW: {
// ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
// ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
const size_t NumRecords = Record.size();
unsigned OpNum = 0;
Value *Ptr = nullptr;
unsigned PtrTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
return error("Invalid record");
if (!isa<PointerType>(Ptr->getType()))
return error("Invalid record");
Value *Val = nullptr;
unsigned ValTypeID = InvalidTypeID;
if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
ValTypeID = getContainedTypeID(PtrTypeID);
if (popValue(Record, OpNum, NextValueNo,
getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
return error("Invalid record");
} else {
if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
return error("Invalid record");
}
if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
return error("Invalid record");
const AtomicRMWInst::BinOp Operation =
getDecodedRMWOperation(Record[OpNum]);
if (Operation < AtomicRMWInst::FIRST_BINOP ||
Operation > AtomicRMWInst::LAST_BINOP)
return error("Invalid record");
const bool IsVol = Record[OpNum + 1];
const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Unordered)
return error("Invalid record");
const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
MaybeAlign Alignment;
if (NumRecords == (OpNum + 5)) {
if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
return Err;
}
if (!Alignment)
Alignment =
Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
ResTypeID = ValTypeID;
cast<AtomicRMWInst>(I)->setVolatile(IsVol);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
if (2 != Record.size())
return error("Invalid record");
AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Unordered ||
Ordering == AtomicOrdering::Monotonic)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
I = new FenceInst(Context, Ordering, SSID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
// DbgLabelRecords are placed after the Instructions that they are
// attached to.
SeenDebugRecord = true;
Instruction *Inst = getLastInstruction();
if (!Inst)
return error("Invalid dbg record: missing instruction");
DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
Inst->getParent()->insertDbgRecordBefore(
new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
continue; // This isn't an instruction.
}
case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
// DbgVariableRecords are placed after the Instructions that they are
// attached to.
SeenDebugRecord = true;
Instruction *Inst = getLastInstruction();
if (!Inst)
return error("Invalid dbg record: missing instruction");
// First 3 fields are common to all kinds:
// DILocation, DILocalVariable, DIExpression
// dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
// ..., LocationMetadata
// dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
// ..., Value
// dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
// ..., LocationMetadata
// dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
// ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
unsigned Slot = 0;
// Common fields (0-2).
DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
DILocalVariable *Var =
cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
DIExpression *Expr =
cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
// Union field (3: LocationMetadata | Value).
Metadata *RawLocation = nullptr;
if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
Value *V = nullptr;
unsigned TyID = 0;
// We never expect to see a fwd reference value here because
// use-before-defs are encoded with the standard non-abbrev record
// type (they'd require encoding the type too, and they're rare). As a
// result, getValueTypePair only ever increments Slot by one here (once
// for the value, never twice for value and type).
unsigned SlotBefore = Slot;
if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
return error("Invalid dbg record: invalid value");
(void)SlotBefore;
assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
RawLocation = ValueAsMetadata::get(V);
} else {
RawLocation = getFnMetadataByID(Record[Slot++]);
}
DbgVariableRecord *DVR = nullptr;
switch (BitCode) {
case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
DbgVariableRecord::LocationType::Value);
break;
case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
DbgVariableRecord::LocationType::Declare);
break;
case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
DIExpression *AddrExpr =
cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
Metadata *Addr = getFnMetadataByID(Record[Slot++]);
DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
DIL);
break;
}
default:
llvm_unreachable("Unknown DbgVariableRecord bitcode");
}
Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
continue; // This isn't an instruction.
}
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return error("Invalid record");
unsigned OpNum = 0;
AttributeList PAL = getAttributes(Record[OpNum++]);
unsigned CCInfo = Record[OpNum++];
FastMathFlags FMF;
if ((CCInfo >> bitc::CALL_FMF) & 1) {
FMF = getDecodedFastMathFlags(Record[OpNum++]);
if (!FMF.any())
return error("Fast math flags indicator set for call with no FMF");
}
unsigned FTyID = InvalidTypeID;
FunctionType *FTy = nullptr;
if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
FTyID = Record[OpNum++];
FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
if (!FTy)
return error("Explicit call type is not a function type");
}
Value *Callee;
unsigned CalleeTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
CurBB))
return error("Invalid record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
if (!OpTy)
return error("Callee is not a pointer type");
if (!FTy) {
FTyID = getContainedTypeID(CalleeTypeID);
FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
if (!FTy)
return error("Callee is not of pointer to function type");
}
if (Record.size() < FTy->getNumParams() + OpNum)
return error("Insufficient operands to call");
SmallVector<Value*, 16> Args;
SmallVector<unsigned, 16> ArgTyIDs;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
if (FTy->getParamType(i)->isLabelTy())
Args.push_back(getBasicBlock(Record[OpNum]));
else
Args.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i), ArgTyID, CurBB));
ArgTyIDs.push_back(ArgTyID);
if (!Args.back())
return error("Invalid record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return error("Invalid record");
} else {
while (OpNum != Record.size()) {
Value *Op;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
return error("Invalid record");
Args.push_back(Op);
ArgTyIDs.push_back(OpTypeID);
}
}
// Upgrade the bundles if needed.
if (!OperandBundles.empty())
UpgradeOperandBundles(OperandBundles);
I = CallInst::Create(FTy, Callee, Args, OperandBundles);
ResTypeID = getContainedTypeID(FTyID);
OperandBundles.clear();
InstructionList.push_back(I);
cast<CallInst>(I)->setCallingConv(
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
CallInst::TailCallKind TCK = CallInst::TCK_None;
if (CCInfo & (1 << bitc::CALL_TAIL))
TCK = CallInst::TCK_Tail;
if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
TCK = CallInst::TCK_MustTail;
if (CCInfo & (1 << bitc::CALL_NOTAIL))
TCK = CallInst::TCK_NoTail;
cast<CallInst>(I)->setTailCallKind(TCK);
cast<CallInst>(I)->setAttributes(PAL);
if (isa<DbgInfoIntrinsic>(I))
SeenDebugIntrinsic = true;
if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
I->deleteValue();
return Err;
}
if (FMF.any()) {
if (!isa<FPMathOperator>(I))
return error("Fast-math-flags specified for call without "
"floating-point scalar or vector return type");
I->setFastMathFlags(FMF);
}
break;
}
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
if (Record.size() < 3)
return error("Invalid record");
unsigned OpTyID = Record[0];
Type *OpTy = getTypeByID(OpTyID);
Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
ResTypeID = Record[2];
Type *ResTy = getTypeByID(ResTypeID);
if (!OpTy || !Op || !ResTy)
return error("Invalid record");
I = new VAArgInst(Op, ResTy);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_OPERAND_BUNDLE: {
// A call or an invoke can be optionally prefixed with some variable
// number of operand bundle blocks. These blocks are read into
// OperandBundles and consumed at the next call or invoke instruction.
if (Record.empty() || Record[0] >= BundleTags.size())
return error("Invalid record");
std::vector<Value *> Inputs;
unsigned OpNum = 1;
while (OpNum != Record.size()) {
Value *Op;
if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB))
return error("Invalid record");
Inputs.push_back(Op);
}
OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
continue;
}
case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
unsigned OpNum = 0;
Value *Op = nullptr;
unsigned OpTypeID;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
return error("Invalid record");
if (OpNum != Record.size())
return error("Invalid record");
I = new FreezeInst(Op);
ResTypeID = OpTypeID;
InstructionList.push_back(I);
break;
}
}
// Add instruction to end of current BB. If there is no current BB, reject
// this file.
if (!CurBB) {
I->deleteValue();
return error("Invalid instruction with no BB");
}
if (!OperandBundles.empty()) {
I->deleteValue();
return error("Operand bundles found with no consumer");
}
I->insertInto(CurBB, CurBB->end());
// If this was a terminator instruction, move to the next block.
if (I->isTerminator()) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
}
// Non-void values get registered in the value table for future use.
if (!I->getType()->isVoidTy()) {
assert(I->getType() == getTypeByID(ResTypeID) &&
"Incorrect result type ID");
if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
return Err;
}
}
OutOfRecordLoop:
if (!OperandBundles.empty())
return error("Operand bundles found with no consumer");
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (!A->getParent()) {
// We found at least one unresolved value. Nuke them all to avoid leaks.
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
A->replaceAllUsesWith(PoisonValue::get(A->getType()));
delete A;
}
}
return error("Never resolved value found in function");
}
}
// Unexpected unresolved metadata about to be dropped.
if (MDLoader->hasFwdRefs())
return error("Invalid function metadata: outgoing forward refs");
if (PhiConstExprBB)
PhiConstExprBB->eraseFromParent();
for (const auto &Pair : ConstExprEdgeBBs) {
BasicBlock *From = Pair.first.first;
BasicBlock *To = Pair.first.second;
BasicBlock *EdgeBB = Pair.second;
BranchInst::Create(To, EdgeBB);
From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
To->replacePhiUsesWith(From, EdgeBB);
EdgeBB->moveBefore(To);
}
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
MDLoader->shrinkTo(ModuleMDLoaderSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
return Error::success();
}
/// Find the function body in the bitcode stream
Error BitcodeReader::findFunctionInStream(
Function *F,
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
while (DeferredFunctionInfoIterator->second == 0) {
// This is the fallback handling for the old format bitcode that
// didn't contain the function index in the VST, or when we have
// an anonymous function which would not have a VST entry.
// Assert that we have one of those two cases.
assert(VSTOffset == 0 || !F->hasName());
// Parse the next body in the stream and set its position in the
// DeferredFunctionInfo map.
if (Error Err = rememberAndSkipFunctionBodies())
return Err;
}
return Error::success();
}
SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
if (Val == SyncScope::SingleThread || Val == SyncScope::System)
return SyncScope::ID(Val);
if (Val >= SSIDs.size())
return SyncScope::System; // Map unknown synchronization scopes to system.
return SSIDs[Val];
}
//===----------------------------------------------------------------------===//
// GVMaterializer implementation
//===----------------------------------------------------------------------===//
Error BitcodeReader::materialize(GlobalValue *GV) {
Function *F = dyn_cast<Function>(GV);
// If it's not a function or is already material, ignore the request.
if (!F || !F->isMaterializable())
return Error::success();
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
// If its position is recorded as 0, its body is somewhere in the stream
// but we haven't seen it yet.
if (DFII->second == 0)
if (Error Err = findFunctionInStream(F, DFII))
return Err;
// Materialize metadata before parsing any function bodies.
if (Error Err = materializeMetadata())
return Err;
// Move the bit stream to the saved position of the deferred function body.
if (Error JumpFailed = Stream.JumpToBit(DFII->second))
return JumpFailed;
// Regardless of the debug info format we want to end up in, we need
// IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
F->IsNewDbgInfoFormat = true;
if (Error Err = parseFunctionBody(F))
return Err;
F->setIsMaterializable(false);
// All parsed Functions should load into the debug info format dictated by the
// Module, unless we're attempting to preserve the input debug info format.
if (SeenDebugIntrinsic && SeenDebugRecord)
return error("Mixed debug intrinsics and debug records in bitcode module!");
if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
bool NewDbgInfoFormatDesired =
SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
if (SeenAnyDebugInfo) {
UseNewDbgInfoFormat = SeenDebugRecord;
WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
WriteNewDbgInfoFormat = SeenDebugRecord;
}
// If the module's debug info format doesn't match the observed input
// format, then set its format now; we don't need to call the conversion
// function because there must be no existing intrinsics to convert.
// Otherwise, just set the format on this function now.
if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
else
F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
} else {
// If we aren't preserving formats, we use the Module flag to get our
// desired format instead of reading flags, in case we are lazy-loading and
// the format of the module has been changed since it was set by the flags.
// We only need to convert debug info here if we have debug records but
// desire the intrinsic format; everything else is a no-op or handled by the
// autoupgrader.
bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
else
F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
}
if (StripDebugInfo)
stripDebugInfo(*F);
// Upgrade any old intrinsic calls in the function.
for (auto &I : UpgradedIntrinsics) {
for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
if (CallInst *CI = dyn_cast<CallInst>(U))
UpgradeIntrinsicCall(CI, I.second);
}
// Finish fn->subprogram upgrade for materialized functions.
if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
F->setSubprogram(SP);
// Check if the TBAA Metadata are valid, otherwise we will need to strip them.
if (!MDLoader->isStrippingTBAA()) {
for (auto &I : instructions(F)) {
MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
continue;
MDLoader->setStripTBAA(true);
stripTBAA(F->getParent());
}
}
for (auto &I : instructions(F)) {
// "Upgrade" older incorrect branch weights by dropping them.
if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
MDString *MDS = cast<MDString>(MD->getOperand(0));
StringRef ProfName = MDS->getString();
// Check consistency of !prof branch_weights metadata.
if (ProfName != "branch_weights")
continue;
unsigned ExpectedNumOperands = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(&I))
ExpectedNumOperands = BI->getNumSuccessors();
else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
ExpectedNumOperands = SI->getNumSuccessors();
else if (isa<CallInst>(&I))
ExpectedNumOperands = 1;
else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
ExpectedNumOperands = IBI->getNumDestinations();
else if (isa<SelectInst>(&I))
ExpectedNumOperands = 2;
else
continue; // ignore and continue.
unsigned Offset = getBranchWeightOffset(MD);
// If branch weight doesn't match, just strip branch weight.
if (MD->getNumOperands() != Offset + ExpectedNumOperands)
I.setMetadata(LLVMContext::MD_prof, nullptr);
}
}
// Remove incompatible attributes on function calls.
if (auto *CI = dyn_cast<CallBase>(&I)) {
CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
CI->getFunctionType()->getReturnType(), CI->getRetAttributes()));
for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
CI->getArgOperand(ArgNo)->getType(),
CI->getParamAttributes(ArgNo)));
}
}
// Look for functions that rely on old function attribute behavior.
UpgradeFunctionAttributes(*F);
// Bring in any functions that this function forward-referenced via
// blockaddresses.
return materializeForwardReferencedFunctions();
}
Error BitcodeReader::materializeModule() {
if (Error Err = materializeMetadata())
return Err;
// Promise to materialize all forward references.
WillMaterializeAllForwardRefs = true;
// Iterate over the module, deserializing any functions that are still on
// disk.
for (Function &F : *TheModule) {
if (Error Err = materialize(&F))
return Err;
}
// At this point, if there are any function bodies, parse the rest of
// the bits in the module past the last function block we have recorded
// through either lazy scanning or the VST.
if (LastFunctionBlockBit || NextUnreadBit)
if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
? LastFunctionBlockBit
: NextUnreadBit))
return Err;
// Check that all block address forward references got resolved (as we
// promised above).
if (!BasicBlockFwdRefs.empty())
return error("Never resolved function from blockaddress");
// Upgrade any intrinsic calls that slipped through (should not happen!) and
// delete the old functions to clean up. We can't do this unless the entire
// module is materialized because there could always be another function body
// with calls to the old function.
for (auto &I : UpgradedIntrinsics) {
for (auto *U : I.first->users()) {
if (CallInst *CI = dyn_cast<CallInst>(U))
UpgradeIntrinsicCall(CI, I.second);
}
if (!I.first->use_empty())
I.first->replaceAllUsesWith(I.second);
I.first->eraseFromParent();
}
UpgradedIntrinsics.clear();
UpgradeDebugInfo(*TheModule);
UpgradeModuleFlags(*TheModule);
UpgradeARCRuntime(*TheModule);
return Error::success();
}
std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
return IdentifiedStructTypes;
}
ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
: BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
void ModuleSummaryIndexBitcodeReader::addThisModule() {
TheIndex.addModule(ModulePath);
}
ModuleSummaryIndex::ModuleInfo *
ModuleSummaryIndexBitcodeReader::getThisModule() {
return TheIndex.getModule(ModulePath);
}
template <bool AllowNullValueInfo>
std::pair<ValueInfo, GlobalValue::GUID>
ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
auto VGI = ValueIdToValueInfoMap[ValueId];
// We can have a null value info for memprof callsite info records in
// distributed ThinLTO index files when the callee function summary is not
// included in the index. The bitcode writer records 0 in that case,
// and the caller of this helper will set AllowNullValueInfo to true.
assert(AllowNullValueInfo || std::get<0>(VGI));
return VGI;
}
void ModuleSummaryIndexBitcodeReader::setValueGUID(
uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
StringRef SourceFileName) {
std::string GlobalId =
GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
auto ValueGUID = GlobalValue::getGUID(GlobalId);
auto OriginalNameID = ValueGUID;
if (GlobalValue::isLocalLinkage(Linkage))
OriginalNameID = GlobalValue::getGUID(ValueName);
if (PrintSummaryGUIDs)
dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
<< ValueName << "\n";
// UseStrtab is false for legacy summary formats and value names are
// created on stack. In that case we save the name in a string saver in
// the index so that the value name can be recorded.
ValueIdToValueInfoMap[ValueID] = std::make_pair(
TheIndex.getOrInsertValueInfo(
ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
OriginalNameID);
}
// Specialized value symbol table parser used when reading module index
// blocks where we don't actually create global values. The parsed information
// is saved in the bitcode reader for use when later parsing summaries.
Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
uint64_t Offset,
DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
// With a strtab the VST is not required to parse the summary.
if (UseStrtab)
return Error::success();
assert(Offset > 0 && "Expected non-zero VST offset");
Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
if (!MaybeCurrentBit)
return MaybeCurrentBit.takeError();
uint64_t CurrentBit = MaybeCurrentBit.get();
if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
// Done parsing VST, jump back to wherever we came from.
if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
return JumpFailed;
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
break;
case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
if (convertToString(Record, 1, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
assert(!SourceFileName.empty());
auto VLI = ValueIdToLinkageMap.find(ValueID);
assert(VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?");
auto Linkage = VLI->second;
setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
ValueName.clear();
break;
}
case bitc::VST_CODE_FNENTRY: {
// VST_CODE_FNENTRY: [valueid, offset, namechar x N]
if (convertToString(Record, 2, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
assert(!SourceFileName.empty());
auto VLI = ValueIdToLinkageMap.find(ValueID);
assert(VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?");
auto Linkage = VLI->second;
setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
ValueName.clear();
break;
}
case bitc::VST_CODE_COMBINED_ENTRY: {
// VST_CODE_COMBINED_ENTRY: [valueid, refguid]
unsigned ValueID = Record[0];
GlobalValue::GUID RefGUID = Record[1];
// The "original name", which is the second value of the pair will be
// overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
ValueIdToValueInfoMap[ValueID] =
std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
break;
}
}
}
}
// Parse just the blocks needed for building the index out of the module.
// At the end of this routine the module Index is populated with a map
// from global value id to GlobalValueSummary objects.
Error ModuleSummaryIndexBitcodeReader::parseModule() {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
unsigned ValueId = 0;
// Read the index for this module.
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::BLOCKINFO_BLOCK_ID:
// Need to parse these to get abbrev ids (e.g. for VST)
if (Error Err = readBlockInfo())
return Err;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
// Should have been parsed earlier via VSTOffset, unless there
// is no summary section.
assert(((SeenValueSymbolTable && VSTOffset > 0) ||
!SeenGlobalValSummary) &&
"Expected early VST parse via VSTOffset record");
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
// Add the module if it is a per-module index (has a source file name).
if (!SourceFileName.empty())
addThisModule();
assert(!SeenValueSymbolTable &&
"Already read VST when parsing summary block?");
// We might not have a VST if there were no values in the
// summary. An empty summary block generated when we are
// performing ThinLTO compiles so we don't later invoke
// the regular LTO process on them.
if (VSTOffset > 0) {
if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
return Err;
SeenValueSymbolTable = true;
}
SeenGlobalValSummary = true;
if (Error Err = parseEntireSummary(Entry.ID))
return Err;
break;
case bitc::MODULE_STRTAB_BLOCK_ID:
if (Error Err = parseModuleStringTable())
return Err;
break;
}
continue;
case BitstreamEntry::Record: {
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (MaybeBitCode.get()) {
default:
break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: {
if (Error Err = parseVersionRecord(Record).takeError())
return Err;
break;
}
/// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
case bitc::MODULE_CODE_SOURCE_FILENAME: {
SmallString<128> ValueName;
if (convertToString(Record, 0, ValueName))
return error("Invalid record");
SourceFileName = ValueName.c_str();
break;
}
/// MODULE_CODE_HASH: [5*i32]
case bitc::MODULE_CODE_HASH: {
if (Record.size() != 5)
return error("Invalid hash length " + Twine(Record.size()).str());
auto &Hash = getThisModule()->second;
int Pos = 0;
for (auto &Val : Record) {
assert(!(Val >> 32) && "Unexpected high bits set");
Hash[Pos++] = Val;
}
break;
}
/// MODULE_CODE_VSTOFFSET: [offset]
case bitc::MODULE_CODE_VSTOFFSET:
if (Record.empty())
return error("Invalid record");
// Note that we subtract 1 here because the offset is relative to one
// word before the start of the identification or module block, which
// was historically always the start of the regular bitcode header.
VSTOffset = Record[0] - 1;
break;
// v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
// v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
// v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
// v2: [strtab offset, strtab size, v1]
case bitc::MODULE_CODE_GLOBALVAR:
case bitc::MODULE_CODE_FUNCTION:
case bitc::MODULE_CODE_ALIAS: {
StringRef Name;
ArrayRef<uint64_t> GVRecord;
std::tie(Name, GVRecord) = readNameFromStrtab(Record);
if (GVRecord.size() <= 3)
return error("Invalid record");
uint64_t RawLinkage = GVRecord[3];
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
if (!UseStrtab) {
ValueIdToLinkageMap[ValueId++] = Linkage;
break;
}
setValueGUID(ValueId++, Name, Linkage, SourceFileName);
break;
}
}
}
continue;
}
}
}
SmallVector<ValueInfo, 0>
ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
SmallVector<ValueInfo, 0> Ret;
Ret.reserve(Record.size());
for (uint64_t RefValueId : Record)
Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
return Ret;
}
SmallVector<FunctionSummary::EdgeTy, 0>
ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
bool IsOldProfileFormat,
bool HasProfile, bool HasRelBF) {
SmallVector<FunctionSummary::EdgeTy, 0> Ret;
// In the case of new profile formats, there are two Record entries per
// Edge. Otherwise, conservatively reserve up to Record.size.
if (!IsOldProfileFormat && (HasProfile || HasRelBF))
Ret.reserve(Record.size() / 2);
else
Ret.reserve(Record.size());
for (unsigned I = 0, E = Record.size(); I != E; ++I) {
CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
bool HasTailCall = false;
uint64_t RelBF = 0;
ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
if (IsOldProfileFormat) {
I += 1; // Skip old callsitecount field
if (HasProfile)
I += 1; // Skip old profilecount field
} else if (HasProfile)
std::tie(Hotness, HasTailCall) =
getDecodedHotnessCallEdgeInfo(Record[++I]);
else if (HasRelBF)
getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
Ret.push_back(FunctionSummary::EdgeTy{
Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
}
return Ret;
}
static void
parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
WholeProgramDevirtResolution &Wpd) {
uint64_t ArgNum = Record[Slot++];
WholeProgramDevirtResolution::ByArg &B =
Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
Slot += ArgNum;
B.TheKind =
static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
B.Info = Record[Slot++];
B.Byte = Record[Slot++];
B.Bit = Record[Slot++];
}
static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
StringRef Strtab, size_t &Slot,
TypeIdSummary &TypeId) {
uint64_t Id = Record[Slot++];
WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
Wpd.SingleImplName = {Strtab.data() + Record[Slot],
static_cast<size_t>(Record[Slot + 1])};
Slot += 2;
uint64_t ResByArgNum = Record[Slot++];
for (uint64_t I = 0; I != ResByArgNum; ++I)
parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
}
static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
StringRef Strtab,
ModuleSummaryIndex &TheIndex) {
size_t Slot = 0;
TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
{Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
Slot += 2;
TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
TypeId.TTRes.AlignLog2 = Record[Slot++];
TypeId.TTRes.SizeM1 = Record[Slot++];
TypeId.TTRes.BitMask = Record[Slot++];
TypeId.TTRes.InlineBits = Record[Slot++];
while (Slot < Record.size())
parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
}
std::vector<FunctionSummary::ParamAccess>
ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
auto ReadRange = [&]() {
APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
BitcodeReader::decodeSignRotatedValue(Record.front()));
Record = Record.drop_front();
APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
BitcodeReader::decodeSignRotatedValue(Record.front()));
Record = Record.drop_front();
ConstantRange Range{Lower, Upper};
assert(!Range.isFullSet());
assert(!Range.isUpperSignWrapped());
return Range;
};
std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
while (!Record.empty()) {
PendingParamAccesses.emplace_back();
FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
ParamAccess.ParamNo = Record.front();
Record = Record.drop_front();
ParamAccess.Use = ReadRange();
ParamAccess.Calls.resize(Record.front());
Record = Record.drop_front();
for (auto &Call : ParamAccess.Calls) {
Call.ParamNo = Record.front();
Record = Record.drop_front();
Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
Record = Record.drop_front();
Call.Offsets = ReadRange();
}
}
return PendingParamAccesses;
}
void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
ArrayRef<uint64_t> Record, size_t &Slot,
TypeIdCompatibleVtableInfo &TypeId) {
uint64_t Offset = Record[Slot++];
ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
TypeId.push_back({Offset, Callee});
}
void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
ArrayRef<uint64_t> Record) {
size_t Slot = 0;
TypeIdCompatibleVtableInfo &TypeId =
TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
{Strtab.data() + Record[Slot],
static_cast<size_t>(Record[Slot + 1])});
Slot += 2;
while (Slot < Record.size())
parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
}
static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
unsigned WOCnt) {
// Readonly and writeonly refs are in the end of the refs list.
assert(ROCnt + WOCnt <= Refs.size());
unsigned FirstWORef = Refs.size() - WOCnt;
unsigned RefNo = FirstWORef - ROCnt;
for (; RefNo < FirstWORef; ++RefNo)
Refs[RefNo].setReadOnly();
for (; RefNo < Refs.size(); ++RefNo)
Refs[RefNo].setWriteOnly();
}
// Eagerly parse the entire summary block. This populates the GlobalValueSummary
// objects in the index.
Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
if (Error Err = Stream.EnterSubBlock(ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Parse version
{
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
if (Entry.Kind != BitstreamEntry::Record)
return error("Invalid Summary Block: record for version expected");
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() != bitc::FS_VERSION)
return error("Invalid Summary Block: version expected");
}
const uint64_t Version = Record[0];
const bool IsOldProfileFormat = Version == 1;
if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
return error("Invalid summary version " + Twine(Version) +
". Version should be in the range [1-" +
Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
"].");
Record.clear();
// Keep around the last seen summary to be used when we see an optional
// "OriginalName" attachement.
GlobalValueSummary *LastSeenSummary = nullptr;
GlobalValue::GUID LastSeenGUID = 0;
// We can expect to see any number of type ID information records before
// each function summary records; these variables store the information
// collected so far so that it can be used to create the summary object.
std::vector<GlobalValue::GUID> PendingTypeTests;
std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
PendingTypeCheckedLoadVCalls;
std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
PendingTypeCheckedLoadConstVCalls;
std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
std::vector<CallsiteInfo> PendingCallsites;
std::vector<AllocInfo> PendingAllocs;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record. The record format depends on whether this
// is a per-module index or a combined index file. In the per-module
// case the records contain the associated value's ID for correlation
// with VST entries. In the combined index the correlation is done
// via the bitcode offset of the summary records (which were saved
// in the combined index VST entries). The records also contain
// information used for ThinLTO renaming and importing.
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: // Default behavior: ignore.
break;
case bitc::FS_FLAGS: { // [flags]
TheIndex.setFlags(Record[0]);
break;
}
case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
uint64_t ValueID = Record[0];
GlobalValue::GUID RefGUID;
if (Version >= 11) {
RefGUID = Record[1] << 32 | Record[2];
} else {
RefGUID = Record[1];
}
ValueIdToValueInfoMap[ValueID] =
std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
break;
}
// FS_PERMODULE is legacy and does not have support for the tail call flag.
// FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid)]
// FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
// numrefs x valueid,
// n x (valueid, hotness+tailcall flags)]
// FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
// numrefs x valueid,
// n x (valueid, relblockfreq+tailcall)]
case bitc::FS_PERMODULE:
case bitc::FS_PERMODULE_RELBF:
case bitc::FS_PERMODULE_PROFILE: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
unsigned InstCount = Record[2];
uint64_t RawFunFlags = 0;
unsigned NumRefs = Record[3];
unsigned NumRORefs = 0, NumWORefs = 0;
int RefListStartIndex = 4;
if (Version >= 4) {
RawFunFlags = Record[3];
NumRefs = Record[4];
RefListStartIndex = 5;
if (Version >= 5) {
NumRORefs = Record[5];
RefListStartIndex = 6;
if (Version >= 7) {
NumWORefs = Record[6];
RefListStartIndex = 7;
}
}
}
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
// The module path string ref set in the summary must be owned by the
// index's module string table. Since we don't have a module path
// string table section in the per-module index, we create a single
// module path string table entry with an empty (0) ID to take
// ownership.
int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
assert(Record.size() >= RefListStartIndex + NumRefs &&
"Record size inconsistent with number of references");
SmallVector<ValueInfo, 0> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
IsOldProfileFormat, HasProfile, HasRelBF);
setSpecialRefs(Refs, NumRORefs, NumWORefs);
auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
// In order to save memory, only record the memprof summaries if this is
// the prevailing copy of a symbol. The linker doesn't resolve local
// linkage values so don't check whether those are prevailing.
auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) &&
!IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
PendingCallsites.clear();
PendingAllocs.clear();
}
auto FS = std::make_unique<FunctionSummary>(
Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
std::move(Calls), std::move(PendingTypeTests),
std::move(PendingTypeTestAssumeVCalls),
std::move(PendingTypeCheckedLoadVCalls),
std::move(PendingTypeTestAssumeConstVCalls),
std::move(PendingTypeCheckedLoadConstVCalls),
std::move(PendingParamAccesses), std::move(PendingCallsites),
std::move(PendingAllocs));
FS->setModulePath(getThisModule()->first());
FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
std::move(FS));
break;
}
// FS_ALIAS: [valueid, flags, valueid]
// Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
// they expect all aliasee summaries to be available.
case bitc::FS_ALIAS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
unsigned AliaseeID = Record[2];
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
auto AS = std::make_unique<AliasSummary>(Flags);
// The module path string ref set in the summary must be owned by the
// index's module string table. Since we don't have a module path
// string table section in the per-module index, we create a single
// module path string table entry with an empty (0) ID to take
// ownership.
AS->setModulePath(getThisModule()->first());
auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
if (!AliaseeInModule)
return error("Alias expects aliasee summary to be parsed");
AS->setAliasee(AliaseeVI, AliaseeInModule);
auto GUID = getValueInfoFromValueId(ValueID);
AS->setOriginalName(std::get<1>(GUID));
TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
break;
}
// FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
unsigned RefArrayStart = 2;
GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
/* WriteOnly */ false,
/* Constant */ false,
GlobalObject::VCallVisibilityPublic);
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
if (Version >= 5) {
GVF = getDecodedGVarFlags(Record[2]);
RefArrayStart = 3;
}
SmallVector<ValueInfo, 0> Refs =
makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
auto FS =
std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
FS->setModulePath(getThisModule()->first());
auto GUID = getValueInfoFromValueId(ValueID);
FS->setOriginalName(std::get<1>(GUID));
TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
break;
}
// FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
// numrefs, numrefs x valueid,
// n x (valueid, offset)]
case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
unsigned NumRefs = Record[3];
unsigned RefListStartIndex = 4;
unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
SmallVector<ValueInfo, 0> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
VTableFuncList VTableFuncs;
for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
uint64_t Offset = Record[++I];
VTableFuncs.push_back({Callee, Offset});
}
auto VS =
std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
VS->setModulePath(getThisModule()->first());
VS->setVTableFuncs(VTableFuncs);
auto GUID = getValueInfoFromValueId(ValueID);
VS->setOriginalName(std::get<1>(GUID));
TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
break;
}
// FS_COMBINED is legacy and does not have support for the tail call flag.
// FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid)]
// FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
// numrefs x valueid,
// n x (valueid, hotness+tailcall flags)]
case bitc::FS_COMBINED:
case bitc::FS_COMBINED_PROFILE: {
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
unsigned InstCount = Record[3];
uint64_t RawFunFlags = 0;
unsigned NumRefs = Record[4];
unsigned NumRORefs = 0, NumWORefs = 0;
int RefListStartIndex = 5;
if (Version >= 4) {
RawFunFlags = Record[4];
RefListStartIndex = 6;
size_t NumRefsIndex = 5;
if (Version >= 5) {
unsigned NumRORefsOffset = 1;
RefListStartIndex = 7;
if (Version >= 6) {
NumRefsIndex = 6;
RefListStartIndex = 8;
if (Version >= 7) {
RefListStartIndex = 9;
NumWORefs = Record[8];
NumRORefsOffset = 2;
}
}
NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
}
NumRefs = Record[NumRefsIndex];
}
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
assert(Record.size() >= RefListStartIndex + NumRefs &&
"Record size inconsistent with number of references");
SmallVector<ValueInfo, 0> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
IsOldProfileFormat, HasProfile, false);
ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
setSpecialRefs(Refs, NumRORefs, NumWORefs);
auto FS = std::make_unique<FunctionSummary>(
Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
std::move(Edges), std::move(PendingTypeTests),
std::move(PendingTypeTestAssumeVCalls),
std::move(PendingTypeCheckedLoadVCalls),
std::move(PendingTypeTestAssumeConstVCalls),
std::move(PendingTypeCheckedLoadConstVCalls),
std::move(PendingParamAccesses), std::move(PendingCallsites),
std::move(PendingAllocs));
LastSeenSummary = FS.get();
LastSeenGUID = VI.getGUID();
FS->setModulePath(ModuleIdMap[ModuleId]);
TheIndex.addGlobalValueSummary(VI, std::move(FS));
break;
}
// FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
// Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
// they expect all aliasee summaries to be available.
case bitc::FS_COMBINED_ALIAS: {
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
unsigned AliaseeValueId = Record[3];
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
auto AS = std::make_unique<AliasSummary>(Flags);
LastSeenSummary = AS.get();
AS->setModulePath(ModuleIdMap[ModuleId]);
auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
AS->setAliasee(AliaseeVI, AliaseeInModule);
ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
LastSeenGUID = VI.getGUID();
TheIndex.addGlobalValueSummary(VI, std::move(AS));
break;
}
// FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
unsigned RefArrayStart = 3;
GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
/* WriteOnly */ false,
/* Constant */ false,
GlobalObject::VCallVisibilityPublic);
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
if (Version >= 5) {
GVF = getDecodedGVarFlags(Record[3]);
RefArrayStart = 4;
}
SmallVector<ValueInfo, 0> Refs =
makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
auto FS =
std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
LastSeenSummary = FS.get();
FS->setModulePath(ModuleIdMap[ModuleId]);
ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
LastSeenGUID = VI.getGUID();
TheIndex.addGlobalValueSummary(VI, std::move(FS));
break;
}
// FS_COMBINED_ORIGINAL_NAME: [original_name]
case bitc::FS_COMBINED_ORIGINAL_NAME: {
uint64_t OriginalName = Record[0];
if (!LastSeenSummary)
return error("Name attachment that does not follow a combined record");
LastSeenSummary->setOriginalName(OriginalName);
TheIndex.addOriginalName(LastSeenGUID, OriginalName);
// Reset the LastSeenSummary
LastSeenSummary = nullptr;
LastSeenGUID = 0;
break;
}
case bitc::FS_TYPE_TESTS:
assert(PendingTypeTests.empty());
llvm::append_range(PendingTypeTests, Record);
break;
case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
assert(PendingTypeTestAssumeVCalls.empty());
for (unsigned I = 0; I != Record.size(); I += 2)
PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
break;
case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
assert(PendingTypeCheckedLoadVCalls.empty());
for (unsigned I = 0; I != Record.size(); I += 2)
PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
break;
case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
PendingTypeTestAssumeConstVCalls.push_back(
{{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
break;
case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
PendingTypeCheckedLoadConstVCalls.push_back(
{{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
break;
case bitc::FS_CFI_FUNCTION_DEFS: {
std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
for (unsigned I = 0; I != Record.size(); I += 2)
CfiFunctionDefs.insert(
{Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
break;
}
case bitc::FS_CFI_FUNCTION_DECLS: {
std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
for (unsigned I = 0; I != Record.size(); I += 2)
CfiFunctionDecls.insert(
{Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
break;
}
case bitc::FS_TYPE_ID:
parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
break;
case bitc::FS_TYPE_ID_METADATA:
parseTypeIdCompatibleVtableSummaryRecord(Record);
break;
case bitc::FS_BLOCK_COUNT:
TheIndex.addBlockCount(Record[0]);
break;
case bitc::FS_PARAM_ACCESS: {
PendingParamAccesses = parseParamAccesses(Record);
break;
}
case bitc::FS_STACK_IDS: { // [n x stackid]
// Save stack ids in the reader to consult when adding stack ids from the
// lists in the stack node and alloc node entries.
StackIds = ArrayRef<uint64_t>(Record);
break;
}
case bitc::FS_PERMODULE_CALLSITE_INFO: {
unsigned ValueID = Record[0];
SmallVector<unsigned> StackIdList;
for (auto R = Record.begin() + 1; R != Record.end(); R++) {
assert(*R < StackIds.size());
StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
}
ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
break;
}
case bitc::FS_COMBINED_CALLSITE_INFO: {
auto RecordIter = Record.begin();
unsigned ValueID = *RecordIter++;
unsigned NumStackIds = *RecordIter++;
unsigned NumVersions = *RecordIter++;
assert(Record.size() == 3 + NumStackIds + NumVersions);
SmallVector<unsigned> StackIdList;
for (unsigned J = 0; J < NumStackIds; J++) {
assert(*RecordIter < StackIds.size());
StackIdList.push_back(
TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
}
SmallVector<unsigned> Versions;
for (unsigned J = 0; J < NumVersions; J++)
Versions.push_back(*RecordIter++);
ValueInfo VI = std::get<0>(
getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
PendingCallsites.push_back(
CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
break;
}
case bitc::FS_PERMODULE_ALLOC_INFO: {
unsigned I = 0;
std::vector<MIBInfo> MIBs;
unsigned NumMIBs = 0;
if (Version >= 10)
NumMIBs = Record[I++];
unsigned MIBsRead = 0;
while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
(Version < 10 && I < Record.size())) {
assert(Record.size() - I >= 2);
AllocationType AllocType = (AllocationType)Record[I++];
unsigned NumStackEntries = Record[I++];
assert(Record.size() - I >= NumStackEntries);
SmallVector<unsigned> StackIdList;
for (unsigned J = 0; J < NumStackEntries; J++) {
assert(Record[I] < StackIds.size());
StackIdList.push_back(
TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
}
MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
}
std::vector<uint64_t> TotalSizes;
// We either have no sizes or NumMIBs of them.
assert(I == Record.size() || Record.size() - I == NumMIBs);
if (I < Record.size()) {
MIBsRead = 0;
while (MIBsRead++ < NumMIBs)
TotalSizes.push_back(Record[I++]);
}
PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
if (!TotalSizes.empty()) {
assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
PendingAllocs.back().TotalSizes = std::move(TotalSizes);
}
break;
}
case bitc::FS_COMBINED_ALLOC_INFO: {
unsigned I = 0;
std::vector<MIBInfo> MIBs;
unsigned NumMIBs = Record[I++];
unsigned NumVersions = Record[I++];
unsigned MIBsRead = 0;
while (MIBsRead++ < NumMIBs) {
assert(Record.size() - I >= 2);
AllocationType AllocType = (AllocationType)Record[I++];
unsigned NumStackEntries = Record[I++];
assert(Record.size() - I >= NumStackEntries);
SmallVector<unsigned> StackIdList;
for (unsigned J = 0; J < NumStackEntries; J++) {
assert(Record[I] < StackIds.size());
StackIdList.push_back(
TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
}
MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
}
assert(Record.size() - I >= NumVersions);
SmallVector<uint8_t> Versions;
for (unsigned J = 0; J < NumVersions; J++)
Versions.push_back(Record[I++]);
std::vector<uint64_t> TotalSizes;
// We either have no sizes or NumMIBs of them.
assert(I == Record.size() || Record.size() - I == NumMIBs);
if (I < Record.size()) {
MIBsRead = 0;
while (MIBsRead++ < NumMIBs) {
TotalSizes.push_back(Record[I++]);
}
}
PendingAllocs.push_back(
AllocInfo(std::move(Versions), std::move(MIBs)));
if (!TotalSizes.empty()) {
assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
PendingAllocs.back().TotalSizes = std::move(TotalSizes);
}
break;
}
}
}
llvm_unreachable("Exit infinite loop");
}
// Parse the module string table block into the Index.
// This populates the ModulePathStringTable map in the index.
Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
SmallString<128> ModulePath;
ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore.
break;
case bitc::MST_CODE_ENTRY: {
// MST_ENTRY: [modid, namechar x N]
uint64_t ModuleId = Record[0];
if (convertToString(Record, 1, ModulePath))
return error("Invalid record");
LastSeenModule = TheIndex.addModule(ModulePath);
ModuleIdMap[ModuleId] = LastSeenModule->first();
ModulePath.clear();
break;
}
/// MST_CODE_HASH: [5*i32]
case bitc::MST_CODE_HASH: {
if (Record.size() != 5)
return error("Invalid hash length " + Twine(Record.size()).str());
if (!LastSeenModule)
return error("Invalid hash that does not follow a module path");
int Pos = 0;
for (auto &Val : Record) {
assert(!(Val >> 32) && "Unexpected high bits set");
LastSeenModule->second[Pos++] = Val;
}
// Reset LastSeenModule to avoid overriding the hash unexpectedly.
LastSeenModule = nullptr;
break;
}
}
}
llvm_unreachable("Exit infinite loop");
}
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class BitcodeErrorCategoryType : public std::error_category {
const char *name() const noexcept override {
return "llvm.bitcode";
}
std::string message(int IE) const override {
BitcodeError E = static_cast<BitcodeError>(IE);
switch (E) {
case BitcodeError::CorruptedBitcode:
return "Corrupted bitcode";
}
llvm_unreachable("Unknown error type!");
}
};
} // end anonymous namespace
const std::error_category &llvm::BitcodeErrorCategory() {
static BitcodeErrorCategoryType ErrorCategory;
return ErrorCategory;
}
static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
unsigned Block, unsigned RecordID) {
if (Error Err = Stream.EnterSubBlock(Block))
return std::move(Err);
StringRef Strtab;
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::EndBlock:
return Strtab;
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::SubBlock:
if (Error Err = Stream.SkipBlock())
return std::move(Err);
break;
case BitstreamEntry::Record:
StringRef Blob;
SmallVector<uint64_t, 1> Record;
Expected<unsigned> MaybeRecord =
Stream.readRecord(Entry.ID, Record, &Blob);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() == RecordID)
Strtab = Blob;
break;
}
}
}
//===----------------------------------------------------------------------===//
// External interface
//===----------------------------------------------------------------------===//
Expected<std::vector<BitcodeModule>>
llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
auto FOrErr = getBitcodeFileContents(Buffer);
if (!FOrErr)
return FOrErr.takeError();
return std::move(FOrErr->Mods);
}
Expected<BitcodeFileContents>
llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
BitstreamCursor &Stream = *StreamOrErr;
BitcodeFileContents F;
while (true) {
uint64_t BCBegin = Stream.getCurrentByteNo();
// We may be consuming bitcode from a client that leaves garbage at the end
// of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
// the end that there cannot possibly be another module, stop looking.
if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
return F;
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::EndBlock:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::SubBlock: {
uint64_t IdentificationBit = -1ull;
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
if (Error Err = Stream.SkipBlock())
return std::move(Err);
{
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
Entry = MaybeEntry.get();
}
if (Entry.Kind != BitstreamEntry::SubBlock ||
Entry.ID != bitc::MODULE_BLOCK_ID)
return error("Malformed block");
}
if (Entry.ID == bitc::MODULE_BLOCK_ID) {
uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
if (Error Err = Stream.SkipBlock())
return std::move(Err);
F.Mods.push_back({Stream.getBitcodeBytes().slice(
BCBegin, Stream.getCurrentByteNo() - BCBegin),
Buffer.getBufferIdentifier(), IdentificationBit,
ModuleBit});
continue;
}
if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
Expected<StringRef> Strtab =
readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
if (!Strtab)
return Strtab.takeError();
// This string table is used by every preceding bitcode module that does
// not have its own string table. A bitcode file may have multiple
// string tables if it was created by binary concatenation, for example
// with "llvm-cat -b".
for (BitcodeModule &I : llvm::reverse(F.Mods)) {
if (!I.Strtab.empty())
break;
I.Strtab = *Strtab;
}
// Similarly, the string table is used by every preceding symbol table;
// normally there will be just one unless the bitcode file was created
// by binary concatenation.
if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
F.StrtabForSymtab = *Strtab;
continue;
}
if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
Expected<StringRef> SymtabOrErr =
readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
if (!SymtabOrErr)
return SymtabOrErr.takeError();
// We can expect the bitcode file to have multiple symbol tables if it
// was created by binary concatenation. In that case we silently
// ignore any subsequent symbol tables, which is fine because this is a
// low level function. The client is expected to notice that the number
// of modules in the symbol table does not match the number of modules
// in the input file and regenerate the symbol table.
if (F.Symtab.empty())
F.Symtab = *SymtabOrErr;
continue;
}
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
}
case BitstreamEntry::Record:
if (Error E = Stream.skipRecord(Entry.ID).takeError())
return std::move(E);
continue;
}
}
}
/// Get a lazy one-at-time loading module from bitcode.
///
/// This isn't always used in a lazy context. In particular, it's also used by
/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
/// in forward-referenced functions from block address references.
///
/// \param[in] MaterializeAll Set to \c true if we should materialize
/// everything.
Expected<std::unique_ptr<Module>>
BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
bool ShouldLazyLoadMetadata, bool IsImporting,
ParserCallbacks Callbacks) {
BitstreamCursor Stream(Buffer);
std::string ProducerIdentification;
if (IdentificationBit != -1ull) {
if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
return std::move(JumpFailed);
if (Error E =
readIdentificationBlock(Stream).moveInto(ProducerIdentification))
return std::move(E);
}
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return std::move(JumpFailed);
auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
Context);
std::unique_ptr<Module> M =
std::make_unique<Module>(ModuleIdentifier, Context);
M->setMaterializer(R);
// Delay parsing Metadata if ShouldLazyLoadMetadata is true.
if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
IsImporting, Callbacks))
return std::move(Err);
if (MaterializeAll) {
// Read in the entire module, and destroy the BitcodeReader.
if (Error Err = M->materializeAll())
return std::move(Err);
} else {
// Resolve forward references from blockaddresses.
if (Error Err = R->materializeForwardReferencedFunctions())
return std::move(Err);
}
return std::move(M);
}
Expected<std::unique_ptr<Module>>
BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
bool IsImporting, ParserCallbacks Callbacks) {
return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
Callbacks);
}
// Parse the specified bitcode buffer and merge the index into CombinedIndex.
// We don't use ModuleIdentifier here because the client may need to control the
// module path used in the combined summary (e.g. when reading summaries for
// regular LTO modules).
Error BitcodeModule::readSummary(
ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
std::function<bool(GlobalValue::GUID)> IsPrevailing) {
BitstreamCursor Stream(Buffer);
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return JumpFailed;
ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
ModulePath, IsPrevailing);
return R.parseModule();
}
// Parse the specified bitcode buffer, returning the function info index.
Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
BitstreamCursor Stream(Buffer);
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return std::move(JumpFailed);
auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
ModuleIdentifier, 0);
if (Error Err = R.parseModule())
return std::move(Err);
return std::move(Index);
}
static Expected<std::pair<bool, bool>>
getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
unsigned ID,
BitcodeLTOInfo &LTOInfo) {
if (Error Err = Stream.EnterSubBlock(ID))
return std::move(Err);
SmallVector<uint64_t, 64> Record;
while (true) {
BitstreamEntry Entry;
std::pair<bool, bool> Result = {false,false};
if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
return std::move(E);
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock: {
// If no flags record found, set both flags to false.
return Result;
}
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Look for the FS_FLAGS record.
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (MaybeBitCode.get()) {
default: // Default behavior: ignore.
break;
case bitc::FS_FLAGS: { // [flags]
uint64_t Flags = Record[0];
// Scan flags.
assert(Flags <= 0x2ff && "Unexpected bits in flag");
bool EnableSplitLTOUnit = Flags & 0x8;
bool UnifiedLTO = Flags & 0x200;
Result = {EnableSplitLTOUnit, UnifiedLTO};
return Result;
}
}
}
llvm_unreachable("Exit infinite loop");
}
// Check if the given bitcode buffer contains a global value summary block.
Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
BitstreamCursor Stream(Buffer);
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return std::move(JumpFailed);
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return std::move(Err);
while (true) {
llvm::BitstreamEntry Entry;
if (Error E = Stream.advance().moveInto(Entry))
return std::move(E);
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
/*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
BitcodeLTOInfo LTOInfo;
Expected<std::pair<bool, bool>> Flags =
getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
if (!Flags)
return Flags.takeError();
std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
LTOInfo.IsThinLTO = true;
LTOInfo.HasSummary = true;
return LTOInfo;
}
if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
BitcodeLTOInfo LTOInfo;
Expected<std::pair<bool, bool>> Flags =
getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
if (!Flags)
return Flags.takeError();
std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
LTOInfo.IsThinLTO = false;
LTOInfo.HasSummary = true;
return LTOInfo;
}
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
continue;
else
return StreamFailed.takeError();
}
}
}
static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
if (!MsOrErr)
return MsOrErr.takeError();
if (MsOrErr->size() != 1)
return error("Expected a single module");
return (*MsOrErr)[0];
}
Expected<std::unique_ptr<Module>>
llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
bool ShouldLazyLoadMetadata, bool IsImporting,
ParserCallbacks Callbacks) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
Callbacks);
}
Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
IsImporting, Callbacks);
if (MOrErr)
(*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
return MOrErr;
}
Expected<std::unique_ptr<Module>>
BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
return getModuleImpl(Context, true, false, false, Callbacks);
// TODO: Restore the use-lists to the in-memory state when the bitcode was
// written. We must defer until the Module has been fully materialized.
}
Expected<std::unique_ptr<Module>>
llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
ParserCallbacks Callbacks) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->parseModule(Context, Callbacks);
}
Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
return readTriple(*StreamOrErr);
}
Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
return hasObjCCategory(*StreamOrErr);
}
Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
return readIdentificationCode(*StreamOrErr);
}
Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
ModuleSummaryIndex &CombinedIndex) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
}
Expected<std::unique_ptr<ModuleSummaryIndex>>
llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->getSummary();
}
Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->getLTOInfo();
}
Expected<std::unique_ptr<ModuleSummaryIndex>>
llvm::getModuleSummaryIndexForFile(StringRef Path,
bool IgnoreEmptyThinLTOIndexFile) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(Path);
if (!FileOrErr)
return errorCodeToError(FileOrErr.getError());
if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
return nullptr;
return getModuleSummaryIndex(**FileOrErr);
}