[mlir][mesh] fixes for 0d tensors (#132948)

In some cases 0d tensors have no sharding. This PR provides a few minor
fixes to account for such cases.
diff --git a/mlir/include/mlir/Dialect/Mesh/IR/MeshOps.h b/mlir/include/mlir/Dialect/Mesh/IR/MeshOps.h
index fc5cfff..32c2eca 100644
--- a/mlir/include/mlir/Dialect/Mesh/IR/MeshOps.h
+++ b/mlir/include/mlir/Dialect/Mesh/IR/MeshOps.h
@@ -119,6 +119,8 @@
 inline mesh::MeshOp
 getMeshOrNull(Operation *op, FlatSymbolRefAttr meshSymbol,
               SymbolTableCollection &symbolTableCollection) {
+  if (!meshSymbol)
+    return nullptr;
   return symbolTableCollection.lookupNearestSymbolFrom<mesh::MeshOp>(
       op, meshSymbol);
 }
diff --git a/mlir/lib/Dialect/Mesh/IR/MeshOps.cpp b/mlir/lib/Dialect/Mesh/IR/MeshOps.cpp
index 3e9f86f..65475b6 100644
--- a/mlir/lib/Dialect/Mesh/IR/MeshOps.cpp
+++ b/mlir/lib/Dialect/Mesh/IR/MeshOps.cpp
@@ -269,7 +269,7 @@
 
 Type mesh::shardType(Type type, MeshOp mesh, MeshSharding sharding) {
   RankedTensorType rankedTensorType = dyn_cast<RankedTensorType>(type);
-  if (rankedTensorType) {
+  if (rankedTensorType && !rankedTensorType.getShape().empty()) {
     return shardShapedType(rankedTensorType, mesh, sharding);
   }
   return type;
diff --git a/mlir/lib/Dialect/Mesh/Interfaces/ShardingInterface.cpp b/mlir/lib/Dialect/Mesh/Interfaces/ShardingInterface.cpp
index f427d00..7b3107a 100644
--- a/mlir/lib/Dialect/Mesh/Interfaces/ShardingInterface.cpp
+++ b/mlir/lib/Dialect/Mesh/Interfaces/ShardingInterface.cpp
@@ -716,8 +716,8 @@
   // Set the result types to the sharded counterparts.
   for (auto [oldResult, newResult, sharding] :
        llvm::zip_equal(op.getResults(), newOp->getResults(), resultShardings)) {
-    newResult.setType(
-        shardType(newResult.getType(),
-                  getMesh(&op, sharding.getMeshAttr(), symbolTable), sharding));
+    newResult.setType(shardType(
+        newResult.getType(),
+        getMeshOrNull(&op, sharding.getMeshAttr(), symbolTable), sharding));
   }
 }
diff --git a/mlir/lib/Dialect/Mesh/Transforms/Spmdization.cpp b/mlir/lib/Dialect/Mesh/Transforms/Spmdization.cpp
index 601af02..69a80b1 100644
--- a/mlir/lib/Dialect/Mesh/Transforms/Spmdization.cpp
+++ b/mlir/lib/Dialect/Mesh/Transforms/Spmdization.cpp
@@ -622,7 +622,7 @@
       block.getArguments(), std::back_inserter(res),
       [&symbolTableCollection](BlockArgument arg) {
         auto rankedTensorArg = dyn_cast<TypedValue<RankedTensorType>>(arg);
-        if (!rankedTensorArg) {
+        if (!rankedTensorArg || rankedTensorArg.getType().getRank() == 0) {
           return arg.getType();
         }
 
@@ -672,7 +672,7 @@
   llvm::transform(op.getOperands(), std::back_inserter(res), [](Value operand) {
     TypedValue<RankedTensorType> rankedTensor =
         dyn_cast<TypedValue<RankedTensorType>>(operand);
-    if (!rankedTensor) {
+    if (!rankedTensor || rankedTensor.getType().getRank() == 0) {
       return MeshSharding();
     }
 
@@ -689,20 +689,33 @@
 static std::vector<MeshSharding> getResultShardings(Operation &op) {
   std::vector<MeshSharding> res;
   res.reserve(op.getNumResults());
-  llvm::transform(op.getResults(), std::back_inserter(res),
-                  [](OpResult result) {
-                    TypedValue<RankedTensorType> rankedTensor =
-                        dyn_cast<TypedValue<RankedTensorType>>(result);
-                    if (!rankedTensor) {
-                      return MeshSharding();
-                    }
-                    if (!result.hasOneUse()) {
-                      return MeshSharding();
-                    }
-                    Operation *userOp = *result.getUsers().begin();
-                    ShardOp shardOp = llvm::cast<ShardOp>(userOp);
-                    return MeshSharding(shardOp.getSharding());
-                  });
+  llvm::transform(
+      op.getResults(), std::back_inserter(res), [&op](OpResult result) {
+        if (!result.hasOneUse() || result.use_empty()) {
+          return MeshSharding();
+        }
+        TypedValue<RankedTensorType> rankedTensor =
+            dyn_cast<TypedValue<RankedTensorType>>(result);
+        if (!rankedTensor) {
+          return MeshSharding();
+        }
+        Operation *userOp = *result.getUsers().begin();
+        ShardOp shardOp = llvm::dyn_cast<ShardOp>(userOp);
+        if (shardOp) {
+          return MeshSharding(shardOp.getSharding());
+        }
+        if (rankedTensor.getType().getRank() == 0) {
+          // This is a 0d tensor result without explicit sharding.
+          // Find mesh symbol from operands, if any.
+          // Shardings without mesh are not always fully supported yet.
+          for (auto operand : op.getOperands()) {
+            if (auto sharding = operand.getDefiningOp<ShardingOp>()) {
+              return MeshSharding(sharding.getMeshAttr());
+            }
+          }
+        }
+        return MeshSharding();
+      });
   return res;
 }
 
diff --git a/mlir/lib/Dialect/Tensor/Extensions/MeshShardingExtensions.cpp b/mlir/lib/Dialect/Tensor/Extensions/MeshShardingExtensions.cpp
index b3d69eb..fc93f1c 100644
--- a/mlir/lib/Dialect/Tensor/Extensions/MeshShardingExtensions.cpp
+++ b/mlir/lib/Dialect/Tensor/Extensions/MeshShardingExtensions.cpp
@@ -50,19 +50,25 @@
                         IRMapping &spmdizationMap,
                         SymbolTableCollection &symbolTable,
                         OpBuilder &builder) const {
-    auto mesh =
-        mesh::getMesh(op, resultShardings[0].getMeshAttr(), symbolTable);
-    auto shardType = cast<ShapedType>(
-        mesh::shardType(op->getResult(0).getType(), mesh, resultShardings[0]));
+    assert(resultShardings.size() == 1);
+    auto resType = cast<RankedTensorType>(op->getResult(0).getType());
+    mlir::mesh::MeshOp mesh;
+    ShapedType shardType;
+    if (resType.getRank() > 0) {
+      mesh = mesh::getMesh(op, resultShardings[0].getMeshAttr(), symbolTable);
+      shardType =
+          cast<ShapedType>(mesh::shardType(resType, mesh, resultShardings[0]));
+    } else {
+      shardType = resType;
+    }
     Operation *newOp = nullptr;
     // if the sharding introduces a new dynamic dimension, we take it from
     // the dynamic sharding info. For now bail out if it's not
     // provided.
-    assert(resultShardings.size() == 1);
     if (!shardType.hasStaticShape()) {
       assert(op->getResult(0).hasOneUse());
       SmallVector<Value> newOperands;
-      auto oldType = cast<ShapedType>(op->getResult(0).getType());
+      auto oldType = cast<ShapedType>(resType);
       assert(oldType.getRank() == shardType.getRank());
       int currOldOprndNum = -1;
       mesh::ShardShapeOp shapeForDevice;
diff --git a/mlir/test/Dialect/Tensor/mesh-spmdization.mlir b/mlir/test/Dialect/Tensor/mesh-spmdization.mlir
index 01cf597..3fb8424 100644
--- a/mlir/test/Dialect/Tensor/mesh-spmdization.mlir
+++ b/mlir/test/Dialect/Tensor/mesh-spmdization.mlir
@@ -43,3 +43,10 @@
 
   return
 }
+
+// CHECK-LABEL: func @tensor_empty_0d
+func.func @tensor_empty_0d() -> () {
+  tensor.empty() : tensor<f32>
+  // CHECK-NEXT:  tensor.empty() : tensor<f32>
+  return
+}