[CI] Add Python Script for Computing Projects/Runtimes to Test

This patch adds a python script, compute_projects, and associated unit
tests for computing the projects and runtimes that need to be tested in
premerge. Rewriting in Python opens up a couple new
improvements/opportunities:
1. I personally find python to be much easier to work with than shell
   scripts for tasks like this. Particularly it becomes a lot easier to
   work with paths with proper array support.
2. Unit testing becomes easier which makes it a lot easier to reason
   about behavior changes, especially in review.
3. Most of the configuration is now setup in some dictionaries, which
   makes changes much easier to apply for most of the common changes.

This preserves the behavior of the existing premerge scripts as much as
possible.

Reviewers: ldionne, lnihlen, Endilll, tstellar, Keenuts

Reviewed By: Keenuts

Pull Request: https://github.com/llvm/llvm-project/pull/132634
2 files changed
tree: f0fd1d823f6fc6b9c233a82d15a154fe3f9670b4
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.