blob: 6b7f9369cbc292f7bafc795b1a849f39cbc3ac84 [file] [log] [blame]
//===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion transformation utility functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopFusionUtils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Operation.h"
#include "mlir/Transforms/LoopUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "loop-fusion-utils"
using namespace mlir;
// Gathers all load and store memref accesses in 'opA' into 'values', where
// 'values[memref] == true' for each store operation.
static void getLoadAndStoreMemRefAccesses(Operation *opA,
DenseMap<Value, bool> &values) {
opA->walk([&](Operation *op) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
if (values.count(loadOp.getMemRef()) == 0)
values[loadOp.getMemRef()] = false;
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
values[storeOp.getMemRef()] = true;
}
});
}
/// Returns true if 'op' is a load or store operation which access a memref
/// accessed 'values' and at least one of the access is a store operation.
/// Returns false otherwise.
static bool isDependentLoadOrStoreOp(Operation *op,
DenseMap<Value, bool> &values) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
return values.count(loadOp.getMemRef()) > 0 &&
values[loadOp.getMemRef()] == true;
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
return values.count(storeOp.getMemRef()) > 0;
}
return false;
}
// Returns the first operation in range ('opA', 'opB') which has a data
// dependence on 'opA'. Returns 'nullptr' of no dependence exists.
static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) {
// Record memref values from all loads/store in loop nest rooted at 'opA'.
// Map from memref value to bool which is true if store, false otherwise.
DenseMap<Value, bool> values;
getLoadAndStoreMemRefAccesses(opA, values);
// For each 'opX' in block in range ('opA', 'opB'), check if there is a data
// dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref
// and at least one of the accesses is a store).
Operation *firstDepOp = nullptr;
for (Block::iterator it = std::next(Block::iterator(opA));
it != Block::iterator(opB); ++it) {
Operation *opX = &(*it);
opX->walk([&](Operation *op) {
if (!firstDepOp && isDependentLoadOrStoreOp(op, values))
firstDepOp = opX;
});
if (firstDepOp)
break;
}
return firstDepOp;
}
// Returns the last operation 'opX' in range ('opA', 'opB'), for which there
// exists a data dependence from 'opX' to 'opB'.
// Returns 'nullptr' of no dependence exists.
static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) {
// Record memref values from all loads/store in loop nest rooted at 'opB'.
// Map from memref value to bool which is true if store, false otherwise.
DenseMap<Value, bool> values;
getLoadAndStoreMemRefAccesses(opB, values);
// For each 'opX' in block in range ('opA', 'opB') in reverse order,
// check if there is a data dependence from 'opX' to 'opB':
// *) 'opX' and 'opB' access the same memref and at least one of the accesses
// is a store.
// *) 'opX' produces an SSA Value which is used by 'opB'.
Operation *lastDepOp = nullptr;
for (Block::reverse_iterator it = std::next(Block::reverse_iterator(opB));
it != Block::reverse_iterator(opA); ++it) {
Operation *opX = &(*it);
opX->walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
if (isDependentLoadOrStoreOp(op, values)) {
lastDepOp = opX;
return WalkResult::interrupt();
}
return WalkResult::advance();
}
for (auto value : op->getResults()) {
for (Operation *user : value.getUsers()) {
SmallVector<AffineForOp, 4> loops;
// Check if any loop in loop nest surrounding 'user' is 'opB'.
getLoopIVs(*user, &loops);
if (llvm::is_contained(loops, cast<AffineForOp>(opB))) {
lastDepOp = opX;
return WalkResult::interrupt();
}
}
}
return WalkResult::advance();
});
if (lastDepOp)
break;
}
return lastDepOp;
}
// Computes and returns an insertion point operation, before which the
// the fused <srcForOp, dstForOp> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp,
AffineForOp dstForOp) {
bool isSrcForOpBeforeDstForOp =
srcForOp->isBeforeInBlock(dstForOp.getOperation());
auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
auto *firstDepOpA =
getFirstDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
auto *lastDepOpB =
getLastDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
// Block:
// ...
// |-- opA
// | ...
// | lastDepOpB --|
// | ... |
// |-> firstDepOpA |
// ... |
// opB <---------
//
// Valid insertion point range: (lastDepOpB, firstDepOpA)
//
if (firstDepOpA != nullptr) {
if (lastDepOpB != nullptr) {
if (firstDepOpA->isBeforeInBlock(lastDepOpB) || firstDepOpA == lastDepOpB)
// No valid insertion point exists which preserves dependences.
return nullptr;
}
// Return insertion point in valid range closest to 'opB'.
// TODO: Consider other insertion points in valid range.
return firstDepOpA;
}
// No dependences from 'opA' to operation in range ('opA', 'opB'), return
// 'opB' insertion point.
return forOpB.getOperation();
}
// Gathers all load and store ops in loop nest rooted at 'forOp' into
// 'loadAndStoreOps'.
static bool
gatherLoadsAndStores(AffineForOp forOp,
SmallVectorImpl<Operation *> &loadAndStoreOps) {
bool hasIfOp = false;
forOp.walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
else if (isa<AffineIfOp>(op))
hasIfOp = true;
});
return !hasIfOp;
}
/// Returns the maximum loop depth at which we could fuse producer loop
/// 'srcForOp' into consumer loop 'dstForOp' without violating data dependences.
// TODO: Generalize this check for sibling and more generic fusion scenarios.
// TODO: Support forward slice fusion.
static unsigned getMaxLoopDepth(ArrayRef<Operation *> srcOps,
ArrayRef<Operation *> dstOps) {
if (dstOps.empty())
// Expected at least one memory operation.
// TODO: Revisit this case with a specific example.
return 0;
// Filter out ops in 'dstOps' that do not use the producer-consumer memref so
// that they are not considered for analysis.
DenseSet<Value> producerConsumerMemrefs;
gatherProducerConsumerMemrefs(srcOps, dstOps, producerConsumerMemrefs);
SmallVector<Operation *, 4> targetDstOps;
for (Operation *dstOp : dstOps) {
auto loadOp = dyn_cast<AffineReadOpInterface>(dstOp);
Value memref = loadOp ? loadOp.getMemRef()
: cast<AffineWriteOpInterface>(dstOp).getMemRef();
if (producerConsumerMemrefs.count(memref) > 0)
targetDstOps.push_back(dstOp);
}
assert(!targetDstOps.empty() &&
"No dependences between 'srcForOp' and 'dstForOp'?");
// Compute the innermost common loop depth for loads and stores.
unsigned loopDepth = getInnermostCommonLoopDepth(targetDstOps);
// Return common loop depth for loads if there are no store ops.
if (all_of(targetDstOps,
[&](Operation *op) { return isa<AffineReadOpInterface>(op); }))
return loopDepth;
// Check dependences on all pairs of ops in 'targetDstOps' and store the
// minimum loop depth at which a dependence is satisfied.
for (unsigned i = 0, e = targetDstOps.size(); i < e; ++i) {
auto *srcOpInst = targetDstOps[i];
MemRefAccess srcAccess(srcOpInst);
for (unsigned j = 0; j < e; ++j) {
auto *dstOpInst = targetDstOps[j];
MemRefAccess dstAccess(dstOpInst);
unsigned numCommonLoops =
getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
FlatAffineValueConstraints dependenceConstraints;
// TODO: Cache dependence analysis results, check cache here.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (hasDependence(result)) {
// Store minimum loop depth and break because we want the min 'd' at
// which there is a dependence.
loopDepth = std::min(loopDepth, d - 1);
break;
}
}
}
}
return loopDepth;
}
// TODO: Prevent fusion of loop nests with side-effecting operations.
// TODO: This pass performs some computation that is the same for all the depths
// (e.g., getMaxLoopDepth). Implement a version of this utility that processes
// all the depths at once or only the legal maximal depth for maximal fusion.
FusionResult mlir::canFuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
unsigned dstLoopDepth,
ComputationSliceState *srcSlice,
FusionStrategy fusionStrategy) {
// Return 'failure' if 'dstLoopDepth == 0'.
if (dstLoopDepth == 0) {
LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n");
return FusionResult::FailPrecondition;
}
// Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block.
auto *block = srcForOp->getBlock();
if (block != dstForOp->getBlock()) {
LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n");
return FusionResult::FailPrecondition;
}
// Return 'failure' if no valid insertion point for fused loop nest in 'block'
// exists which would preserve dependences.
if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) {
LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n");
return FusionResult::FailBlockDependence;
}
// Check if 'srcForOp' precedes 'dstForOp' in 'block'.
bool isSrcForOpBeforeDstForOp =
srcForOp->isBeforeInBlock(dstForOp.getOperation());
// 'forOpA' executes before 'forOpB' in 'block'.
auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
// Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'.
SmallVector<Operation *, 4> opsA;
if (!gatherLoadsAndStores(forOpA, opsA)) {
LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n");
return FusionResult::FailPrecondition;
}
// Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'.
SmallVector<Operation *, 4> opsB;
if (!gatherLoadsAndStores(forOpB, opsB)) {
LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n");
return FusionResult::FailPrecondition;
}
// Return 'failure' if fusing loops at depth 'dstLoopDepth' wouldn't preserve
// loop dependences.
// TODO: Enable this check for sibling and more generic loop fusion
// strategies.
if (fusionStrategy.getStrategy() == FusionStrategy::ProducerConsumer) {
// TODO: 'getMaxLoopDepth' does not support forward slice fusion.
assert(isSrcForOpBeforeDstForOp && "Unexpected forward slice fusion");
if (getMaxLoopDepth(opsA, opsB) < dstLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "Fusion would violate loop dependences\n");
return FusionResult::FailFusionDependence;
}
}
// Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'.
unsigned numCommonLoops = mlir::getNumCommonSurroundingLoops(
*srcForOp.getOperation(), *dstForOp.getOperation());
// Filter out ops in 'opsA' to compute the slice union based on the
// assumptions made by the fusion strategy.
SmallVector<Operation *, 4> strategyOpsA;
switch (fusionStrategy.getStrategy()) {
case FusionStrategy::Generic:
// Generic fusion. Take into account all the memory operations to compute
// the slice union.
strategyOpsA.append(opsA.begin(), opsA.end());
break;
case FusionStrategy::ProducerConsumer:
// Producer-consumer fusion (AffineLoopFusion pass) only takes into
// account stores in 'srcForOp' to compute the slice union.
for (Operation *op : opsA) {
if (isa<AffineWriteOpInterface>(op))
strategyOpsA.push_back(op);
}
break;
case FusionStrategy::Sibling:
// Sibling fusion (AffineLoopFusion pass) only takes into account the loads
// to 'memref' in 'srcForOp' to compute the slice union.
for (Operation *op : opsA) {
auto load = dyn_cast<AffineReadOpInterface>(op);
if (load && load.getMemRef() == fusionStrategy.getSiblingFusionMemRef())
strategyOpsA.push_back(op);
}
break;
}
// Compute union of computation slices computed between all pairs of ops
// from 'forOpA' and 'forOpB'.
SliceComputationResult sliceComputationResult =
mlir::computeSliceUnion(strategyOpsA, opsB, dstLoopDepth, numCommonLoops,
isSrcForOpBeforeDstForOp, srcSlice);
if (sliceComputationResult.value == SliceComputationResult::GenericFailure) {
LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n");
return FusionResult::FailPrecondition;
}
if (sliceComputationResult.value ==
SliceComputationResult::IncorrectSliceFailure) {
LLVM_DEBUG(llvm::dbgs() << "Incorrect slice computation\n");
return FusionResult::FailIncorrectSlice;
}
return FusionResult::Success;
}
/// Patch the loop body of a forOp that is a single iteration reduction loop
/// into its containing block.
LogicalResult promoteSingleIterReductionLoop(AffineForOp forOp,
bool siblingFusionUser) {
// Check if the reduction loop is a single iteration loop.
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount || tripCount.getValue() != 1)
return failure();
auto iterOperands = forOp.getIterOperands();
auto *parentOp = forOp->getParentOp();
if (!isa<AffineForOp>(parentOp))
return failure();
auto newOperands = forOp.getBody()->getTerminator()->getOperands();
OpBuilder b(parentOp);
// Replace the parent loop and add iteroperands and results from the `forOp`.
AffineForOp parentForOp = forOp->getParentOfType<AffineForOp>();
AffineForOp newLoop = replaceForOpWithNewYields(
b, parentForOp, iterOperands, newOperands, forOp.getRegionIterArgs());
// For sibling-fusion users, collect operations that use the results of the
// `forOp` outside the new parent loop that has absorbed all its iter args
// and operands. These operations will be moved later after the results
// have been replaced.
SetVector<Operation *> forwardSlice;
if (siblingFusionUser) {
for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) {
SetVector<Operation *> tmpForwardSlice;
getForwardSlice(forOp.getResult(i), &tmpForwardSlice);
forwardSlice.set_union(tmpForwardSlice);
}
}
// Update the results of the `forOp` in the new loop.
for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) {
forOp.getResult(i).replaceAllUsesWith(
newLoop.getResult(i + parentOp->getNumResults()));
}
// For sibling-fusion users, move operations that use the results of the
// `forOp` outside the new parent loop
if (siblingFusionUser) {
topologicalSort(forwardSlice);
for (Operation *op : llvm::reverse(forwardSlice))
op->moveAfter(newLoop);
}
// Replace the induction variable.
auto iv = forOp.getInductionVar();
iv.replaceAllUsesWith(newLoop.getInductionVar());
// Replace the iter args.
auto forOpIterArgs = forOp.getRegionIterArgs();
for (auto it : llvm::zip(forOpIterArgs, newLoop.getRegionIterArgs().take_back(
forOpIterArgs.size()))) {
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
}
// Move the loop body operations, except for its terminator, to the loop's
// containing block.
forOp.getBody()->back().erase();
auto *parentBlock = forOp->getBlock();
parentBlock->getOperations().splice(Block::iterator(forOp),
forOp.getBody()->getOperations());
forOp.erase();
parentForOp.erase();
return success();
}
/// Fuses 'srcForOp' into 'dstForOp' with destination loop block insertion point
/// and source slice loop bounds specified in 'srcSlice'.
void mlir::fuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
const ComputationSliceState &srcSlice,
bool isInnermostSiblingInsertion) {
// Clone 'srcForOp' into 'dstForOp' at 'srcSlice->insertPoint'.
OpBuilder b(srcSlice.insertPoint->getBlock(), srcSlice.insertPoint);
BlockAndValueMapping mapper;
b.clone(*srcForOp, mapper);
// Update 'sliceLoopNest' upper and lower bounds from computed 'srcSlice'.
SmallVector<AffineForOp, 4> sliceLoops;
for (unsigned i = 0, e = srcSlice.ivs.size(); i < e; ++i) {
auto loopIV = mapper.lookupOrNull(srcSlice.ivs[i]);
if (!loopIV)
continue;
auto forOp = getForInductionVarOwner(loopIV);
sliceLoops.push_back(forOp);
if (AffineMap lbMap = srcSlice.lbs[i]) {
auto lbOperands = srcSlice.lbOperands[i];
canonicalizeMapAndOperands(&lbMap, &lbOperands);
forOp.setLowerBound(lbOperands, lbMap);
}
if (AffineMap ubMap = srcSlice.ubs[i]) {
auto ubOperands = srcSlice.ubOperands[i];
canonicalizeMapAndOperands(&ubMap, &ubOperands);
forOp.setUpperBound(ubOperands, ubMap);
}
}
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
auto srcIsUnitSlice = [&]() {
return (buildSliceTripCountMap(srcSlice, &sliceTripCountMap) &&
(getSliceIterationCount(sliceTripCountMap) == 1));
};
// Fix up and if possible, eliminate single iteration loops.
for (AffineForOp forOp : sliceLoops) {
if (isLoopParallelAndContainsReduction(forOp) &&
isInnermostSiblingInsertion && srcIsUnitSlice())
// Patch reduction loop - only ones that are sibling-fused with the
// destination loop - into the parent loop.
(void)promoteSingleIterReductionLoop(forOp, true);
else
// Promote any single iteration slice loops.
(void)promoteIfSingleIteration(forOp);
}
}
/// Collect loop nest statistics (eg. loop trip count and operation count)
/// in 'stats' for loop nest rooted at 'forOp'. Returns true on success,
/// returns false otherwise.
bool mlir::getLoopNestStats(AffineForOp forOpRoot, LoopNestStats *stats) {
auto walkResult = forOpRoot.walk([&](AffineForOp forOp) {
auto *childForOp = forOp.getOperation();
auto *parentForOp = forOp->getParentOp();
if (!llvm::isa<FuncOp>(parentForOp)) {
if (!isa<AffineForOp>(parentForOp)) {
LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp\n");
return WalkResult::interrupt();
}
// Add mapping to 'forOp' from its parent AffineForOp.
stats->loopMap[parentForOp].push_back(forOp);
}
// Record the number of op operations in the body of 'forOp'.
unsigned count = 0;
stats->opCountMap[childForOp] = 0;
for (auto &op : *forOp.getBody()) {
if (!isa<AffineForOp, AffineIfOp>(op))
++count;
}
stats->opCountMap[childForOp] = count;
// Record trip count for 'forOp'. Set flag if trip count is not
// constant.
Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
if (!maybeConstTripCount.hasValue()) {
// Currently only constant trip count loop nests are supported.
LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported\n");
return WalkResult::interrupt();
}
stats->tripCountMap[childForOp] = maybeConstTripCount.getValue();
return WalkResult::advance();
});
return !walkResult.wasInterrupted();
}
// Computes the total cost of the loop nest rooted at 'forOp'.
// Currently, the total cost is computed by counting the total operation
// instance count (i.e. total number of operations in the loop bodyloop
// operation count * loop trip count) for the entire loop nest.
// If 'tripCountOverrideMap' is non-null, overrides the trip count for loops
// specified in the map when computing the total op instance count.
// NOTEs: 1) This is used to compute the cost of computation slices, which are
// sliced along the iteration dimension, and thus reduce the trip count.
// If 'computeCostMap' is non-null, the total op count for forOps specified
// in the map is increased (not overridden) by adding the op count from the
// map to the existing op count for the for loop. This is done before
// multiplying by the loop's trip count, and is used to model the cost of
// inserting a sliced loop nest of known cost into the loop's body.
// 2) This is also used to compute the cost of fusing a slice of some loop nest
// within another loop.
static int64_t getComputeCostHelper(
Operation *forOp, LoopNestStats &stats,
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap,
DenseMap<Operation *, int64_t> *computeCostMap) {
// 'opCount' is the total number operations in one iteration of 'forOp' body,
// minus terminator op which is a no-op.
int64_t opCount = stats.opCountMap[forOp] - 1;
if (stats.loopMap.count(forOp) > 0) {
for (auto childForOp : stats.loopMap[forOp]) {
opCount += getComputeCostHelper(childForOp.getOperation(), stats,
tripCountOverrideMap, computeCostMap);
}
}
// Add in additional op instances from slice (if specified in map).
if (computeCostMap != nullptr) {
auto it = computeCostMap->find(forOp);
if (it != computeCostMap->end()) {
opCount += it->second;
}
}
// Override trip count (if specified in map).
int64_t tripCount = stats.tripCountMap[forOp];
if (tripCountOverrideMap != nullptr) {
auto it = tripCountOverrideMap->find(forOp);
if (it != tripCountOverrideMap->end()) {
tripCount = it->second;
}
}
// Returns the total number of dynamic instances of operations in loop body.
return tripCount * opCount;
}
/// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'.
/// Currently, the total cost is computed by counting the total operation
/// instance count (i.e. total number of operations in the loop body * loop
/// trip count) for the entire loop nest.
int64_t mlir::getComputeCost(AffineForOp forOp, LoopNestStats &stats) {
return getComputeCostHelper(forOp.getOperation(), stats,
/*tripCountOverrideMap=*/nullptr,
/*computeCostMap=*/nullptr);
}
/// Computes and returns in 'computeCost', the total compute cost of fusing the
/// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently,
/// the total cost is computed by counting the total operation instance count
/// (i.e. total number of operations in the loop body * loop trip count) for
/// the entire loop nest.
bool mlir::getFusionComputeCost(AffineForOp srcForOp, LoopNestStats &srcStats,
AffineForOp dstForOp, LoopNestStats &dstStats,
const ComputationSliceState &slice,
int64_t *computeCost) {
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
DenseMap<Operation *, int64_t> computeCostMap;
// Build trip count map for computation slice.
if (!buildSliceTripCountMap(slice, &sliceTripCountMap))
return false;
// Checks whether a store to load forwarding will happen.
int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap);
assert(sliceIterationCount > 0);
bool storeLoadFwdGuaranteed = (sliceIterationCount == 1);
auto *insertPointParent = slice.insertPoint->getParentOp();
// The store and loads to this memref will disappear.
// TODO: Add load coalescing to memref data flow opt pass.
if (storeLoadFwdGuaranteed) {
// Subtract from operation count the loads/store we expect load/store
// forwarding to remove.
unsigned storeCount = 0;
llvm::SmallDenseSet<Value, 4> storeMemrefs;
srcForOp.walk([&](Operation *op) {
if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
storeMemrefs.insert(storeOp.getMemRef());
++storeCount;
}
});
// Subtract out any store ops in single-iteration src slice loop nest.
if (storeCount > 0)
computeCostMap[insertPointParent] = -storeCount;
// Subtract out any load users of 'storeMemrefs' nested below
// 'insertPointParent'.
for (auto value : storeMemrefs) {
for (auto *user : value.getUsers()) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
SmallVector<AffineForOp, 4> loops;
// Check if any loop in loop nest surrounding 'user' is
// 'insertPointParent'.
getLoopIVs(*user, &loops);
if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) {
if (auto forOp =
dyn_cast_or_null<AffineForOp>(user->getParentOp())) {
if (computeCostMap.count(forOp) == 0)
computeCostMap[forOp] = 0;
computeCostMap[forOp] -= 1;
}
}
}
}
}
}
// Compute op instance count for the src loop nest with iteration slicing.
int64_t sliceComputeCost = getComputeCostHelper(
srcForOp.getOperation(), srcStats, &sliceTripCountMap, &computeCostMap);
// Compute cost of fusion for this depth.
computeCostMap[insertPointParent] = sliceComputeCost;
*computeCost =
getComputeCostHelper(dstForOp.getOperation(), dstStats,
/*tripCountOverrideMap=*/nullptr, &computeCostMap);
return true;
}
/// Returns in 'producerConsumerMemrefs' the memrefs involved in a
/// producer-consumer dependence between write ops in 'srcOps' and read ops in
/// 'dstOps'.
void mlir::gatherProducerConsumerMemrefs(
ArrayRef<Operation *> srcOps, ArrayRef<Operation *> dstOps,
DenseSet<Value> &producerConsumerMemrefs) {
// Gather memrefs from stores in 'srcOps'.
DenseSet<Value> srcStoreMemRefs;
for (Operation *op : srcOps)
if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op))
srcStoreMemRefs.insert(storeOp.getMemRef());
// Compute the intersection between memrefs from stores in 'srcOps' and
// memrefs from loads in 'dstOps'.
for (Operation *op : dstOps)
if (auto loadOp = dyn_cast<AffineReadOpInterface>(op))
if (srcStoreMemRefs.count(loadOp.getMemRef()) > 0)
producerConsumerMemrefs.insert(loadOp.getMemRef());
}