| //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/IR/Block.h" |
| #include "mlir/IR/BlockAndValueMapping.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/FunctionSupport.h" |
| #include "mlir/Rewrite/PatternApplicator.h" |
| #include "mlir/Transforms/Utils.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| |
| using namespace mlir; |
| using namespace mlir::detail; |
| |
| #define DEBUG_TYPE "dialect-conversion" |
| |
| /// Recursively collect all of the operations to convert from within 'region'. |
| /// If 'target' is nonnull, operations that are recursively legal have their |
| /// regions pre-filtered to avoid considering them for legalization. |
| static LogicalResult |
| computeConversionSet(iterator_range<Region::iterator> region, |
| Location regionLoc, |
| SmallVectorImpl<Operation *> &toConvert, |
| ConversionTarget *target = nullptr) { |
| if (llvm::empty(region)) |
| return success(); |
| |
| // Traverse starting from the entry block. |
| SmallVector<Block *, 16> worklist(1, &*region.begin()); |
| DenseSet<Block *> visitedBlocks; |
| visitedBlocks.insert(worklist.front()); |
| while (!worklist.empty()) { |
| Block *block = worklist.pop_back_val(); |
| |
| // Compute the conversion set of each of the nested operations. |
| for (Operation &op : *block) { |
| toConvert.emplace_back(&op); |
| |
| // Don't check this operation's children for conversion if the operation |
| // is recursively legal. |
| auto legalityInfo = target ? target->isLegal(&op) |
| : Optional<ConversionTarget::LegalOpDetails>(); |
| if (legalityInfo && legalityInfo->isRecursivelyLegal) |
| continue; |
| for (auto ®ion : op.getRegions()) { |
| if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), |
| toConvert, target))) |
| return failure(); |
| } |
| } |
| |
| // Recurse to children that haven't been visited. |
| for (Block *succ : block->getSuccessors()) |
| if (visitedBlocks.insert(succ).second) |
| worklist.push_back(succ); |
| } |
| |
| // Check that all blocks in the region were visited. |
| if (llvm::any_of(llvm::drop_begin(region, 1), |
| [&](Block &block) { return !visitedBlocks.count(&block); })) |
| return emitError(regionLoc, "unreachable blocks were not converted"); |
| return success(); |
| } |
| |
| /// A utility function to log a successful result for the given reason. |
| template <typename... Args> |
| static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { |
| LLVM_DEBUG({ |
| os.unindent(); |
| os.startLine() << "} -> SUCCESS"; |
| if (!fmt.empty()) |
| os.getOStream() << " : " |
| << llvm::formatv(fmt.data(), std::forward<Args>(args)...); |
| os.getOStream() << "\n"; |
| }); |
| } |
| |
| /// A utility function to log a failure result for the given reason. |
| template <typename... Args> |
| static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { |
| LLVM_DEBUG({ |
| os.unindent(); |
| os.startLine() << "} -> FAILURE : " |
| << llvm::formatv(fmt.data(), std::forward<Args>(args)...) |
| << "\n"; |
| }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConversionValueMapping |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// This class wraps a BlockAndValueMapping to provide recursive lookup |
| /// functionality, i.e. we will traverse if the mapped value also has a mapping. |
| struct ConversionValueMapping { |
| /// Lookup a mapped value within the map. If a mapping for the provided value |
| /// does not exist then return the provided value. If `desiredType` is |
| /// non-null, returns the most recently mapped value with that type. If an |
| /// operand of that type does not exist, defaults to normal behavior. |
| Value lookupOrDefault(Value from, Type desiredType = nullptr) const; |
| |
| /// Lookup a mapped value within the map, or return null if a mapping does not |
| /// exist. If a mapping exists, this follows the same behavior of |
| /// `lookupOrDefault`. |
| Value lookupOrNull(Value from, Type desiredType = nullptr) const; |
| |
| /// Map a value to the one provided. |
| void map(Value oldVal, Value newVal) { |
| LLVM_DEBUG({ |
| for (Value it = newVal; it; it = mapping.lookupOrNull(it)) |
| assert(it != oldVal && "inserting cyclic mapping"); |
| }); |
| mapping.map(oldVal, newVal); |
| } |
| |
| /// Try to map a value to the one provided. Returns false if a transitive |
| /// mapping from the new value to the old value already exists, true if the |
| /// map was updated. |
| bool tryMap(Value oldVal, Value newVal); |
| |
| /// Drop the last mapping for the given value. |
| void erase(Value value) { mapping.erase(value); } |
| |
| /// Returns the inverse raw value mapping (without recursive query support). |
| DenseMap<Value, SmallVector<Value>> getInverse() const { |
| DenseMap<Value, SmallVector<Value>> inverse; |
| for (auto &it : mapping.getValueMap()) |
| inverse[it.second].push_back(it.first); |
| return inverse; |
| } |
| |
| private: |
| /// Current value mappings. |
| BlockAndValueMapping mapping; |
| }; |
| } // end anonymous namespace |
| |
| Value ConversionValueMapping::lookupOrDefault(Value from, |
| Type desiredType) const { |
| // If there was no desired type, simply find the leaf value. |
| if (!desiredType) { |
| // If this value had a valid mapping, unmap that value as well in the case |
| // that it was also replaced. |
| while (auto mappedValue = mapping.lookupOrNull(from)) |
| from = mappedValue; |
| return from; |
| } |
| |
| // Otherwise, try to find the deepest value that has the desired type. |
| Value desiredValue; |
| do { |
| if (from.getType() == desiredType) |
| desiredValue = from; |
| |
| Value mappedValue = mapping.lookupOrNull(from); |
| if (!mappedValue) |
| break; |
| from = mappedValue; |
| } while (true); |
| |
| // If the desired value was found use it, otherwise default to the leaf value. |
| return desiredValue ? desiredValue : from; |
| } |
| |
| Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const { |
| Value result = lookupOrDefault(from, desiredType); |
| if (result == from || (desiredType && result.getType() != desiredType)) |
| return nullptr; |
| return result; |
| } |
| |
| bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) { |
| for (Value it = newVal; it; it = mapping.lookupOrNull(it)) |
| if (it == oldVal) |
| return false; |
| map(oldVal, newVal); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Rewriter and Translation State |
| //===----------------------------------------------------------------------===// |
| namespace { |
| /// This class contains a snapshot of the current conversion rewriter state. |
| /// This is useful when saving and undoing a set of rewrites. |
| struct RewriterState { |
| RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations, |
| unsigned numReplacements, unsigned numArgReplacements, |
| unsigned numBlockActions, unsigned numIgnoredOperations, |
| unsigned numRootUpdates) |
| : numCreatedOps(numCreatedOps), |
| numUnresolvedMaterializations(numUnresolvedMaterializations), |
| numReplacements(numReplacements), |
| numArgReplacements(numArgReplacements), |
| numBlockActions(numBlockActions), |
| numIgnoredOperations(numIgnoredOperations), |
| numRootUpdates(numRootUpdates) {} |
| |
| /// The current number of created operations. |
| unsigned numCreatedOps; |
| |
| /// The current number of unresolved materializations. |
| unsigned numUnresolvedMaterializations; |
| |
| /// The current number of replacements queued. |
| unsigned numReplacements; |
| |
| /// The current number of argument replacements queued. |
| unsigned numArgReplacements; |
| |
| /// The current number of block actions performed. |
| unsigned numBlockActions; |
| |
| /// The current number of ignored operations. |
| unsigned numIgnoredOperations; |
| |
| /// The current number of operations that were updated in place. |
| unsigned numRootUpdates; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // OperationTransactionState |
| |
| /// The state of an operation that was updated by a pattern in-place. This |
| /// contains all of the necessary information to reconstruct an operation that |
| /// was updated in place. |
| class OperationTransactionState { |
| public: |
| OperationTransactionState() = default; |
| OperationTransactionState(Operation *op) |
| : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), |
| operands(op->operand_begin(), op->operand_end()), |
| successors(op->successor_begin(), op->successor_end()) {} |
| |
| /// Discard the transaction state and reset the state of the original |
| /// operation. |
| void resetOperation() const { |
| op->setLoc(loc); |
| op->setAttrs(attrs); |
| op->setOperands(operands); |
| for (auto it : llvm::enumerate(successors)) |
| op->setSuccessor(it.value(), it.index()); |
| } |
| |
| /// Return the original operation of this state. |
| Operation *getOperation() const { return op; } |
| |
| private: |
| Operation *op; |
| LocationAttr loc; |
| DictionaryAttr attrs; |
| SmallVector<Value, 8> operands; |
| SmallVector<Block *, 2> successors; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // OpReplacement |
| |
| /// This class represents one requested operation replacement via 'replaceOp' or |
| /// 'eraseOp`. |
| struct OpReplacement { |
| OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {} |
| |
| /// An optional type converter that can be used to materialize conversions |
| /// between the new and old values if necessary. |
| TypeConverter *converter; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // BlockAction |
| |
| /// The kind of the block action performed during the rewrite. Actions can be |
| /// undone if the conversion fails. |
| enum class BlockActionKind { |
| Create, |
| Erase, |
| Merge, |
| Move, |
| Split, |
| TypeConversion |
| }; |
| |
| /// Original position of the given block in its parent region. During undo |
| /// actions, the block needs to be placed after `insertAfterBlock`. |
| struct BlockPosition { |
| Region *region; |
| Block *insertAfterBlock; |
| }; |
| |
| /// Information needed to undo the merge actions. |
| /// - the source block, and |
| /// - the Operation that was the last operation in the dest block before the |
| /// merge (could be null if the dest block was empty). |
| struct MergeInfo { |
| Block *sourceBlock; |
| Operation *destBlockLastInst; |
| }; |
| |
| /// The storage class for an undoable block action (one of BlockActionKind), |
| /// contains the information necessary to undo this action. |
| struct BlockAction { |
| static BlockAction getCreate(Block *block) { |
| return {BlockActionKind::Create, block, {}}; |
| } |
| static BlockAction getErase(Block *block, BlockPosition originalPosition) { |
| return {BlockActionKind::Erase, block, {originalPosition}}; |
| } |
| static BlockAction getMerge(Block *block, Block *sourceBlock) { |
| BlockAction action{BlockActionKind::Merge, block, {}}; |
| action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; |
| return action; |
| } |
| static BlockAction getMove(Block *block, BlockPosition originalPosition) { |
| return {BlockActionKind::Move, block, {originalPosition}}; |
| } |
| static BlockAction getSplit(Block *block, Block *originalBlock) { |
| BlockAction action{BlockActionKind::Split, block, {}}; |
| action.originalBlock = originalBlock; |
| return action; |
| } |
| static BlockAction getTypeConversion(Block *block) { |
| return BlockAction{BlockActionKind::TypeConversion, block, {}}; |
| } |
| |
| // The action kind. |
| BlockActionKind kind; |
| |
| // A pointer to the block that was created by the action. |
| Block *block; |
| |
| union { |
| // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and |
| // contains a pointer to the region that originally contained the block as |
| // well as the position of the block in that region. |
| BlockPosition originalPosition; |
| // In use if kind == BlockActionKind::Split and contains a pointer to the |
| // block that was split into two parts. |
| Block *originalBlock; |
| // In use if kind == BlockActionKind::Merge, and contains the information |
| // needed to undo the merge. |
| MergeInfo mergeInfo; |
| }; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // UnresolvedMaterialization |
| |
| /// This class represents an unresolved materialization, i.e. a materialization |
| /// that was inserted during conversion that needs to be legalized at the end of |
| /// the conversion process. |
| class UnresolvedMaterialization { |
| public: |
| /// The type of materialization. |
| enum Kind { |
| /// This materialization materializes a conversion for an illegal block |
| /// argument type, to a legal one. |
| Argument, |
| |
| /// This materialization materializes a conversion from an illegal type to a |
| /// legal one. |
| Target |
| }; |
| |
| UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr, |
| TypeConverter *converter = nullptr, |
| Kind kind = Target, Type origOutputType = nullptr) |
| : op(op), converterAndKind(converter, kind), |
| origOutputType(origOutputType) {} |
| |
| /// Return the temporary conversion operation inserted for this |
| /// materialization. |
| UnrealizedConversionCastOp getOp() const { return op; } |
| |
| /// Return the type converter of this materialization (which may be null). |
| TypeConverter *getConverter() const { return converterAndKind.getPointer(); } |
| |
| /// Return the kind of this materialization. |
| Kind getKind() const { return converterAndKind.getInt(); } |
| |
| /// Set the kind of this materialization. |
| void setKind(Kind kind) { converterAndKind.setInt(kind); } |
| |
| /// Return the original illegal output type of the input values. |
| Type getOrigOutputType() const { return origOutputType; } |
| |
| private: |
| /// The unresolved materialization operation created during conversion. |
| UnrealizedConversionCastOp op; |
| |
| /// The corresponding type converter to use when resolving this |
| /// materialization, and the kind of this materialization. |
| llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind; |
| |
| /// The original output type. This is only used for argument conversions. |
| Type origOutputType; |
| }; |
| } // end anonymous namespace |
| |
| /// Build an unresolved materialization operation given an output type and set |
| /// of input operands. |
| static Value buildUnresolvedMaterialization( |
| UnresolvedMaterialization::Kind kind, Block *insertBlock, |
| Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType, |
| Type origOutputType, TypeConverter *converter, |
| SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { |
| // Avoid materializing an unnecessary cast. |
| if (inputs.size() == 1 && inputs.front().getType() == outputType) |
| return inputs.front(); |
| |
| // Create an unresolved materialization. We use a new OpBuilder to avoid |
| // tracking the materialization like we do for other operations. |
| OpBuilder builder(insertBlock, insertPt); |
| auto convertOp = |
| builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs); |
| unresolvedMaterializations.emplace_back(convertOp, converter, kind, |
| origOutputType); |
| return convertOp.getResult(0); |
| } |
| static Value buildUnresolvedArgumentMaterialization( |
| PatternRewriter &rewriter, Location loc, ValueRange inputs, |
| Type origOutputType, Type outputType, TypeConverter *converter, |
| SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { |
| return buildUnresolvedMaterialization( |
| UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(), |
| rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType, |
| converter, unresolvedMaterializations); |
| } |
| static Value buildUnresolvedTargetMaterialization( |
| Location loc, Value input, Type outputType, TypeConverter *converter, |
| SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { |
| Block *insertBlock = input.getParentBlock(); |
| Block::iterator insertPt = insertBlock->begin(); |
| if (OpResult inputRes = input.dyn_cast<OpResult>()) |
| insertPt = ++inputRes.getOwner()->getIterator(); |
| |
| return buildUnresolvedMaterialization( |
| UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input, |
| outputType, outputType, converter, unresolvedMaterializations); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArgConverter |
| //===----------------------------------------------------------------------===// |
| namespace { |
| /// This class provides a simple interface for converting the types of block |
| /// arguments. This is done by creating a new block that contains the new legal |
| /// types and extracting the block that contains the old illegal types to allow |
| /// for undoing pending rewrites in the case of failure. |
| struct ArgConverter { |
| ArgConverter( |
| PatternRewriter &rewriter, |
| SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) |
| : rewriter(rewriter), |
| unresolvedMaterializations(unresolvedMaterializations) {} |
| |
| /// This structure contains the information pertaining to an argument that has |
| /// been converted. |
| struct ConvertedArgInfo { |
| ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, |
| Value castValue = nullptr) |
| : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} |
| |
| /// The start index of in the new argument list that contains arguments that |
| /// replace the original. |
| unsigned newArgIdx; |
| |
| /// The number of arguments that replaced the original argument. |
| unsigned newArgSize; |
| |
| /// The cast value that was created to cast from the new arguments to the |
| /// old. This only used if 'newArgSize' > 1. |
| Value castValue; |
| }; |
| |
| /// This structure contains information pertaining to a block that has had its |
| /// signature converted. |
| struct ConvertedBlockInfo { |
| ConvertedBlockInfo(Block *origBlock, TypeConverter *converter) |
| : origBlock(origBlock), converter(converter) {} |
| |
| /// The original block that was requested to have its signature converted. |
| Block *origBlock; |
| |
| /// The conversion information for each of the arguments. The information is |
| /// None if the argument was dropped during conversion. |
| SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; |
| |
| /// The type converter used to convert the arguments. |
| TypeConverter *converter; |
| }; |
| |
| /// Return if the signature of the given block has already been converted. |
| bool hasBeenConverted(Block *block) const { |
| return conversionInfo.count(block) || convertedBlocks.count(block); |
| } |
| |
| /// Set the type converter to use for the given region. |
| void setConverter(Region *region, TypeConverter *typeConverter) { |
| assert(typeConverter && "expected valid type converter"); |
| regionToConverter[region] = typeConverter; |
| } |
| |
| /// Return the type converter to use for the given region, or null if there |
| /// isn't one. |
| TypeConverter *getConverter(Region *region) { |
| return regionToConverter.lookup(region); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Rewrite Application |
| //===--------------------------------------------------------------------===// |
| |
| /// Erase any rewrites registered for the blocks within the given operation |
| /// which is about to be removed. This merely drops the rewrites without |
| /// undoing them. |
| void notifyOpRemoved(Operation *op); |
| |
| /// Cleanup and undo any generated conversions for the arguments of block. |
| /// This method replaces the new block with the original, reverting the IR to |
| /// its original state. |
| void discardRewrites(Block *block); |
| |
| /// Fully replace uses of the old arguments with the new. |
| void applyRewrites(ConversionValueMapping &mapping); |
| |
| /// Materialize any necessary conversions for converted arguments that have |
| /// live users, using the provided `findLiveUser` to search for a user that |
| /// survives the conversion process. |
| LogicalResult |
| materializeLiveConversions(ConversionValueMapping &mapping, |
| OpBuilder &builder, |
| function_ref<Operation *(Value)> findLiveUser); |
| |
| //===--------------------------------------------------------------------===// |
| // Conversion |
| //===--------------------------------------------------------------------===// |
| |
| /// Attempt to convert the signature of the given block, if successful a new |
| /// block is returned containing the new arguments. Returns `block` if it did |
| /// not require conversion. |
| FailureOr<Block *> |
| convertSignature(Block *block, TypeConverter *converter, |
| ConversionValueMapping &mapping, |
| SmallVectorImpl<BlockArgument> &argReplacements); |
| |
| /// Apply the given signature conversion on the given block. The new block |
| /// containing the updated signature is returned. If no conversions were |
| /// necessary, e.g. if the block has no arguments, `block` is returned. |
| /// `converter` is used to generate any necessary cast operations that |
| /// translate between the origin argument types and those specified in the |
| /// signature conversion. |
| Block *applySignatureConversion( |
| Block *block, TypeConverter *converter, |
| TypeConverter::SignatureConversion &signatureConversion, |
| ConversionValueMapping &mapping, |
| SmallVectorImpl<BlockArgument> &argReplacements); |
| |
| /// Insert a new conversion into the cache. |
| void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); |
| |
| /// A collection of blocks that have had their arguments converted. This is a |
| /// map from the new replacement block, back to the original block. |
| llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; |
| |
| /// The set of original blocks that were converted. |
| DenseSet<Block *> convertedBlocks; |
| |
| /// A mapping from valid regions, to those containing the original blocks of a |
| /// conversion. |
| DenseMap<Region *, std::unique_ptr<Region>> regionMapping; |
| |
| /// A mapping of regions to type converters that should be used when |
| /// converting the arguments of blocks within that region. |
| DenseMap<Region *, TypeConverter *> regionToConverter; |
| |
| /// The pattern rewriter to use when materializing conversions. |
| PatternRewriter &rewriter; |
| |
| /// An ordered set of unresolved materializations during conversion. |
| SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations; |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Rewrite Application |
| |
| void ArgConverter::notifyOpRemoved(Operation *op) { |
| if (conversionInfo.empty()) |
| return; |
| |
| for (Region ®ion : op->getRegions()) { |
| for (Block &block : region) { |
| // Drop any rewrites from within. |
| for (Operation &nestedOp : block) |
| if (nestedOp.getNumRegions()) |
| notifyOpRemoved(&nestedOp); |
| |
| // Check if this block was converted. |
| auto it = conversionInfo.find(&block); |
| if (it == conversionInfo.end()) |
| continue; |
| |
| // Drop all uses of the original arguments and delete the original block. |
| Block *origBlock = it->second.origBlock; |
| for (BlockArgument arg : origBlock->getArguments()) |
| arg.dropAllUses(); |
| conversionInfo.erase(it); |
| } |
| } |
| } |
| |
| void ArgConverter::discardRewrites(Block *block) { |
| auto it = conversionInfo.find(block); |
| if (it == conversionInfo.end()) |
| return; |
| Block *origBlock = it->second.origBlock; |
| |
| // Drop all uses of the new block arguments and replace uses of the new block. |
| for (int i = block->getNumArguments() - 1; i >= 0; --i) |
| block->getArgument(i).dropAllUses(); |
| block->replaceAllUsesWith(origBlock); |
| |
| // Move the operations back the original block and the delete the new block. |
| origBlock->getOperations().splice(origBlock->end(), block->getOperations()); |
| origBlock->moveBefore(block); |
| block->erase(); |
| |
| convertedBlocks.erase(origBlock); |
| conversionInfo.erase(it); |
| } |
| |
| void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { |
| for (auto &info : conversionInfo) { |
| ConvertedBlockInfo &blockInfo = info.second; |
| Block *origBlock = blockInfo.origBlock; |
| |
| // Process the remapping for each of the original arguments. |
| for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { |
| Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; |
| BlockArgument origArg = origBlock->getArgument(i); |
| |
| // Handle the case of a 1->0 value mapping. |
| if (!argInfo) { |
| if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType())) |
| origArg.replaceAllUsesWith(newArg); |
| continue; |
| } |
| |
| // Otherwise this is a 1->1+ value mapping. |
| Value castValue = argInfo->castValue; |
| assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); |
| |
| // If the argument is still used, replace it with the generated cast. |
| if (!origArg.use_empty()) { |
| origArg.replaceAllUsesWith( |
| mapping.lookupOrDefault(castValue, origArg.getType())); |
| } |
| } |
| } |
| } |
| |
| LogicalResult ArgConverter::materializeLiveConversions( |
| ConversionValueMapping &mapping, OpBuilder &builder, |
| function_ref<Operation *(Value)> findLiveUser) { |
| for (auto &info : conversionInfo) { |
| Block *newBlock = info.first; |
| ConvertedBlockInfo &blockInfo = info.second; |
| Block *origBlock = blockInfo.origBlock; |
| |
| // Process the remapping for each of the original arguments. |
| for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { |
| // If the type of this argument changed and the argument is still live, we |
| // need to materialize a conversion. |
| BlockArgument origArg = origBlock->getArgument(i); |
| if (mapping.lookupOrNull(origArg, origArg.getType())) |
| continue; |
| Operation *liveUser = findLiveUser(origArg); |
| if (!liveUser) |
| continue; |
| |
| Value replacementValue = mapping.lookupOrDefault(origArg); |
| bool isDroppedArg = replacementValue == origArg; |
| if (isDroppedArg) |
| rewriter.setInsertionPointToStart(newBlock); |
| else |
| rewriter.setInsertionPointAfterValue(replacementValue); |
| Value newArg; |
| if (blockInfo.converter) { |
| newArg = blockInfo.converter->materializeSourceConversion( |
| rewriter, origArg.getLoc(), origArg.getType(), |
| isDroppedArg ? ValueRange() : ValueRange(replacementValue)); |
| assert((!newArg || newArg.getType() == origArg.getType()) && |
| "materialization hook did not provide a value of the expected " |
| "type"); |
| } |
| if (!newArg) { |
| InFlightDiagnostic diag = |
| emitError(origArg.getLoc()) |
| << "failed to materialize conversion for block argument #" << i |
| << " that remained live after conversion, type was " |
| << origArg.getType(); |
| if (!isDroppedArg) |
| diag << ", with target type " << replacementValue.getType(); |
| diag.attachNote(liveUser->getLoc()) |
| << "see existing live user here: " << *liveUser; |
| return failure(); |
| } |
| mapping.map(origArg, newArg); |
| } |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Conversion |
| |
| FailureOr<Block *> ArgConverter::convertSignature( |
| Block *block, TypeConverter *converter, ConversionValueMapping &mapping, |
| SmallVectorImpl<BlockArgument> &argReplacements) { |
| // Check if the block was already converted. If the block is detached, |
| // conservatively assume it is going to be deleted. |
| if (hasBeenConverted(block) || !block->getParent()) |
| return block; |
| // If a converter wasn't provided, and the block wasn't already converted, |
| // there is nothing we can do. |
| if (!converter) |
| return failure(); |
| |
| // Try to convert the signature for the block with the provided converter. |
| if (auto conversion = converter->convertBlockSignature(block)) |
| return applySignatureConversion(block, converter, *conversion, mapping, |
| argReplacements); |
| return failure(); |
| } |
| |
| Block *ArgConverter::applySignatureConversion( |
| Block *block, TypeConverter *converter, |
| TypeConverter::SignatureConversion &signatureConversion, |
| ConversionValueMapping &mapping, |
| SmallVectorImpl<BlockArgument> &argReplacements) { |
| // If no arguments are being changed or added, there is nothing to do. |
| unsigned origArgCount = block->getNumArguments(); |
| auto convertedTypes = signatureConversion.getConvertedTypes(); |
| if (origArgCount == 0 && convertedTypes.empty()) |
| return block; |
| |
| // Split the block at the beginning to get a new block to use for the updated |
| // signature. |
| Block *newBlock = block->splitBlock(block->begin()); |
| block->replaceAllUsesWith(newBlock); |
| |
| SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); |
| ArrayRef<Value> newArgs(newArgRange); |
| |
| // Remap each of the original arguments as determined by the signature |
| // conversion. |
| ConvertedBlockInfo info(block, converter); |
| info.argInfo.resize(origArgCount); |
| |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointToStart(newBlock); |
| for (unsigned i = 0; i != origArgCount; ++i) { |
| auto inputMap = signatureConversion.getInputMapping(i); |
| if (!inputMap) |
| continue; |
| BlockArgument origArg = block->getArgument(i); |
| |
| // If inputMap->replacementValue is not nullptr, then the argument is |
| // dropped and a replacement value is provided to be the remappedValue. |
| if (inputMap->replacementValue) { |
| assert(inputMap->size == 0 && |
| "invalid to provide a replacement value when the argument isn't " |
| "dropped"); |
| mapping.map(origArg, inputMap->replacementValue); |
| argReplacements.push_back(origArg); |
| continue; |
| } |
| |
| // Otherwise, this is a 1->1+ mapping. |
| auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); |
| Value newArg; |
| |
| // If this is a 1->1 mapping and the types of new and replacement arguments |
| // match (i.e. it's an identity map), then the argument is mapped to its |
| // original type. |
| // FIXME: We simply pass through the replacement argument if there wasn't a |
| // converter, which isn't great as it allows implicit type conversions to |
| // appear. We should properly restructure this code to handle cases where a |
| // converter isn't provided and also to properly handle the case where an |
| // argument materialization is actually a temporary source materialization |
| // (e.g. in the case of 1->N). |
| if (replArgs.size() == 1 && |
| (!converter || replArgs[0].getType() == origArg.getType())) { |
| newArg = replArgs.front(); |
| } else { |
| Type origOutputType = origArg.getType(); |
| |
| // Legalize the argument output type. |
| Type outputType = origOutputType; |
| if (Type legalOutputType = converter->convertType(outputType)) |
| outputType = legalOutputType; |
| |
| newArg = buildUnresolvedArgumentMaterialization( |
| rewriter, origArg.getLoc(), replArgs, origOutputType, outputType, |
| converter, unresolvedMaterializations); |
| } |
| |
| mapping.map(origArg, newArg); |
| argReplacements.push_back(origArg); |
| info.argInfo[i] = |
| ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); |
| } |
| |
| // Remove the original block from the region and return the new one. |
| insertConversion(newBlock, std::move(info)); |
| return newBlock; |
| } |
| |
| void ArgConverter::insertConversion(Block *newBlock, |
| ConvertedBlockInfo &&info) { |
| // Get a region to insert the old block. |
| Region *region = newBlock->getParent(); |
| std::unique_ptr<Region> &mappedRegion = regionMapping[region]; |
| if (!mappedRegion) |
| mappedRegion = std::make_unique<Region>(region->getParentOp()); |
| |
| // Move the original block to the mapped region and emplace the conversion. |
| mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), |
| info.origBlock->getIterator()); |
| convertedBlocks.insert(info.origBlock); |
| conversionInfo.insert({newBlock, std::move(info)}); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConversionPatternRewriterImpl |
| //===----------------------------------------------------------------------===// |
| namespace mlir { |
| namespace detail { |
| struct ConversionPatternRewriterImpl { |
| ConversionPatternRewriterImpl(PatternRewriter &rewriter) |
| : argConverter(rewriter, unresolvedMaterializations) {} |
| |
| /// Cleanup and destroy any generated rewrite operations. This method is |
| /// invoked when the conversion process fails. |
| void discardRewrites(); |
| |
| /// Apply all requested operation rewrites. This method is invoked when the |
| /// conversion process succeeds. |
| void applyRewrites(); |
| |
| //===--------------------------------------------------------------------===// |
| // State Management |
| //===--------------------------------------------------------------------===// |
| |
| /// Return the current state of the rewriter. |
| RewriterState getCurrentState(); |
| |
| /// Reset the state of the rewriter to a previously saved point. |
| void resetState(RewriterState state); |
| |
| /// Erase any blocks that were unlinked from their regions and stored in block |
| /// actions. |
| void eraseDanglingBlocks(); |
| |
| /// Undo the block actions (motions, splits) one by one in reverse order until |
| /// "numActionsToKeep" actions remains. |
| void undoBlockActions(unsigned numActionsToKeep = 0); |
| |
| /// Remap the given values to those with potentially different types. Returns |
| /// success if the values could be remapped, failure otherwise. `valueDiagTag` |
| /// is the tag used when describing a value within a diagnostic, e.g. |
| /// "operand". |
| LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc, |
| PatternRewriter &rewriter, ValueRange values, |
| SmallVectorImpl<Value> &remapped); |
| |
| /// Returns true if the given operation is ignored, and does not need to be |
| /// converted. |
| bool isOpIgnored(Operation *op) const; |
| |
| /// Recursively marks the nested operations under 'op' as ignored. This |
| /// removes them from being considered for legalization. |
| void markNestedOpsIgnored(Operation *op); |
| |
| //===--------------------------------------------------------------------===// |
| // Type Conversion |
| //===--------------------------------------------------------------------===// |
| |
| /// Convert the signature of the given block. |
| FailureOr<Block *> convertBlockSignature( |
| Block *block, TypeConverter *converter, |
| TypeConverter::SignatureConversion *conversion = nullptr); |
| |
| /// Apply a signature conversion on the given region, using `converter` for |
| /// materializations if not null. |
| Block * |
| applySignatureConversion(Region *region, |
| TypeConverter::SignatureConversion &conversion, |
| TypeConverter *converter); |
| |
| /// Convert the types of block arguments within the given region. |
| FailureOr<Block *> |
| convertRegionTypes(Region *region, TypeConverter &converter, |
| TypeConverter::SignatureConversion *entryConversion); |
| |
| /// Convert the types of non-entry block arguments within the given region. |
| LogicalResult convertNonEntryRegionTypes( |
| Region *region, TypeConverter &converter, |
| ArrayRef<TypeConverter::SignatureConversion> blockConversions = {}); |
| |
| //===--------------------------------------------------------------------===// |
| // Rewriter Notification Hooks |
| //===--------------------------------------------------------------------===// |
| |
| /// PatternRewriter hook for replacing the results of an operation. |
| void notifyOpReplaced(Operation *op, ValueRange newValues); |
| |
| /// Notifies that a block is about to be erased. |
| void notifyBlockIsBeingErased(Block *block); |
| |
| /// Notifies that a block was created. |
| void notifyCreatedBlock(Block *block); |
| |
| /// Notifies that a block was split. |
| void notifySplitBlock(Block *block, Block *continuation); |
| |
| /// Notifies that `block` is being merged with `srcBlock`. |
| void notifyBlocksBeingMerged(Block *block, Block *srcBlock); |
| |
| /// Notifies that the blocks of a region are about to be moved. |
| void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, |
| Region::iterator before); |
| |
| /// Notifies that the blocks of a region were cloned into another. |
| void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, |
| Location origRegionLoc); |
| |
| /// Notifies that a pattern match failed for the given reason. |
| LogicalResult |
| notifyMatchFailure(Location loc, |
| function_ref<void(Diagnostic &)> reasonCallback); |
| |
| //===--------------------------------------------------------------------===// |
| // State |
| //===--------------------------------------------------------------------===// |
| |
| // Mapping between replaced values that differ in type. This happens when |
| // replacing a value with one of a different type. |
| ConversionValueMapping mapping; |
| |
| /// Utility used to convert block arguments. |
| ArgConverter argConverter; |
| |
| /// Ordered vector of all of the newly created operations during conversion. |
| SmallVector<Operation *> createdOps; |
| |
| /// Ordered vector of all unresolved type conversion materializations during |
| /// conversion. |
| SmallVector<UnresolvedMaterialization> unresolvedMaterializations; |
| |
| /// Ordered map of requested operation replacements. |
| llvm::MapVector<Operation *, OpReplacement> replacements; |
| |
| /// Ordered vector of any requested block argument replacements. |
| SmallVector<BlockArgument, 4> argReplacements; |
| |
| /// Ordered list of block operations (creations, splits, motions). |
| SmallVector<BlockAction, 4> blockActions; |
| |
| /// A set of operations that should no longer be considered for legalization, |
| /// but were not directly replace/erased/etc. by a pattern. These are |
| /// generally child operations of other operations who were |
| /// replaced/erased/etc. This is not meant to be an exhaustive list of all |
| /// operations, but the minimal set that can be used to detect if a given |
| /// operation should be `ignored`. For example, we may add the operations that |
| /// define non-empty regions to the set, but not any of the others. This |
| /// simplifies the amount of memory needed as we can query if the parent |
| /// operation was ignored. |
| SetVector<Operation *> ignoredOps; |
| |
| /// A transaction state for each of operations that were updated in-place. |
| SmallVector<OperationTransactionState, 4> rootUpdates; |
| |
| /// A vector of indices into `replacements` of operations that were replaced |
| /// with values with different result types than the original operation, e.g. |
| /// 1->N conversion of some kind. |
| SmallVector<unsigned, 4> operationsWithChangedResults; |
| |
| /// The current type converter, or nullptr if no type converter is currently |
| /// active. |
| TypeConverter *currentTypeConverter = nullptr; |
| |
| #ifndef NDEBUG |
| /// A set of operations that have pending updates. This tracking isn't |
| /// strictly necessary, and is thus only active during debug builds for extra |
| /// verification. |
| SmallPtrSet<Operation *, 1> pendingRootUpdates; |
| |
| /// A logger used to emit diagnostics during the conversion process. |
| llvm::ScopedPrinter logger{llvm::dbgs()}; |
| #endif |
| }; |
| } // end namespace detail |
| } // end namespace mlir |
| |
| /// Detach any operations nested in the given operation from their parent |
| /// blocks, and erase the given operation. This can be used when the nested |
| /// operations are scheduled for erasure themselves, so deleting the regions of |
| /// the given operation together with their content would result in double-free. |
| /// This happens, for example, when rolling back op creation in the reverse |
| /// order and if the nested ops were created before the parent op. This function |
| /// does not need to collect nested ops recursively because it is expected to |
| /// also be called for each nested op when it is about to be deleted. |
| static void detachNestedAndErase(Operation *op) { |
| for (Region ®ion : op->getRegions()) { |
| for (Block &block : region.getBlocks()) { |
| while (!block.getOperations().empty()) |
| block.getOperations().remove(block.getOperations().begin()); |
| block.dropAllDefinedValueUses(); |
| } |
| } |
| op->dropAllUses(); |
| op->erase(); |
| } |
| |
| void ConversionPatternRewriterImpl::discardRewrites() { |
| // Reset any operations that were updated in place. |
| for (auto &state : rootUpdates) |
| state.resetOperation(); |
| |
| undoBlockActions(); |
| |
| // Remove any newly created ops. |
| for (UnresolvedMaterialization &materialization : unresolvedMaterializations) |
| detachNestedAndErase(materialization.getOp()); |
| for (auto *op : llvm::reverse(createdOps)) |
| detachNestedAndErase(op); |
| } |
| |
| void ConversionPatternRewriterImpl::applyRewrites() { |
| // Apply all of the rewrites replacements requested during conversion. |
| for (auto &repl : replacements) { |
| for (OpResult result : repl.first->getResults()) |
| if (Value newValue = mapping.lookupOrNull(result, result.getType())) |
| result.replaceAllUsesWith(newValue); |
| |
| // If this operation defines any regions, drop any pending argument |
| // rewrites. |
| if (repl.first->getNumRegions()) |
| argConverter.notifyOpRemoved(repl.first); |
| } |
| |
| // Apply all of the requested argument replacements. |
| for (BlockArgument arg : argReplacements) { |
| Value repl = mapping.lookupOrNull(arg, arg.getType()); |
| if (!repl) |
| continue; |
| |
| if (repl.isa<BlockArgument>()) { |
| arg.replaceAllUsesWith(repl); |
| continue; |
| } |
| |
| // If the replacement value is an operation, we check to make sure that we |
| // don't replace uses that are within the parent operation of the |
| // replacement value. |
| Operation *replOp = repl.cast<OpResult>().getOwner(); |
| Block *replBlock = replOp->getBlock(); |
| arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { |
| Operation *user = operand.getOwner(); |
| return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); |
| }); |
| } |
| |
| // Drop all of the unresolved materialization operations created during |
| // conversion. |
| for (auto &mat : unresolvedMaterializations) { |
| mat.getOp()->dropAllUses(); |
| mat.getOp()->erase(); |
| } |
| |
| // In a second pass, erase all of the replaced operations in reverse. This |
| // allows processing nested operations before their parent region is |
| // destroyed. Because we process in reverse order, producers may be deleted |
| // before their users (a pattern deleting a producer and then the consumer) |
| // so we first drop all uses explicitly. |
| for (auto &repl : llvm::reverse(replacements)) { |
| repl.first->dropAllUses(); |
| repl.first->erase(); |
| } |
| |
| argConverter.applyRewrites(mapping); |
| |
| // Now that the ops have been erased, also erase dangling blocks. |
| eraseDanglingBlocks(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // State Management |
| |
| RewriterState ConversionPatternRewriterImpl::getCurrentState() { |
| return RewriterState(createdOps.size(), unresolvedMaterializations.size(), |
| replacements.size(), argReplacements.size(), |
| blockActions.size(), ignoredOps.size(), |
| rootUpdates.size()); |
| } |
| |
| void ConversionPatternRewriterImpl::resetState(RewriterState state) { |
| // Reset any operations that were updated in place. |
| for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) |
| rootUpdates[i].resetOperation(); |
| rootUpdates.resize(state.numRootUpdates); |
| |
| // Reset any replaced arguments. |
| for (BlockArgument replacedArg : |
| llvm::drop_begin(argReplacements, state.numArgReplacements)) |
| mapping.erase(replacedArg); |
| argReplacements.resize(state.numArgReplacements); |
| |
| // Undo any block actions. |
| undoBlockActions(state.numBlockActions); |
| |
| // Reset any replaced operations and undo any saved mappings. |
| for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) |
| for (auto result : repl.first->getResults()) |
| mapping.erase(result); |
| while (replacements.size() != state.numReplacements) |
| replacements.pop_back(); |
| |
| // Pop all of the newly inserted materializations. |
| while (unresolvedMaterializations.size() != |
| state.numUnresolvedMaterializations) { |
| UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val(); |
| UnrealizedConversionCastOp op = mat.getOp(); |
| |
| // If this was a target materialization, drop the mapping that was inserted. |
| if (mat.getKind() == UnresolvedMaterialization::Target) { |
| for (Value input : op->getOperands()) |
| mapping.erase(input); |
| } |
| detachNestedAndErase(op); |
| } |
| |
| // Pop all of the newly created operations. |
| while (createdOps.size() != state.numCreatedOps) { |
| detachNestedAndErase(createdOps.back()); |
| createdOps.pop_back(); |
| } |
| |
| // Pop all of the recorded ignored operations that are no longer valid. |
| while (ignoredOps.size() != state.numIgnoredOperations) |
| ignoredOps.pop_back(); |
| |
| // Reset operations with changed results. |
| while (!operationsWithChangedResults.empty() && |
| operationsWithChangedResults.back() >= state.numReplacements) |
| operationsWithChangedResults.pop_back(); |
| } |
| |
| void ConversionPatternRewriterImpl::eraseDanglingBlocks() { |
| for (auto &action : blockActions) |
| if (action.kind == BlockActionKind::Erase) |
| delete action.block; |
| } |
| |
| void ConversionPatternRewriterImpl::undoBlockActions( |
| unsigned numActionsToKeep) { |
| for (auto &action : |
| llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { |
| switch (action.kind) { |
| // Delete the created block. |
| case BlockActionKind::Create: { |
| // Unlink all of the operations within this block, they will be deleted |
| // separately. |
| auto &blockOps = action.block->getOperations(); |
| while (!blockOps.empty()) |
| blockOps.remove(blockOps.begin()); |
| action.block->dropAllDefinedValueUses(); |
| action.block->erase(); |
| break; |
| } |
| // Put the block (owned by action) back into its original position. |
| case BlockActionKind::Erase: { |
| auto &blockList = action.originalPosition.region->getBlocks(); |
| Block *insertAfterBlock = action.originalPosition.insertAfterBlock; |
| blockList.insert((insertAfterBlock |
| ? std::next(Region::iterator(insertAfterBlock)) |
| : blockList.begin()), |
| action.block); |
| break; |
| } |
| // Split the block at the position which was originally the end of the |
| // destination block (owned by action), and put the instructions back into |
| // the block used before the merge. |
| case BlockActionKind::Merge: { |
| Block *sourceBlock = action.mergeInfo.sourceBlock; |
| Block::iterator splitPoint = |
| (action.mergeInfo.destBlockLastInst |
| ? ++Block::iterator(action.mergeInfo.destBlockLastInst) |
| : action.block->begin()); |
| sourceBlock->getOperations().splice(sourceBlock->begin(), |
| action.block->getOperations(), |
| splitPoint, action.block->end()); |
| break; |
| } |
| // Move the block back to its original position. |
| case BlockActionKind::Move: { |
| Region *originalRegion = action.originalPosition.region; |
| Block *insertAfterBlock = action.originalPosition.insertAfterBlock; |
| originalRegion->getBlocks().splice( |
| (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) |
| : originalRegion->end()), |
| action.block->getParent()->getBlocks(), action.block); |
| break; |
| } |
| // Merge back the block that was split out. |
| case BlockActionKind::Split: { |
| action.originalBlock->getOperations().splice( |
| action.originalBlock->end(), action.block->getOperations()); |
| action.block->dropAllDefinedValueUses(); |
| action.block->erase(); |
| break; |
| } |
| // Undo the type conversion. |
| case BlockActionKind::TypeConversion: { |
| argConverter.discardRewrites(action.block); |
| break; |
| } |
| } |
| } |
| blockActions.resize(numActionsToKeep); |
| } |
| |
| LogicalResult ConversionPatternRewriterImpl::remapValues( |
| StringRef valueDiagTag, Optional<Location> inputLoc, |
| PatternRewriter &rewriter, ValueRange values, |
| SmallVectorImpl<Value> &remapped) { |
| remapped.reserve(llvm::size(values)); |
| |
| SmallVector<Type, 1> legalTypes; |
| for (auto it : llvm::enumerate(values)) { |
| Value operand = it.value(); |
| Type origType = operand.getType(); |
| |
| // If a converter was provided, get the desired legal types for this |
| // operand. |
| Type desiredType; |
| if (currentTypeConverter) { |
| // If there is no legal conversion, fail to match this pattern. |
| legalTypes.clear(); |
| if (failed(currentTypeConverter->convertType(origType, legalTypes))) { |
| Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); |
| return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) { |
| diag << "unable to convert type for " << valueDiagTag << " #" |
| << it.index() << ", type was " << origType; |
| }); |
| } |
| // TODO: There currently isn't any mechanism to do 1->N type conversion |
| // via the PatternRewriter replacement API, so for now we just ignore it. |
| if (legalTypes.size() == 1) |
| desiredType = legalTypes.front(); |
| } else { |
| // TODO: What we should do here is just set `desiredType` to `origType` |
| // and then handle the necessary type conversions after the conversion |
| // process has finished. Unfortunately a lot of patterns currently rely on |
| // receiving the new operands even if the types change, so we keep the |
| // original behavior here for now until all of the patterns relying on |
| // this get updated. |
| } |
| Value newOperand = mapping.lookupOrDefault(operand, desiredType); |
| |
| // Handle the case where the conversion was 1->1 and the new operand type |
| // isn't legal. |
| Type newOperandType = newOperand.getType(); |
| if (currentTypeConverter && desiredType && newOperandType != desiredType) { |
| Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); |
| Value castValue = buildUnresolvedTargetMaterialization( |
| operandLoc, newOperand, desiredType, currentTypeConverter, |
| unresolvedMaterializations); |
| mapping.map(mapping.lookupOrDefault(newOperand), castValue); |
| newOperand = castValue; |
| } |
| remapped.push_back(newOperand); |
| } |
| return success(); |
| } |
| |
| bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { |
| // Check to see if this operation was replaced or its parent ignored. |
| return replacements.count(op) || ignoredOps.count(op->getParentOp()); |
| } |
| |
| void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { |
| // Walk this operation and collect nested operations that define non-empty |
| // regions. We mark such operations as 'ignored' so that we know we don't have |
| // to convert them, or their nested ops. |
| if (op->getNumRegions() == 0) |
| return; |
| op->walk([&](Operation *op) { |
| if (llvm::any_of(op->getRegions(), |
| [](Region ®ion) { return !region.empty(); })) |
| ignoredOps.insert(op); |
| }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Conversion |
| |
| FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( |
| Block *block, TypeConverter *converter, |
| TypeConverter::SignatureConversion *conversion) { |
| FailureOr<Block *> result = |
| conversion ? argConverter.applySignatureConversion( |
| block, converter, *conversion, mapping, argReplacements) |
| : argConverter.convertSignature(block, converter, mapping, |
| argReplacements); |
| if (failed(result)) |
| return failure(); |
| if (Block *newBlock = result.getValue()) { |
| if (newBlock != block) |
| blockActions.push_back(BlockAction::getTypeConversion(newBlock)); |
| } |
| return result; |
| } |
| |
| Block *ConversionPatternRewriterImpl::applySignatureConversion( |
| Region *region, TypeConverter::SignatureConversion &conversion, |
| TypeConverter *converter) { |
| if (!region->empty()) |
| return *convertBlockSignature(®ion->front(), converter, &conversion); |
| return nullptr; |
| } |
| |
| FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( |
| Region *region, TypeConverter &converter, |
| TypeConverter::SignatureConversion *entryConversion) { |
| argConverter.setConverter(region, &converter); |
| if (region->empty()) |
| return nullptr; |
| |
| if (failed(convertNonEntryRegionTypes(region, converter))) |
| return failure(); |
| |
| FailureOr<Block *> newEntry = |
| convertBlockSignature(®ion->front(), &converter, entryConversion); |
| return newEntry; |
| } |
| |
| LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( |
| Region *region, TypeConverter &converter, |
| ArrayRef<TypeConverter::SignatureConversion> blockConversions) { |
| argConverter.setConverter(region, &converter); |
| if (region->empty()) |
| return success(); |
| |
| // Convert the arguments of each block within the region. |
| int blockIdx = 0; |
| assert((blockConversions.empty() || |
| blockConversions.size() == region->getBlocks().size() - 1) && |
| "expected either to provide no SignatureConversions at all or to " |
| "provide a SignatureConversion for each non-entry block"); |
| |
| for (Block &block : |
| llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) { |
| TypeConverter::SignatureConversion *blockConversion = |
| blockConversions.empty() |
| ? nullptr |
| : const_cast<TypeConverter::SignatureConversion *>( |
| &blockConversions[blockIdx++]); |
| |
| if (failed(convertBlockSignature(&block, &converter, blockConversion))) |
| return failure(); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Rewriter Notification Hooks |
| |
| void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, |
| ValueRange newValues) { |
| assert(newValues.size() == op->getNumResults()); |
| assert(!replacements.count(op) && "operation was already replaced"); |
| |
| // Track if any of the results changed, e.g. erased and replaced with null. |
| bool resultChanged = false; |
| |
| // Create mappings for each of the new result values. |
| Value newValue, result; |
| for (auto it : llvm::zip(newValues, op->getResults())) { |
| std::tie(newValue, result) = it; |
| if (!newValue) { |
| resultChanged = true; |
| continue; |
| } |
| // Remap, and check for any result type changes. |
| mapping.map(result, newValue); |
| resultChanged |= (newValue.getType() != result.getType()); |
| } |
| if (resultChanged) |
| operationsWithChangedResults.push_back(replacements.size()); |
| |
| // Record the requested operation replacement. |
| replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter))); |
| |
| // Mark this operation as recursively ignored so that we don't need to |
| // convert any nested operations. |
| markNestedOpsIgnored(op); |
| } |
| |
| void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { |
| Region *region = block->getParent(); |
| Block *origPrevBlock = block->getPrevNode(); |
| blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); |
| } |
| |
| void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { |
| blockActions.push_back(BlockAction::getCreate(block)); |
| } |
| |
| void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, |
| Block *continuation) { |
| blockActions.push_back(BlockAction::getSplit(continuation, block)); |
| } |
| |
| void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, |
| Block *srcBlock) { |
| blockActions.push_back(BlockAction::getMerge(block, srcBlock)); |
| } |
| |
| void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( |
| Region ®ion, Region &parent, Region::iterator before) { |
| if (region.empty()) |
| return; |
| Block *laterBlock = ®ion.back(); |
| for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { |
| blockActions.push_back( |
| BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); |
| laterBlock = &earlierBlock; |
| } |
| blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); |
| } |
| |
| void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( |
| iterator_range<Region::iterator> &blocks, Location origRegionLoc) { |
| for (Block &block : blocks) |
| blockActions.push_back(BlockAction::getCreate(&block)); |
| |
| // Compute the conversion set for the inlined region. |
| auto result = computeConversionSet(blocks, origRegionLoc, createdOps); |
| |
| // This original region has already had its conversion set computed, so there |
| // shouldn't be any new failures. |
| (void)result; |
| assert(succeeded(result) && "expected region to have no unreachable blocks"); |
| } |
| |
| LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( |
| Location loc, function_ref<void(Diagnostic &)> reasonCallback) { |
| LLVM_DEBUG({ |
| Diagnostic diag(loc, DiagnosticSeverity::Remark); |
| reasonCallback(diag); |
| logger.startLine() << "** Failure : " << diag.str() << "\n"; |
| }); |
| return failure(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConversionPatternRewriter |
| //===----------------------------------------------------------------------===// |
| |
| ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) |
| : PatternRewriter(ctx), |
| impl(new detail::ConversionPatternRewriterImpl(*this)) {} |
| ConversionPatternRewriter::~ConversionPatternRewriter() {} |
| |
| void ConversionPatternRewriter::replaceOpWithIf( |
| Operation *op, ValueRange newValues, bool *allUsesReplaced, |
| llvm::unique_function<bool(OpOperand &) const> functor) { |
| // TODO: To support this we will need to rework a bit of how replacements are |
| // tracked, given that this isn't guranteed to replace all of the uses of an |
| // operation. The main change is that now an operation can be replaced |
| // multiple times, in parts. The current "set" based tracking is mainly useful |
| // for tracking if a replaced operation should be ignored, i.e. if all of the |
| // uses will be replaced. |
| llvm_unreachable( |
| "replaceOpWithIf is currently not supported by DialectConversion"); |
| } |
| |
| void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { |
| LLVM_DEBUG({ |
| impl->logger.startLine() |
| << "** Replace : '" << op->getName() << "'(" << op << ")\n"; |
| }); |
| impl->notifyOpReplaced(op, newValues); |
| } |
| |
| void ConversionPatternRewriter::eraseOp(Operation *op) { |
| LLVM_DEBUG({ |
| impl->logger.startLine() |
| << "** Erase : '" << op->getName() << "'(" << op << ")\n"; |
| }); |
| SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); |
| impl->notifyOpReplaced(op, nullRepls); |
| } |
| |
| void ConversionPatternRewriter::eraseBlock(Block *block) { |
| impl->notifyBlockIsBeingErased(block); |
| |
| // Mark all ops for erasure. |
| for (Operation &op : *block) |
| eraseOp(&op); |
| |
| // Unlink the block from its parent region. The block is kept in the block |
| // action and will be actually destroyed when rewrites are applied. This |
| // allows us to keep the operations in the block live and undo the removal by |
| // re-inserting the block. |
| block->getParent()->getBlocks().remove(block); |
| } |
| |
| Block *ConversionPatternRewriter::applySignatureConversion( |
| Region *region, TypeConverter::SignatureConversion &conversion, |
| TypeConverter *converter) { |
| return impl->applySignatureConversion(region, conversion, converter); |
| } |
| |
| FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( |
| Region *region, TypeConverter &converter, |
| TypeConverter::SignatureConversion *entryConversion) { |
| return impl->convertRegionTypes(region, converter, entryConversion); |
| } |
| |
| LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( |
| Region *region, TypeConverter &converter, |
| ArrayRef<TypeConverter::SignatureConversion> blockConversions) { |
| return impl->convertNonEntryRegionTypes(region, converter, blockConversions); |
| } |
| |
| void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, |
| Value to) { |
| LLVM_DEBUG({ |
| Operation *parentOp = from.getOwner()->getParentOp(); |
| impl->logger.startLine() << "** Replace Argument : '" << from |
| << "'(in region of '" << parentOp->getName() |
| << "'(" << from.getOwner()->getParentOp() << ")\n"; |
| }); |
| impl->argReplacements.push_back(from); |
| impl->mapping.map(impl->mapping.lookupOrDefault(from), to); |
| } |
| |
| Value ConversionPatternRewriter::getRemappedValue(Value key) { |
| SmallVector<Value> remappedValues; |
| if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key, |
| remappedValues))) |
| return nullptr; |
| return remappedValues.front(); |
| } |
| |
| LogicalResult |
| ConversionPatternRewriter::getRemappedValues(ValueRange keys, |
| SmallVectorImpl<Value> &results) { |
| if (keys.empty()) |
| return success(); |
| return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys, |
| results); |
| } |
| |
| void ConversionPatternRewriter::notifyBlockCreated(Block *block) { |
| impl->notifyCreatedBlock(block); |
| } |
| |
| Block *ConversionPatternRewriter::splitBlock(Block *block, |
| Block::iterator before) { |
| auto *continuation = PatternRewriter::splitBlock(block, before); |
| impl->notifySplitBlock(block, continuation); |
| return continuation; |
| } |
| |
| void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, |
| ValueRange argValues) { |
| impl->notifyBlocksBeingMerged(dest, source); |
| assert(llvm::all_of(source->getPredecessors(), |
| [dest](Block *succ) { return succ == dest; }) && |
| "expected 'source' to have no predecessors or only 'dest'"); |
| assert(argValues.size() == source->getNumArguments() && |
| "incorrect # of argument replacement values"); |
| for (auto it : llvm::zip(source->getArguments(), argValues)) |
| replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); |
| dest->getOperations().splice(dest->end(), source->getOperations()); |
| eraseBlock(source); |
| } |
| |
| void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, |
| Region &parent, |
| Region::iterator before) { |
| impl->notifyRegionIsBeingInlinedBefore(region, parent, before); |
| PatternRewriter::inlineRegionBefore(region, parent, before); |
| } |
| |
| void ConversionPatternRewriter::cloneRegionBefore( |
| Region ®ion, Region &parent, Region::iterator before, |
| BlockAndValueMapping &mapping) { |
| if (region.empty()) |
| return; |
| PatternRewriter::cloneRegionBefore(region, parent, before, mapping); |
| |
| // Collect the range of the cloned blocks. |
| auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); |
| auto clonedBlocks = llvm::make_range(clonedBeginIt, before); |
| impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); |
| } |
| |
| void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { |
| LLVM_DEBUG({ |
| impl->logger.startLine() |
| << "** Insert : '" << op->getName() << "'(" << op << ")\n"; |
| }); |
| impl->createdOps.push_back(op); |
| } |
| |
| void ConversionPatternRewriter::startRootUpdate(Operation *op) { |
| #ifndef NDEBUG |
| impl->pendingRootUpdates.insert(op); |
| #endif |
| impl->rootUpdates.emplace_back(op); |
| } |
| |
| void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { |
| // There is nothing to do here, we only need to track the operation at the |
| // start of the update. |
| #ifndef NDEBUG |
| assert(impl->pendingRootUpdates.erase(op) && |
| "operation did not have a pending in-place update"); |
| #endif |
| } |
| |
| void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { |
| #ifndef NDEBUG |
| assert(impl->pendingRootUpdates.erase(op) && |
| "operation did not have a pending in-place update"); |
| #endif |
| // Erase the last update for this operation. |
| auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; |
| auto &rootUpdates = impl->rootUpdates; |
| auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); |
| assert(it != rootUpdates.rend() && "no root update started on op"); |
| (*it).resetOperation(); |
| int updateIdx = std::prev(rootUpdates.rend()) - it; |
| rootUpdates.erase(rootUpdates.begin() + updateIdx); |
| } |
| |
| LogicalResult ConversionPatternRewriter::notifyMatchFailure( |
| Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { |
| return impl->notifyMatchFailure(op->getLoc(), reasonCallback); |
| } |
| |
| detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { |
| return *impl; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConversionPattern |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult |
| ConversionPattern::matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const { |
| auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); |
| auto &rewriterImpl = dialectRewriter.getImpl(); |
| |
| // Track the current conversion pattern type converter in the rewriter. |
| llvm::SaveAndRestore<TypeConverter *> currentConverterGuard( |
| rewriterImpl.currentTypeConverter, getTypeConverter()); |
| |
| // Remap the operands of the operation. |
| SmallVector<Value, 4> operands; |
| if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter, |
| op->getOperands(), operands))) { |
| return failure(); |
| } |
| return matchAndRewrite(op, operands, dialectRewriter); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OperationLegalizer |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// A set of rewrite patterns that can be used to legalize a given operation. |
| using LegalizationPatterns = SmallVector<const Pattern *, 1>; |
| |
| /// This class defines a recursive operation legalizer. |
| class OperationLegalizer { |
| public: |
| using LegalizationAction = ConversionTarget::LegalizationAction; |
| |
| OperationLegalizer(ConversionTarget &targetInfo, |
| const FrozenRewritePatternSet &patterns); |
| |
| /// Returns true if the given operation is known to be illegal on the target. |
| bool isIllegal(Operation *op) const; |
| |
| /// Attempt to legalize the given operation. Returns success if the operation |
| /// was legalized, failure otherwise. |
| LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); |
| |
| /// Returns the conversion target in use by the legalizer. |
| ConversionTarget &getTarget() { return target; } |
| |
| private: |
| /// Attempt to legalize the given operation by folding it. |
| LogicalResult legalizeWithFold(Operation *op, |
| ConversionPatternRewriter &rewriter); |
| |
| /// Attempt to legalize the given operation by applying a pattern. Returns |
| /// success if the operation was legalized, failure otherwise. |
| LogicalResult legalizeWithPattern(Operation *op, |
| ConversionPatternRewriter &rewriter); |
| |
| /// Return true if the given pattern may be applied to the given operation, |
| /// false otherwise. |
| bool canApplyPattern(Operation *op, const Pattern &pattern, |
| ConversionPatternRewriter &rewriter); |
| |
| /// Legalize the resultant IR after successfully applying the given pattern. |
| LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, |
| ConversionPatternRewriter &rewriter, |
| RewriterState &curState); |
| |
| /// Legalizes the actions registered during the execution of a pattern. |
| LogicalResult legalizePatternBlockActions(Operation *op, |
| ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &impl, |
| RewriterState &state, |
| RewriterState &newState); |
| LogicalResult legalizePatternCreatedOperations( |
| ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, |
| RewriterState &state, RewriterState &newState); |
| LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &impl, |
| RewriterState &state, |
| RewriterState &newState); |
| |
| //===--------------------------------------------------------------------===// |
| // Cost Model |
| //===--------------------------------------------------------------------===// |
| |
| /// Build an optimistic legalization graph given the provided patterns. This |
| /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with |
| /// patterns for operations that are not directly legal, but may be |
| /// transitively legal for the current target given the provided patterns. |
| void buildLegalizationGraph( |
| LegalizationPatterns &anyOpLegalizerPatterns, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); |
| |
| /// Compute the benefit of each node within the computed legalization graph. |
| /// This orders the patterns within 'legalizerPatterns' based upon two |
| /// criteria: |
| /// 1) Prefer patterns that have the lowest legalization depth, i.e. |
| /// represent the more direct mapping to the target. |
| /// 2) When comparing patterns with the same legalization depth, prefer the |
| /// pattern with the highest PatternBenefit. This allows for users to |
| /// prefer specific legalizations over others. |
| void computeLegalizationGraphBenefit( |
| LegalizationPatterns &anyOpLegalizerPatterns, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); |
| |
| /// Compute the legalization depth when legalizing an operation of the given |
| /// type. |
| unsigned computeOpLegalizationDepth( |
| OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); |
| |
| /// Apply the conversion cost model to the given set of patterns, and return |
| /// the smallest legalization depth of any of the patterns. See |
| /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. |
| unsigned applyCostModelToPatterns( |
| LegalizationPatterns &patterns, |
| DenseMap<OperationName, unsigned> &minOpPatternDepth, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); |
| |
| /// The current set of patterns that have been applied. |
| SmallPtrSet<const Pattern *, 8> appliedPatterns; |
| |
| /// The legalization information provided by the target. |
| ConversionTarget ⌖ |
| |
| /// The pattern applicator to use for conversions. |
| PatternApplicator applicator; |
| }; |
| } // namespace |
| |
| OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, |
| const FrozenRewritePatternSet &patterns) |
| : target(targetInfo), applicator(patterns) { |
| // The set of patterns that can be applied to illegal operations to transform |
| // them into legal ones. |
| DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; |
| LegalizationPatterns anyOpLegalizerPatterns; |
| |
| buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); |
| computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); |
| } |
| |
| bool OperationLegalizer::isIllegal(Operation *op) const { |
| return target.isIllegal(op); |
| } |
| |
| LogicalResult |
| OperationLegalizer::legalize(Operation *op, |
| ConversionPatternRewriter &rewriter) { |
| #ifndef NDEBUG |
| const char *logLineComment = |
| "//===-------------------------------------------===//\n"; |
| |
| auto &logger = rewriter.getImpl().logger; |
| #endif |
| LLVM_DEBUG({ |
| logger.getOStream() << "\n"; |
| logger.startLine() << logLineComment; |
| logger.startLine() << "Legalizing operation : '" << op->getName() << "'(" |
| << op << ") {\n"; |
| logger.indent(); |
| |
| // If the operation has no regions, just print it here. |
| if (op->getNumRegions() == 0) { |
| op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm()); |
| logger.getOStream() << "\n\n"; |
| } |
| }); |
| |
| // Check if this operation is legal on the target. |
| if (auto legalityInfo = target.isLegal(op)) { |
| LLVM_DEBUG({ |
| logSuccess( |
| logger, "operation marked legal by the target{0}", |
| legalityInfo->isRecursivelyLegal |
| ? "; NOTE: operation is recursively legal; skipping internals" |
| : ""); |
| logger.startLine() << logLineComment; |
| }); |
| |
| // If this operation is recursively legal, mark its children as ignored so |
| // that we don't consider them for legalization. |
| if (legalityInfo->isRecursivelyLegal) |
| rewriter.getImpl().markNestedOpsIgnored(op); |
| return success(); |
| } |
| |
| // Check to see if the operation is ignored and doesn't need to be converted. |
| if (rewriter.getImpl().isOpIgnored(op)) { |
| LLVM_DEBUG({ |
| logSuccess(logger, "operation marked 'ignored' during conversion"); |
| logger.startLine() << logLineComment; |
| }); |
| return success(); |
| } |
| |
| // If the operation isn't legal, try to fold it in-place. |
| // TODO: Should we always try to do this, even if the op is |
| // already legal? |
| if (succeeded(legalizeWithFold(op, rewriter))) { |
| LLVM_DEBUG({ |
| logSuccess(logger, "operation was folded"); |
| logger.startLine() << logLineComment; |
| }); |
| return success(); |
| } |
| |
| // Otherwise, we need to apply a legalization pattern to this operation. |
| if (succeeded(legalizeWithPattern(op, rewriter))) { |
| LLVM_DEBUG({ |
| logSuccess(logger, ""); |
| logger.startLine() << logLineComment; |
| }); |
| return success(); |
| } |
| |
| LLVM_DEBUG({ |
| logFailure(logger, "no matched legalization pattern"); |
| logger.startLine() << logLineComment; |
| }); |
| return failure(); |
| } |
| |
| LogicalResult |
| OperationLegalizer::legalizeWithFold(Operation *op, |
| ConversionPatternRewriter &rewriter) { |
| auto &rewriterImpl = rewriter.getImpl(); |
| RewriterState curState = rewriterImpl.getCurrentState(); |
| |
| LLVM_DEBUG({ |
| rewriterImpl.logger.startLine() << "* Fold {\n"; |
| rewriterImpl.logger.indent(); |
| }); |
| |
| // Try to fold the operation. |
| SmallVector<Value, 2> replacementValues; |
| rewriter.setInsertionPoint(op); |
| if (failed(rewriter.tryFold(op, replacementValues))) { |
| LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); |
| return failure(); |
| } |
| |
| // Insert a replacement for 'op' with the folded replacement values. |
| rewriter.replaceOp(op, replacementValues); |
| |
| // Recursively legalize any new constant operations. |
| for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); |
| i != e; ++i) { |
| Operation *cstOp = rewriterImpl.createdOps[i]; |
| if (failed(legalize(cstOp, rewriter))) { |
| LLVM_DEBUG(logFailure(rewriterImpl.logger, |
| "generated constant '{0}' was illegal", |
| cstOp->getName())); |
| rewriterImpl.resetState(curState); |
| return failure(); |
| } |
| } |
| |
| LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); |
| return success(); |
| } |
| |
| LogicalResult |
| OperationLegalizer::legalizeWithPattern(Operation *op, |
| ConversionPatternRewriter &rewriter) { |
| auto &rewriterImpl = rewriter.getImpl(); |
| |
| // Functor that returns if the given pattern may be applied. |
| auto canApply = [&](const Pattern &pattern) { |
| return canApplyPattern(op, pattern, rewriter); |
| }; |
| |
| // Functor that cleans up the rewriter state after a pattern failed to match. |
| RewriterState curState = rewriterImpl.getCurrentState(); |
| auto onFailure = [&](const Pattern &pattern) { |
| LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); |
| rewriterImpl.resetState(curState); |
| appliedPatterns.erase(&pattern); |
| }; |
| |
| // Functor that performs additional legalization when a pattern is |
| // successfully applied. |
| auto onSuccess = [&](const Pattern &pattern) { |
| auto result = legalizePatternResult(op, pattern, rewriter, curState); |
| appliedPatterns.erase(&pattern); |
| if (failed(result)) |
| rewriterImpl.resetState(curState); |
| return result; |
| }; |
| |
| // Try to match and rewrite a pattern on this operation. |
| return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, |
| onSuccess); |
| } |
| |
| bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, |
| ConversionPatternRewriter &rewriter) { |
| LLVM_DEBUG({ |
| auto &os = rewriter.getImpl().logger; |
| os.getOStream() << "\n"; |
| os.startLine() << "* Pattern : '" << op->getName() << " -> ("; |
| llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream()); |
| os.getOStream() << ")' {\n"; |
| os.indent(); |
| }); |
| |
| // Ensure that we don't cycle by not allowing the same pattern to be |
| // applied twice in the same recursion stack if it is not known to be safe. |
| if (!pattern.hasBoundedRewriteRecursion() && |
| !appliedPatterns.insert(&pattern).second) { |
| LLVM_DEBUG( |
| logFailure(rewriter.getImpl().logger, "pattern was already applied")); |
| return false; |
| } |
| return true; |
| } |
| |
| LogicalResult |
| OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, |
| ConversionPatternRewriter &rewriter, |
| RewriterState &curState) { |
| auto &impl = rewriter.getImpl(); |
| |
| #ifndef NDEBUG |
| assert(impl.pendingRootUpdates.empty() && "dangling root updates"); |
| #endif |
| |
| // Check that the root was either replaced or updated in place. |
| auto replacedRoot = [&] { |
| return llvm::any_of( |
| llvm::drop_begin(impl.replacements, curState.numReplacements), |
| [op](auto &it) { return it.first == op; }); |
| }; |
| auto updatedRootInPlace = [&] { |
| return llvm::any_of( |
| llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), |
| [op](auto &state) { return state.getOperation() == op; }); |
| }; |
| (void)replacedRoot; |
| (void)updatedRootInPlace; |
| assert((replacedRoot() || updatedRootInPlace()) && |
| "expected pattern to replace the root operation"); |
| |
| // Legalize each of the actions registered during application. |
| RewriterState newState = impl.getCurrentState(); |
| if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, |
| newState)) || |
| failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || |
| failed(legalizePatternCreatedOperations(rewriter, impl, curState, |
| newState))) { |
| return failure(); |
| } |
| |
| LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); |
| return success(); |
| } |
| |
| LogicalResult OperationLegalizer::legalizePatternBlockActions( |
| Operation *op, ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &impl, RewriterState &state, |
| RewriterState &newState) { |
| SmallPtrSet<Operation *, 16> operationsToIgnore; |
| |
| // If the pattern moved or created any blocks, make sure the types of block |
| // arguments get legalized. |
| for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; |
| ++i) { |
| auto &action = impl.blockActions[i]; |
| if (action.kind == BlockActionKind::TypeConversion || |
| action.kind == BlockActionKind::Erase) |
| continue; |
| // Only check blocks outside of the current operation. |
| Operation *parentOp = action.block->getParentOp(); |
| if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) |
| continue; |
| |
| // If the region of the block has a type converter, try to convert the block |
| // directly. |
| if (auto *converter = |
| impl.argConverter.getConverter(action.block->getParent())) { |
| if (failed(impl.convertBlockSignature(action.block, converter))) { |
| LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " |
| "block")); |
| return failure(); |
| } |
| continue; |
| } |
| |
| // Otherwise, check that this operation isn't one generated by this pattern. |
| // This is because we will attempt to legalize the parent operation, and |
| // blocks in regions created by this pattern will already be legalized later |
| // on. If we haven't built the set yet, build it now. |
| if (operationsToIgnore.empty()) { |
| auto createdOps = ArrayRef<Operation *>(impl.createdOps) |
| .drop_front(state.numCreatedOps); |
| operationsToIgnore.insert(createdOps.begin(), createdOps.end()); |
| } |
| |
| // If this operation should be considered for re-legalization, try it. |
| if (operationsToIgnore.insert(parentOp).second && |
| failed(legalize(parentOp, rewriter))) { |
| LLVM_DEBUG(logFailure( |
| impl.logger, "operation '{0}'({1}) became illegal after block action", |
| parentOp->getName(), parentOp)); |
| return failure(); |
| } |
| } |
| return success(); |
| } |
| |
| LogicalResult OperationLegalizer::legalizePatternCreatedOperations( |
| ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, |
| RewriterState &state, RewriterState &newState) { |
| for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { |
| Operation *op = impl.createdOps[i]; |
| if (failed(legalize(op, rewriter))) { |
| LLVM_DEBUG(logFailure(impl.logger, |
| "generated operation '{0}'({1}) was illegal", |
| op->getName(), op)); |
| return failure(); |
| } |
| } |
| return success(); |
| } |
| |
| LogicalResult OperationLegalizer::legalizePatternRootUpdates( |
| ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, |
| RewriterState &state, RewriterState &newState) { |
| for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { |
| Operation *op = impl.rootUpdates[i].getOperation(); |
| if (failed(legalize(op, rewriter))) { |
| LLVM_DEBUG(logFailure(impl.logger, |
| "operation updated in-place '{0}' was illegal", |
| op->getName())); |
| return failure(); |
| } |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Cost Model |
| |
| void OperationLegalizer::buildLegalizationGraph( |
| LegalizationPatterns &anyOpLegalizerPatterns, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { |
| // A mapping between an operation and a set of operations that can be used to |
| // generate it. |
| DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; |
| // A mapping between an operation and any currently invalid patterns it has. |
| DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; |
| // A worklist of patterns to consider for legality. |
| SetVector<const Pattern *> patternWorklist; |
| |
| // Build the mapping from operations to the parent ops that may generate them. |
| applicator.walkAllPatterns([&](const Pattern &pattern) { |
| Optional<OperationName> root = pattern.getRootKind(); |
| |
| // If the pattern has no specific root, we can't analyze the relationship |
| // between the root op and generated operations. Given that, add all such |
| // patterns to the legalization set. |
| if (!root) { |
| anyOpLegalizerPatterns.push_back(&pattern); |
| return; |
| } |
| |
| // Skip operations that are always known to be legal. |
| if (target.getOpAction(*root) == LegalizationAction::Legal) |
| return; |
| |
| // Add this pattern to the invalid set for the root op and record this root |
| // as a parent for any generated operations. |
| invalidPatterns[*root].insert(&pattern); |
| for (auto op : pattern.getGeneratedOps()) |
| parentOps[op].insert(*root); |
| |
| // Add this pattern to the worklist. |
| patternWorklist.insert(&pattern); |
| }); |
| |
| // If there are any patterns that don't have a specific root kind, we can't |
| // make direct assumptions about what operations will never be legalized. |
| // Note: Technically we could, but it would require an analysis that may |
| // recurse into itself. It would be better to perform this kind of filtering |
| // at a higher level than here anyways. |
| if (!anyOpLegalizerPatterns.empty()) { |
| for (const Pattern *pattern : patternWorklist) |
| legalizerPatterns[*pattern->getRootKind()].push_back(pattern); |
| return; |
| } |
| |
| while (!patternWorklist.empty()) { |
| auto *pattern = patternWorklist.pop_back_val(); |
| |
| // Check to see if any of the generated operations are invalid. |
| if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { |
| Optional<LegalizationAction> action = target.getOpAction(op); |
| return !legalizerPatterns.count(op) && |
| (!action || action == LegalizationAction::Illegal); |
| })) |
| continue; |
| |
| // Otherwise, if all of the generated operation are valid, this op is now |
| // legal so add all of the child patterns to the worklist. |
| legalizerPatterns[*pattern->getRootKind()].push_back(pattern); |
| invalidPatterns[*pattern->getRootKind()].erase(pattern); |
| |
| // Add any invalid patterns of the parent operations to see if they have now |
| // become legal. |
| for (auto op : parentOps[*pattern->getRootKind()]) |
| patternWorklist.set_union(invalidPatterns[op]); |
| } |
| } |
| |
| void OperationLegalizer::computeLegalizationGraphBenefit( |
| LegalizationPatterns &anyOpLegalizerPatterns, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { |
| // The smallest pattern depth, when legalizing an operation. |
| DenseMap<OperationName, unsigned> minOpPatternDepth; |
| |
| // For each operation that is transitively legal, compute a cost for it. |
| for (auto &opIt : legalizerPatterns) |
| if (!minOpPatternDepth.count(opIt.first)) |
| computeOpLegalizationDepth(opIt.first, minOpPatternDepth, |
| legalizerPatterns); |
| |
| // Apply the cost model to the patterns that can match any operation. Those |
| // with a specific operation type are already resolved when computing the op |
| // legalization depth. |
| if (!anyOpLegalizerPatterns.empty()) |
| applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, |
| legalizerPatterns); |
| |
| // Apply a cost model to the pattern applicator. We order patterns first by |
| // depth then benefit. `legalizerPatterns` contains per-op patterns by |
| // decreasing benefit. |
| applicator.applyCostModel([&](const Pattern &pattern) { |
| ArrayRef<const Pattern *> orderedPatternList; |
| if (Optional<OperationName> rootName = pattern.getRootKind()) |
| orderedPatternList = legalizerPatterns[*rootName]; |
| else |
| orderedPatternList = anyOpLegalizerPatterns; |
| |
| // If the pattern is not found, then it was removed and cannot be matched. |
| auto *it = llvm::find(orderedPatternList, &pattern); |
| if (it == orderedPatternList.end()) |
| return PatternBenefit::impossibleToMatch(); |
| |
| // Patterns found earlier in the list have higher benefit. |
| return PatternBenefit(std::distance(it, orderedPatternList.end())); |
| }); |
| } |
| |
| unsigned OperationLegalizer::computeOpLegalizationDepth( |
| OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { |
| // Check for existing depth. |
| auto depthIt = minOpPatternDepth.find(op); |
| if (depthIt != minOpPatternDepth.end()) |
| return depthIt->second; |
| |
| // If a mapping for this operation does not exist, then this operation |
| // is always legal. Return 0 as the depth for a directly legal operation. |
| auto opPatternsIt = legalizerPatterns.find(op); |
| if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) |
| return 0u; |
| |
| // Record this initial depth in case we encounter this op again when |
| // recursively computing the depth. |
| minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); |
| |
| // Apply the cost model to the operation patterns, and update the minimum |
| // depth. |
| unsigned minDepth = applyCostModelToPatterns( |
| opPatternsIt->second, minOpPatternDepth, legalizerPatterns); |
| minOpPatternDepth[op] = minDepth; |
| return minDepth; |
| } |
| |
| unsigned OperationLegalizer::applyCostModelToPatterns( |
| LegalizationPatterns &patterns, |
| DenseMap<OperationName, unsigned> &minOpPatternDepth, |
| DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { |
| unsigned minDepth = std::numeric_limits<unsigned>::max(); |
| |
| // Compute the depth for each pattern within the set. |
| SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; |
| patternsByDepth.reserve(patterns.size()); |
| for (const Pattern *pattern : patterns) { |
| unsigned depth = 1; |
| for (auto generatedOp : pattern->getGeneratedOps()) { |
| unsigned generatedOpDepth = computeOpLegalizationDepth( |
| generatedOp, minOpPatternDepth, legalizerPatterns); |
| depth = std::max(depth, generatedOpDepth + 1); |
| } |
| patternsByDepth.emplace_back(pattern, depth); |
| |
| // Update the minimum depth of the pattern list. |
| minDepth = std::min(minDepth, depth); |
| } |
| |
| // If the operation only has one legalization pattern, there is no need to |
| // sort them. |
| if (patternsByDepth.size() == 1) |
| return minDepth; |
| |
| // Sort the patterns by those likely to be the most beneficial. |
| llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), |
| [](const std::pair<const Pattern *, unsigned> *lhs, |
| const std::pair<const Pattern *, unsigned> *rhs) { |
| // First sort by the smaller pattern legalization |
| // depth. |
| if (lhs->second != rhs->second) |
| return llvm::array_pod_sort_comparator<unsigned>( |
| &lhs->second, &rhs->second); |
| |
| // Then sort by the larger pattern benefit. |
| auto lhsBenefit = lhs->first->getBenefit(); |
| auto rhsBenefit = rhs->first->getBenefit(); |
| return llvm::array_pod_sort_comparator<PatternBenefit>( |
| &rhsBenefit, &lhsBenefit); |
| }); |
| |
| // Update the legalization pattern to use the new sorted list. |
| patterns.clear(); |
| for (auto &patternIt : patternsByDepth) |
| patterns.push_back(patternIt.first); |
| return minDepth; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OperationConverter |
| //===----------------------------------------------------------------------===// |
| namespace { |
| enum OpConversionMode { |
| /// In this mode, the conversion will ignore failed conversions to allow |
| /// illegal operations to co-exist in the IR. |
| Partial, |
| |
| /// In this mode, all operations must be legal for the given target for the |
| /// conversion to succeed. |
| Full, |
| |
| /// In this mode, operations are analyzed for legality. No actual rewrites are |
| /// applied to the operations on success. |
| Analysis, |
| }; |
| |
| // This class converts operations to a given conversion target via a set of |
| // rewrite patterns. The conversion behaves differently depending on the |
| // conversion mode. |
| struct OperationConverter { |
| explicit OperationConverter(ConversionTarget &target, |
| const FrozenRewritePatternSet &patterns, |
| OpConversionMode mode, |
| DenseSet<Operation *> *trackedOps = nullptr) |
| : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} |
| |
| /// Converts the given operations to the conversion target. |
| LogicalResult convertOperations(ArrayRef<Operation *> ops); |
| |
| private: |
| /// Converts an operation with the given rewriter. |
| LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); |
| |
| /// This method is called after the conversion process to legalize any |
| /// remaining artifacts and complete the conversion. |
| LogicalResult finalize(ConversionPatternRewriter &rewriter); |
| |
| /// Legalize the types of converted block arguments. |
| LogicalResult |
| legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl); |
| |
| /// Legalize any unresolved type materializations. |
| LogicalResult legalizeUnresolvedMaterializations( |
| ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl, |
| Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping); |
| |
| /// Legalize an operation result that was marked as "erased". |
| LogicalResult |
| legalizeErasedResult(Operation *op, OpResult result, |
| ConversionPatternRewriterImpl &rewriterImpl); |
| |
| /// Legalize an operation result that was replaced with a value of a different |
| /// type. |
| LogicalResult legalizeChangedResultType( |
| Operation *op, OpResult result, Value newValue, |
| TypeConverter *replConverter, ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl, |
| const DenseMap<Value, SmallVector<Value>> &inverseMapping); |
| |
| /// The legalizer to use when converting operations. |
| OperationLegalizer opLegalizer; |
| |
| /// The conversion mode to use when legalizing operations. |
| OpConversionMode mode; |
| |
| /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, |
| /// this is populated with ops found to be legalizable to the target. |
| /// When mode == OpConversionMode::Partial, this is populated with ops found |
| /// *not* to be legalizable to the target. |
| DenseSet<Operation *> *trackedOps; |
| }; |
| } // end anonymous namespace |
| |
| LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, |
| Operation *op) { |
| // Legalize the given operation. |
| if (failed(opLegalizer.legalize(op, rewriter))) { |
| // Handle the case of a failed conversion for each of the different modes. |
| // Full conversions expect all operations to be converted. |
| if (mode == OpConversionMode::Full) |
| return op->emitError() |
| << "failed to legalize operation '" << op->getName() << "'"; |
| // Partial conversions allow conversions to fail iff the operation was not |
| // explicitly marked as illegal. If the user provided a nonlegalizableOps |
| // set, non-legalizable ops are included. |
| if (mode == OpConversionMode::Partial) { |
| if (opLegalizer.isIllegal(op)) |
| return op->emitError() |
| << "failed to legalize operation '" << op->getName() |
| << "' that was explicitly marked illegal"; |
| if (trackedOps) |
| trackedOps->insert(op); |
| } |
| } else if (mode == OpConversionMode::Analysis) { |
| // Analysis conversions don't fail if any operations fail to legalize, |
| // they are only interested in the operations that were successfully |
| // legalized. |
| trackedOps->insert(op); |
| } |
| return success(); |
| } |
| |
| LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { |
| if (ops.empty()) |
| return success(); |
| ConversionTarget &target = opLegalizer.getTarget(); |
| |
| // Compute the set of operations and blocks to convert. |
| SmallVector<Operation *> toConvert; |
| for (auto *op : ops) { |
| toConvert.emplace_back(op); |
| for (auto ®ion : op->getRegions()) |
| if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), |
| toConvert, &target))) |
| return failure(); |
| } |
| |
| // Convert each operation and discard rewrites on failure. |
| ConversionPatternRewriter rewriter(ops.front()->getContext()); |
| ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); |
| for (auto *op : toConvert) |
| if (failed(convert(rewriter, op))) |
| return rewriterImpl.discardRewrites(), failure(); |
| |
| // Now that all of the operations have been converted, finalize the conversion |
| // process to ensure any lingering conversion artifacts are cleaned up and |
| // legalized. |
| if (failed(finalize(rewriter))) |
| return rewriterImpl.discardRewrites(), failure(); |
| |
| // After a successful conversion, apply rewrites if this is not an analysis |
| // conversion. |
| if (mode == OpConversionMode::Analysis) { |
| rewriterImpl.discardRewrites(); |
| } else { |
| rewriterImpl.applyRewrites(); |
| |
| // It is possible for a later pattern to erase an op that was originally |
| // identified as illegal and added to the trackedOps, remove it now after |
| // replacements have been computed. |
| if (trackedOps) |
| for (auto &repl : rewriterImpl.replacements) |
| trackedOps->erase(repl.first); |
| } |
| return success(); |
| } |
| |
| LogicalResult |
| OperationConverter::finalize(ConversionPatternRewriter &rewriter) { |
| Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping; |
| ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); |
| if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl, |
| inverseMapping)) || |
| failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) |
| return failure(); |
| |
| if (rewriterImpl.operationsWithChangedResults.empty()) |
| return success(); |
| |
| // Process requested operation replacements. |
| for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); |
| i != e; ++i) { |
| unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; |
| auto &repl = *(rewriterImpl.replacements.begin() + replIdx); |
| for (OpResult result : repl.first->getResults()) { |
| Value newValue = rewriterImpl.mapping.lookupOrNull(result); |
| |
| // If the operation result was replaced with null, all of the uses of this |
| // value should be replaced. |
| if (!newValue) { |
| if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) |
| return failure(); |
| continue; |
| } |
| |
| // Otherwise, check to see if the type of the result changed. |
| if (result.getType() == newValue.getType()) |
| continue; |
| |
| // Compute the inverse mapping only if it is really needed. |
| if (!inverseMapping) |
| inverseMapping = rewriterImpl.mapping.getInverse(); |
| |
| // Legalize this result. |
| rewriter.setInsertionPoint(repl.first); |
| if (failed(legalizeChangedResultType(repl.first, result, newValue, |
| repl.second.converter, rewriter, |
| rewriterImpl, *inverseMapping))) |
| return failure(); |
| |
| // Update the end iterator for this loop in the case it was updated |
| // when legalizing generated conversion operations. |
| e = rewriterImpl.operationsWithChangedResults.size(); |
| } |
| } |
| return success(); |
| } |
| |
| LogicalResult OperationConverter::legalizeConvertedArgumentTypes( |
| ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl) { |
| // Functor used to check if all users of a value will be dead after |
| // conversion. |
| auto findLiveUser = [&](Value val) { |
| auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { |
| return rewriterImpl.isOpIgnored(user); |
| }); |
| return liveUserIt == val.user_end() ? nullptr : *liveUserIt; |
| }; |
| return rewriterImpl.argConverter.materializeLiveConversions( |
| rewriterImpl.mapping, rewriter, findLiveUser); |
| } |
| |
| /// Replace the results of a materialization operation with the given values. |
| static void |
| replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl, |
| ResultRange matResults, ValueRange values, |
| DenseMap<Value, SmallVector<Value>> &inverseMapping) { |
| matResults.replaceAllUsesWith(values); |
| |
| // For each of the materialization results, update the inverse mappings to |
| // point to the replacement values. |
| for (auto it : llvm::zip(matResults, values)) { |
| Value matResult, newValue; |
| std::tie(matResult, newValue) = it; |
| auto inverseMapIt = inverseMapping.find(matResult); |
| if (inverseMapIt == inverseMapping.end()) |
| continue; |
| |
| // Update the reverse mapping, or remove the mapping if we couldn't update |
| // it. Not being able to update signals that the mapping would have become |
| // circular (i.e. %foo -> newValue -> %foo), which may occur as values are |
| // propagated through temporary materializations. We simply drop the |
| // mapping, and let the post-conversion replacement logic handle updating |
| // uses. |
| for (Value inverseMapVal : inverseMapIt->second) |
| if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue)) |
| rewriterImpl.mapping.erase(inverseMapVal); |
| } |
| } |
| |
| /// Compute all of the unresolved materializations that will persist beyond the |
| /// conversion process, and require inserting a proper user materialization for. |
| static void computeNecessaryMaterializations( |
| DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, |
| ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl, |
| DenseMap<Value, SmallVector<Value>> &inverseMapping, |
| SetVector<UnresolvedMaterialization *> &necessaryMaterializations) { |
| auto isLive = [&](Value value) { |
| auto findFn = [&](Operation *user) { |
| auto matIt = materializationOps.find(user); |
| if (matIt != materializationOps.end()) |
| return !necessaryMaterializations.count(matIt->second); |
| return rewriterImpl.isOpIgnored(user); |
| }; |
| return llvm::find_if_not(value.getUsers(), findFn) != value.user_end(); |
| }; |
| |
| llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue = |
| [&](Value invalidRoot, Value value, Type type) { |
| // Check to see if the input operation was remapped to a variant of the |
| // output. |
| Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); |
| if (remappedValue.getType() == type && remappedValue != invalidRoot) |
| return remappedValue; |
| |
| // Check to see if the input is a materialization operation that |
| // provides an inverse conversion. We just check blindly for |
| // UnrealizedConversionCastOp here, but it has no effect on correctness. |
| auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>(); |
| if (inputCastOp && inputCastOp->getNumOperands() == 1) |
| return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0), |
| type); |
| |
| return Value(); |
| }; |
| |
| SetVector<UnresolvedMaterialization *> worklist; |
| for (auto &mat : rewriterImpl.unresolvedMaterializations) { |
| materializationOps.try_emplace(mat.getOp(), &mat); |
| worklist.insert(&mat); |
| } |
| while (!worklist.empty()) { |
| UnresolvedMaterialization *mat = worklist.pop_back_val(); |
| UnrealizedConversionCastOp op = mat->getOp(); |
| |
| // We currently only handle target materializations here. |
| assert(op->getNumResults() == 1 && "unexpected materialization type"); |
| OpResult opResult = op->getOpResult(0); |
| Type outputType = opResult.getType(); |
| Operation::operand_range inputOperands = op.getOperands(); |
| |
| // Try to forward propagate operands for user conversion casts that result |
| // in the input types of the current cast. |
| for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) { |
| auto castOp = dyn_cast<UnrealizedConversionCastOp>(user); |
| if (!castOp) |
| continue; |
| if (castOp->getResultTypes() == inputOperands.getTypes()) { |
| replaceMaterialization(rewriterImpl, opResult, inputOperands, |
| inverseMapping); |
| necessaryMaterializations.remove(materializationOps.lookup(user)); |
| } |
| } |
| |
| // Try to avoid materializing a resolved materialization if possible. |
| // Handle the case of a 1-1 materialization. |
| if (inputOperands.size() == 1) { |
| // Check to see if the input operation was remapped to a variant of the |
| // output. |
| Value remappedValue = |
| lookupRemappedValue(opResult, inputOperands[0], outputType); |
| if (remappedValue && remappedValue != opResult) { |
| replaceMaterialization(rewriterImpl, opResult, remappedValue, |
| inverseMapping); |
| necessaryMaterializations.remove(mat); |
| continue; |
| } |
| } else { |
| // TODO: Avoid materializing other types of conversions here. |
| } |
| |
| // Check to see if this is an argument materialization. |
| auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); }; |
| if (llvm::any_of(op->getOperands(), isBlockArg) || |
| llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) { |
| mat->setKind(UnresolvedMaterialization::Argument); |
| } |
| |
| // If the materialization does not have any live users, we don't need to |
| // generate a user materialization for it. |
| // FIXME: For argument materializations, we currently need to check if any |
| // of the inverse mapped values are used because some patterns expect blind |
| // value replacement even if the types differ in some cases. When those |
| // patterns are fixed, we can drop the argument special case here. |
| bool isMaterializationLive = isLive(opResult); |
| if (mat->getKind() == UnresolvedMaterialization::Argument) |
| isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive); |
| if (!isMaterializationLive) |
| continue; |
| if (!necessaryMaterializations.insert(mat)) |
| continue; |
| |
| // Reprocess input materializations to see if they have an updated status. |
| for (Value input : inputOperands) { |
| if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) { |
| if (auto *mat = materializationOps.lookup(parentOp)) |
| worklist.insert(mat); |
| } |
| } |
| } |
| } |
| |
| /// Legalize the given unresolved materialization. Returns success if the |
| /// materialization was legalized, failure otherise. |
| static LogicalResult legalizeUnresolvedMaterialization( |
| UnresolvedMaterialization &mat, |
| DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, |
| ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl, |
| DenseMap<Value, SmallVector<Value>> &inverseMapping) { |
| auto findLiveUser = [&](auto &&users) { |
| auto liveUserIt = llvm::find_if_not( |
| users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); }); |
| return liveUserIt == users.end() ? nullptr : *liveUserIt; |
| }; |
| |
| llvm::unique_function<Value(Value, Type)> lookupRemappedValue = |
| [&](Value value, Type type) { |
| // Check to see if the input operation was remapped to a variant of the |
| // output. |
| Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); |
| if (remappedValue.getType() == type) |
| return remappedValue; |
| return Value(); |
| }; |
| |
| UnrealizedConversionCastOp op = mat.getOp(); |
| if (!rewriterImpl.ignoredOps.insert(op)) |
| return success(); |
| |
| // We currently only handle target materializations here. |
| OpResult opResult = op->getOpResult(0); |
| Operation::operand_range inputOperands = op.getOperands(); |
| Type outputType = opResult.getType(); |
| |
| // If any input to this materialization is another materialization, resolve |
| // the input first. |
| for (Value value : op->getOperands()) { |
| auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>(); |
| if (!valueCast) |
| continue; |
| |
| auto matIt = materializationOps.find(valueCast); |
| if (matIt != materializationOps.end()) |
| if (failed(legalizeUnresolvedMaterialization( |
| *matIt->second, materializationOps, rewriter, rewriterImpl, |
| inverseMapping))) |
| return failure(); |
| } |
| |
| // Perform a last ditch attempt to avoid materializing a resolved |
| // materialization if possible. |
| // Handle the case of a 1-1 materialization. |
| if (inputOperands.size() == 1) { |
| // Check to see if the input operation was remapped to a variant of the |
| // output. |
| Value remappedValue = lookupRemappedValue(inputOperands[0], outputType); |
| if (remappedValue && remappedValue != opResult) { |
| replaceMaterialization(rewriterImpl, opResult, remappedValue, |
| inverseMapping); |
| return success(); |
| } |
| } else { |
| // TODO: Avoid materializing other types of conversions here. |
| } |
| |
| // Try to materialize the conversion. |
| if (TypeConverter *converter = mat.getConverter()) { |
| // FIXME: Determine a suitable insertion location when there are multiple |
| // inputs. |
| if (inputOperands.size() == 1) |
| rewriter.setInsertionPointAfterValue(inputOperands.front()); |
| else |
| rewriter.setInsertionPoint(op); |
| |
| Value newMaterialization; |
| switch (mat.getKind()) { |
| case UnresolvedMaterialization::Argument: |
| // Try to materialize an argument conversion. |
| // FIXME: The current argument materialization hook expects the original |
| // output type, even though it doesn't use that as the actual output type |
| // of the generated IR. The output type is just used as an indicator of |
| // the type of materialization to do. This behavior is really awkward in |
| // that it diverges from the behavior of the other hooks, and can be |
| // easily misunderstood. We should clean up the argument hooks to better |
| // represent the desired invariants we actually care about. |
| newMaterialization = converter->materializeArgumentConversion( |
| rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands); |
| if (newMaterialization) |
| break; |
| |
| // If an argument materialization failed, fallback to trying a target |
| // materialization. |
| LLVM_FALLTHROUGH; |
| case UnresolvedMaterialization::Target: |
| newMaterialization = converter->materializeTargetConversion( |
| rewriter, op->getLoc(), outputType, inputOperands); |
| break; |
| } |
| if (newMaterialization) { |
| replaceMaterialization(rewriterImpl, opResult, newMaterialization, |
| inverseMapping); |
| return success(); |
| } |
| } |
| |
| InFlightDiagnostic diag = op->emitError() |
| << "failed to legalize unresolved materialization " |
| "from " |
| << inputOperands.getTypes() << " to " << outputType |
| << " that remained live after conversion"; |
| if (Operation *liveUser = findLiveUser(op->getUsers())) { |
| diag.attachNote(liveUser->getLoc()) |
| << "see existing live user here: " << *liveUser; |
| } |
| return failure(); |
| } |
| |
| LogicalResult OperationConverter::legalizeUnresolvedMaterializations( |
| ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl, |
| Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) { |
| if (rewriterImpl.unresolvedMaterializations.empty()) |
| return success(); |
| inverseMapping = rewriterImpl.mapping.getInverse(); |
| |
| // As an initial step, compute all of the inserted materializations that we |
| // expect to persist beyond the conversion process. |
| DenseMap<Operation *, UnresolvedMaterialization *> materializationOps; |
| SetVector<UnresolvedMaterialization *> necessaryMaterializations; |
| computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl, |
| *inverseMapping, necessaryMaterializations); |
| |
| // Once computed, legalize any necessary materializations. |
| for (auto *mat : necessaryMaterializations) { |
| if (failed(legalizeUnresolvedMaterialization( |
| *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping))) |
| return failure(); |
| } |
| return success(); |
| } |
| |
| LogicalResult OperationConverter::legalizeErasedResult( |
| Operation *op, OpResult result, |
| ConversionPatternRewriterImpl &rewriterImpl) { |
| // If the operation result was replaced with null, all of the uses of this |
| // value should be replaced. |
| auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { |
| return rewriterImpl.isOpIgnored(user); |
| }); |
| if (liveUserIt != result.user_end()) { |
| InFlightDiagnostic diag = op->emitError("failed to legalize operation '") |
| << op->getName() << "' marked as erased"; |
| diag.attachNote(liveUserIt->getLoc()) |
| << "found live user of result #" << result.getResultNumber() << ": " |
| << *liveUserIt; |
| return failure(); |
| } |
| return success(); |
| } |
| |
| /// Finds a user of the given value, or of any other value that the given value |
| /// replaced, that was not replaced in the conversion process. |
| static Operation *findLiveUserOfReplaced( |
| Value initialValue, ConversionPatternRewriterImpl &rewriterImpl, |
| const DenseMap<Value, SmallVector<Value>> &inverseMapping) { |
| SmallVector<Value> worklist(1, initialValue); |
| while (!worklist.empty()) { |
| Value value = worklist.pop_back_val(); |
| |
| // Walk the users of this value to see if there are any live users that |
| // weren't replaced during conversion. |
| auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { |
| return rewriterImpl.isOpIgnored(user); |
| }); |
| if (liveUserIt != value.user_end()) |
| return *liveUserIt; |
| auto mapIt = inverseMapping.find(value); |
| if (mapIt != inverseMapping.end()) |
| worklist.append(mapIt->second); |
| } |
| return nullptr; |
| } |
| |
| LogicalResult OperationConverter::legalizeChangedResultType( |
| Operation *op, OpResult result, Value newValue, |
| TypeConverter *replConverter, ConversionPatternRewriter &rewriter, |
| ConversionPatternRewriterImpl &rewriterImpl, |
| const DenseMap<Value, SmallVector<Value>> &inverseMapping) { |
| Operation *liveUser = |
| findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); |
| if (!liveUser) |
| return success(); |
| |
| // Functor used to emit a conversion error for a failed materialization. |
| auto emitConversionError = [&] { |
| InFlightDiagnostic diag = op->emitError() |
| << "failed to materialize conversion for result #" |
| << result.getResultNumber() << " of operation '" |
| << op->getName() |
| << |